Categories
Feature Health & Medicine Mind & Brain Researcher news Videos

Researchers test blood flow in athletes’ brains to find markers that diagnose concussions

Diagnosing concussions is difficult because it typically rests on subjective symptoms such as forgetfulness, wobbly gait and disorientation or loss of consciousness. A new study of college athletes investigates objective indicators using Doppler ultrasound to measure brain blood flow and blood vessel function.

A hard hit to the head typically prompts physicians to look for signs of a concussion based on symptoms such as forgetfulness, wobbly gait and disorientation.

But symptoms such as those are subjective. And youth who are anxious to get back to their sport can sometimes hide the signs in order to brush off adult concerns, says physiologist Sushmita Purkayastha, Southern Methodist University, Dallas.

Now a new study funded by the Texas Institute for Brain Injury and Repair at U.T. Southwestern Medical Center, Dallas aims to find noninvasive objective indicators to diagnose whether an athlete has suffered a concussion. Using transcranial Doppler ultrasound, the study will probe the brains of college athletes to measure blood vessel function in the brain, looking for tell-tale signs related to blood flow that help diagnose concussion, said Purkayastha, a researcher on the new study.

“We know this is an understudied area. With other health problems, when the doctor suspects diabetes or hypertension, they don’t guess, they run objective tests to confirm the diagnosis. But that’s not the case with concussion — yet,” said Purkayastha, whose research expertise is blood flow regulation in the human brain. “That’s why my research focus is to find markers that are objective and not subjective. And this method of monitoring blood flow in the brain with ultrasound is noninvasive, inexpensive and there’s no radiation.”

Purkayastha and others on the research team are working under a one-year, $150,000 pilot research grant from the Texas Institute for Brain Injury and Repair, a UT Southwestern initiative funded by the Texas Legislature to enhance the diagnosis and treatment of brain injuries.

The team will observe 200 male and female college athletes over the next two years. Half the athletes will be students playing a contact-collision sport who have recently suffered a sports-related concussion. The other half, a control group, will be students playing a contact-collision sport who don’t have a concussion. The study draws on athletes from football, soccer, equestrian sports, cheerleading and recreational sports.

The researchers began testing subjects in August. They expect to have results by the Fall of 2017.

“We are very excited at establishing this collaboration between SMU and the Physical Medicine and Rehabilitation Department at UTSW. Our work with Dr. Purkayastha promises to give meaningful insight into the role of cerebral blood flow mechanisms after concussion and will point us in the right direction for improved neurorecovery,” said physician Kathleen Bell, a leading investigator at U.T. Southwestern’s Texas Institute for Brain Injury and Repair and principal investigator on the study. Bell is a nationally recognized leader in rehabilitation medicine and a specialist in neurorehabilitation.

Diagnosing concussions by using objective, non-invasive and inexpensive markers will result in accurate diagnosis and better return-to-play decisions following a concussion, thereby preventing the long-term risk of second-impact syndrome, said Purkayastha, an assistant professor in the Department of Applied Physiology and Wellness of SMU’s Annette Caldwell Simmons School of Education and Human Development.

“Although sports-related concussions are common, the physiology of the injury is poorly understood, and hence there are limited treatments currently available,” she said.

Hemorrhage or blackouts result, for example, if autoregulation malfunctions
While the brain is the most important organ in the body, it has been very understudied, said Purkayastha, a professor in the Simmons School of Education & Human Development. But since blood vessels in the brain behave similarly to those in the rest of the body, it’s possible to measure blood vessel function in the brain by monitoring blood pressure and brain blood flow. Observing those functions could reveal a marker, she said.

In Purkayastha’s lab on the SMU campus, student athletes are being outfitted with two small ultrasound probes, one on each side of their forehead in the temple area, to test blood vessel function. Specifically, the two probes monitor the blood flow through middle cerebral artery, which supplies blood to 75 percent of the brain. The artery traverses the brain, circulating blood to the brain tissues responsible for movement, cognition and decision-making.

Branching from the middle cerebral artery is a network of blood vessels that get smaller and smaller as they get further from the artery, spreading like tree branches through the brain. The smallest vessels — via a different local regulatory mechanism — maintain constant blood flow to the brain, making microadjustments, such as constricting and dilating in the face of constant changes in blood pressure. Adjustments occur as a person’s muscles move, whether standing, sitting, exercising, or even just laughing and experiencing emotion. These continual adjustments in the vessels — called cerebral autoregulation — keep blood flow constant and regular. That prevents problems such as hemorrhaging or passing out from large fluctuations in blood pressure that is either too high or too low.

Researchers suspect concussion diminishes a vessels ability to properly regulate blood flow
In the current study, ultrasound probes on the temples record the vessels’ microadjustments as digital data. That information is processed through a WinDaq data acquisition software and analyzed to examine cerebral autoregulation with spontaneous changes in blood pressure during that period of time.

Unlike at the doctor’s office, when a cuff is used to measure blood pressure at a rate of single measurements during 30 seconds, Purkayastha’s ultrasound monitoring of blood pressure provides continuous blood pressure recording throughout each heartbeat. As sound waves bounce into the artery and send back an echo, they measure the speed of red blood cells and other blood components moving through the artery.

“We collect 10 minutes of very high frequency data points collecting information on beat-to-beat changes in blood pressure and blood flow to the brain for every single heartbeat,” said Purkayastha. “Then we analyze and post-process and examine how well the blood vessels were able to maintain constant blood flow to the brain. We suspect in people with concussion that the autoregulation function isn’t operating properly which leads to impairments in function such as wobbly gait, disorientation or forgetfulness. This is a noninvasive way to see if there’s a flaw in the autoregulation.”

Athletes with confirmed diagnosis of concussions will be tested three times during the course of the study. The first test is three days after a suspected concussion, the second is 21 days afterward, and the third is three months afterward.

“The pilot studies so far look promising and our goal is to better understand the mechanism behind injury and design objective markers detecting concussion,” said Purkayastha.

The Texas Institute for Brain Injury and Repair at U.T. Southwestern Medical Center, a component of the Harold and Annette Simmons Comprehensive Center for Research and Treatment in Brain and Neurological Disorders, is a collaborative initiative involving local and national organizations, including the National Institutes of Health, University of Texas Dallas and its Center for BrainHealth, Children’s Medical Center, Dallas VA Medical Center, and Parkland Health and Hospital System, as well as Texas Health Resources and Texas Health Ben Hogan Sports Medicine. — Margaret Allen, SMU

Categories
Culture, Society & Family Fossils & Ruins Learning & Education Researcher news Slideshows SMU In The News Student researchers

One of the most significant Etruscan discoveries in decades names female goddess Uni

One of the longest Etruscan texts ever found, the inscription’s mention of Uni may indicate she was patroness of the Poggio Colla cult, with stone’s language spelling out ceremonial religious rituals

Archaeologists translating a very rare inscription on an ancient Etruscan temple stone have discovered the name Uni — an important female goddess.

The discovery indicates that Uni — a divinity of fertility and possibly a mother goddess at this particular place — may have been the titular deity worshipped at the sanctuary of Poggio Colla, a key settlement in Italy for the ancient Etruscan civilization.

The mention is part of a sacred text that is possibly the longest such Etruscan inscription ever discovered on stone, said archaeologist Gregory Warden, professor emeritus at Southern Methodist University, Dallas, main sponsor of the archaeological dig.

Scientists on the research discovered the ancient stone slab embedded as part of a temple wall at Poggio Colla, a dig where many other Etruscan objects have been found, including a ceramic fragment with the earliest birth scene in European art. That object reinforces the interpretation of a fertility cult at Poggio Colla, Warden said.

Now Etruscan language experts are studying the 500-pound slab — called a stele (STEE-lee) — to translate the text. It’s very rare to identify the god or goddess worshipped at an Etruscan sanctuary.

“The location of its discovery — a place where prestigious offerings were made — and the possible presence in the inscription of the name of Uni, as well as the care of the drafting of the text, which brings to mind the work of a stone carver who faithfully followed a model transmitted by a careful and educated scribe, suggest that the document had a dedicatory character,” said Adriano Maggiani, formerly Professor at the University of Venice and one of the scholars working to decipher the inscription.

“It is also possible that it expresses the laws of the sanctuary — a series of prescriptions related to ceremonies that would have taken place there, perhaps in connection with an altar or some other sacred space,” said Warden, co-director and principal investigator of the Mugello Valley Archaeological Project that made the discovery.

Warden said it will be easier to speak with more certainty once the archaeologists are able to completely reconstruct the text, which consists of as many as 120 characters or more. While archaeologists understand how Etruscan grammar works, and know some of its words and alphabet, they expect to discover new words never seen before, particularly since this discovery veers from others in that it’s not a funerary text.

The Mugello Valley archaeologists had planned to announce discovery of the goddess Uni at an exhibit in Florence on Aug. 27, “Scrittura e culto a Poggio Colla, un santuario etrusco nel Mugello,” and in a forthcoming article in the scholarly journal Etruscan Studies. The exhibit opening has been delayed to Sept. 2 due to the recent devastating earthquake in areas of Italy unrelated to the Poggio Colla research.

Text may specify the religious ritual for temple ceremonies dedicated to the goddess
It’s possible the text contains the dedication of the sanctuary, or some part of it, such as the temple proper, so the expectation is that it will reveal the early beliefs of a lost culture fundamental to western traditions.

The sandstone slab, which dates to the 6th century BCE and is nearly four feet tall by more than two feet wide, was discovered in the final stages of two decades of digging at Mugello Valley, which is northeast of Florence in north central Italy.

Etruscans once ruled Rome, influencing that civilization in everything from religion and government to art and architecture. A highly cultured people, Etruscans were also very religious and their belief system permeated all aspects of their culture and life.

Inscription may reveal data to understand concepts and rituals, writing and language
Permanent Etruscan inscriptions are rare, as Etruscans typically used linen cloth books or wax tablets. The texts that have been preserved are quite short and are from graves, thus funerary in nature.

“We can at this point affirm that this discovery is one of the most important Etruscan discoveries of the last few decades,” Warden said. “It’s a discovery that will provide not only valuable information about the nature of sacred practices at Poggio Colla, but also fundamental data for understanding the concepts and rituals of the Etruscans, as well as their writing and perhaps their language.”

Besides being possibly the longest Etruscan inscription on stone, it is also one of the three longest sacred texts to date.

One section of the text refers to “tinaś,” a reference to Tina, the name of the supreme deity of the Etruscans. Tina was equivalent to ancient Greece’s Zeus or Rome’s Jupiter.

Slab was once an imposing and monumental symbol of authority
The slab was discovered embedded in the foundations of a monumental temple where it had been buried for more than 2,500 years. At one time it would have been displayed as an imposing and monumental symbol of authority, said Warden, president and professor of archaeology at Franklin University Switzerland.

The text is being studied by two noted experts on the Etruscan language, including Maggiani, who is an epigrapher, and Rex Wallace, professor of classics at the University of Massachusetts Amherst, who is a comparative linguist.

A hologram of the stele will be shown at the Florence exhibit, as conservation of the stele is ongoing at the conservation laboratories of the Archaeological Superintendency in Florence. Digital documentation is being done by experts from the architecture department of the University of Florence. The sandstone is heavily abraded and chipped, so cleaning should allow scholars to read the inscription.

Other objects unearthed in the past 20 years have shed light on Etruscan worship, beliefs, gifts to divinities, and discoveries related to the daily lives of elites and non-elites, including workshops, kilns, pottery and homes. The material helps document ritual activity from the 7th century to the 2nd century BCE.

Besides SMU, other collaborating institutions at Mugello Valley Archaeological Project include Franklin and Marshall College, the University of Pennsylvania Museum of Archaeology, the Center for the Study of Ancient Italy at The University of Texas at Austin, The Open University (UK), and Franklin University Switzerland. — Margaret Allen, SMU

Categories
Culture, Society & Family Earth & Climate Fossils & Ruins Plants & Animals Researcher news

Textbook theory of how humans populated America is “biologically unviable,” study finds

Using ancient DNA, researchers have created a unique picture of how a prehistoric migration route evolved over thousands of years – revealing that it could not have been used by the first people to enter the Americas, as traditionally thought.

The established theory about how Ice Age peoples first reached the present-day United States has been challenged by an unprecedented study that concludes that their supposed entry route was “biologically unviable.”

The first people to reach the Americas crossed via an ancient land bridge between Siberia and Alaska but then, according to conventional wisdom, had to wait until two huge ice sheets that covered what is now Canada started to recede, creating the so-called “ice-free corridor” that enabled them to move south.

In a new study published in the journal Nature, however, an international team of researchers used ancient DNA extracted from a crucial pinch-point within this corridor to investigate how its ecosystem evolved as the glaciers began to retreat.

They created a comprehensive picture showing how and when different flora and fauna emerged so the once ice-covered landscape became a viable passageway. No prehistoric reconstruction project like this has ever been attempted before.

Present day view south in Canada's Peace River drainage basin where retreating ice sheets created an ice-free corridor more than 13,000 years ago. (Mikkel Winther Pedersen, University of Copenhagen)
Present day view south in Canada’s Peace River drainage basin where retreating ice sheets created an ice-free corridor more than 13,000 years ago. (Mikkel Winther Pedersen, University of Copenhagen)

The researchers conclude that while people may well have travelled this corridor after about 12,600 years ago, it would have been impassable earlier than that, as the corridor lacked crucial resources, such as wood for fuel and tools, as well as game animals essential to the hunter-gatherer lifestyle.

If this is true, then it means that the first Americans, who were present south of the ice sheets long before 12,600 years ago, must have made the journey south by another route. The study’s authors suggest that they probably migrated along the Pacific coast.

Who these people were is still widely disputed. Archaeologists agree, however, that early inhabitants of the modern-day contiguous United States included the so-called “Clovis” culture, which first appear in the archaeological record over 13,000 years ago. And the new study argues that the ice-free corridor would have been completely impassable at that time.

“There is compelling evidence that Clovis was preceded by an earlier and possibly separate population,” said archaeologist and co-author on the study David J. Meltzer, Henderson-Morrison Professor of Prehistory in the Department of Anthropology at Southern Methodist University, Dallas. “But either way, the first people to reach the Americas in Ice Age times would have found the corridor itself impassable.”

The ice-free corridor simply opened up too late to be the principal entry route
The research was led by evolutionary geneticist Eske Willerslev, a Fellow of St John’s College, University of Cambridge, who also holds posts at the Centre for GeoGenetics, University of Copenhagen, and the Wellcome Sanger Institute in Cambridge.

“The bottom line is that even though the physical corridor was open by 13,000 years ago, it was several hundred years before it was possible to use it,” Willerslev said. “That means that the first people entering what is now the U.S., Central and South America must have taken a different route. Whether you believe these people were Clovis, or someone else, they simply could not have come through the corridor, as long claimed.”

Mikkel Winther Pedersen, a doctoral student at the Centre for GeoGenetics, University of Copenhagen, who conducted the molecular analysis, added: “The ice-free corridor was long considered the principal entry route for the first Americans. Our results reveal that it simply opened up too late for that to have been possible.”

The corridor is thought to have been about 1,500 kilometers long, and emerged east of the Rocky Mountains 13,000 years ago in present-day western Canada, as two great ice sheets – the Cordilleran and Laurentide, retreated.

On paper, this fits well with the argument that Clovis people were the first to disperse across the Americas. The first evidence for this culture, which is named after distinctive stone tools found near Clovis, New Mexico, also dates from roughly the same time, although many archaeologists now believe that other people arrived earlier.

“What nobody has looked at is when the corridor became biologically viable,” Willerslev said. “When could they actually have survived the long and difficult journey through it?”

Radiocarbon dates, pollen, macrofossils and DNA revealed how ecosystem developed
The conclusion reached by Willerslev and his colleagues is that the journey would have been impossible until about 12,600 years ago. Their research focused on a “bottleneck,” one of the last parts of the corridor to become ice-free, and now partly covered by Charlie Lake in British Columbia, and Spring Lake, Alberta — both part of Canada’s Peace River drainage basin.

The team gathered evidence — including radiocarbon dates, pollen, macrofossils and DNA taken from lake sediment cores — which they obtained standing on the frozen lake surface during the winter season. Willerslev’s own PhD, 13 years ago, demonstrated that it is possible to extract ancient plant and mammalian DNA from sediments, as it contains preserved molecular fossils from substances such as tissue, urine and feces.

Having acquired the DNA, the group then applied a technique termed “shotgun sequencing.”

“Instead of looking for specific pieces of DNA from individual species, we basically sequenced everything in there, from bacteria to animals,” Willerslev said. “It’s amazing what you can get out of this. We found evidence of fish, eagles, mammals and plants. It shows how effective this approach can be to reconstruct past environments.”

This approach allowed the team to see, with remarkable precision, how the bottleneck’s ecosystem developed. Crucially, it showed that before about 12,600 years ago, there were no plants, nor animals, in the corridor, meaning that humans passing through it would not have had resources vital to survive.

Clovis could not have travelled through ice-free corridor as previously believed
Around 12,600 years ago, steppe vegetation started to appear, followed quickly by animals such as bison, woolly mammoth, jackrabbits and voles. Importantly 11,500 years ago, the researchers identified a transition to a “parkland ecosystem” – a landscape densely populated by trees, as well as moose, elk and bald-headed eagles, which would have offered crucial resources for migrating humans.

Somewhere in between, the lakes in the area were populated by fish, including several identifiable species such as pike and perch. Finally, about 10,000 years ago, the area transitioned again, this time into boreal forest, characterized by spruce and pine.

The fact that Clovis was clearly present south of the corridor before 12,600 years ago means that they could not have travelled through it.

“Most likely, you would say that the evidence points to their having travelled down the Pacific Coast,” Willerslev added. “That now seems the most likely scenario.”

The paper, “Postglacial viability and colonization in North America’s ice-free corridor,” is published online ahead of print in Nature on Aug. 10, 2016.

Categories
Culture, Society & Family Learning & Education Mind & Brain Technology

Students grasp abstract math concepts after they demonstrate them with arm motions

Video game that directs students to make arm movements fosters understanding for proving complex geometry theorems

Students who make relevant arm movements while learning can improve their knowledge and retention of math, research has shown.

Now researchers at Southern Methodist University, Dallas, and the University of Wisconsin-Madison have developed a model using geometry proofs that shows potential for wide adoption — a video game in which students make movements with their arms to learn abstract math concepts.

The research is the first to use widely available technology combined with relevant body gestures and apply it to the learning of complex reasoning in a highly conceptual, pre-college math domain — geometric proof production.

“When they’re doing geometry, students and teachers gesture all the time to show shapes, lines, and relationships, and the research suggests this is very beneficial,” said teaching expert Candace Walkington, assistant professor of teaching and learning in SMU’s Annette Caldwell Simmons School of Education & Human Development.

“Our goal is to create an environment that supports students in making motions that help them understand the math better, Walkington said.”

Walkington and educational psychology professors Mitchell Nathan and Peter Steiner, University of Wisconsin-Madison are collaborating on the project with SMU Guildhall, SMU’s graduate-level academic program for digital game-development.

The researchers have been awarded a four-year $1.39 million grant for their work from the U.S. Department of Education’s Institute of Educational Sciences, Educational Research Grants.

“Much of math education is about learning rules and procedures. Geometry proof is different,” said Nathan, a professor in the Department of Educational Psychology at University of Wisconsin-Madison. “Students have to learn how to think conceptually about why certain statements about shapes are true, how they are always true, for all members of a class of shapes, and how to explain it to others so they are convincing. We think that level of mathematical understanding is embodied.”

Emerging research is investigating the theory that our body actions can actually influence our thoughts, in addition to our thoughts driving our actions. Body movement can induce new activity in our neural systems. This activity can create and influence our learning, thinking and mental organization. This mind-body partnership, dubbed “embodied cognition,” is driving new approaches to learning subjects such as math.

“What is so exciting about this geometry research project is that it shows how theories of embodied cognition are becoming mature enough to start to develop a whole new class of educational technology that we can envision as part of everyday math classrooms in the near term,” Nathan said.

Video game fosters learning by pairing gestures with geometry proofs
At the heart of the new study is the video game “The Hidden Village.” A motion-capture video game, “The Hidden Village” helps foster learning by pairing motions with geometry proofs. Designed for a Windows PC computer with Microsoft’s Kinect 2 motion-capture camera attached, the game’s signature design element is an episodic story paired with directives for arm movements.

Each episode leads a student to perform certain motions with their arms, correlating those with questions and answers related to proofs of geometry theorems.

To begin, a student stands in front of the Kinect camera. The camera detects the student, then calibrates to each student’s body shape, size and movement, familiarizing itself with the student.

When play begins, the camera and software detect movements in real time and provide feedback about whether the students are appropriately matching the motions.

A demo of the latest version of the video game is available on Youtube, with an explanatory video at this link.

Directed body motions can improve proving of theorems
The previous version of the game was tested at a high school in Dallas in February with positive results. The researchers are presenting those results in early November at the Psychology of Mathematics Education conference in Tucson, Arizona.

Preliminary findings showed students liked learning in the video game format, and benefited when they were encouraged to think about how their body motions related to the geometric proofs.

“High school students really struggle to learn proof in geometry, and often their initial performance on these proofs is very low,” said Walkington, who specializes in math education and connecting it to students’ concrete everyday experiences. “However, making and thinking through the motions from the game, they’re given a new resource with which to think about the problems.”

Recent research led by Nathan found that directed body motions can lead to improvements in geometry theorem proving even when students claim no awareness of the relevance of the actions to the mathematical tasks. Research has also found that verbal prompts from a teacher to connect the actions to mathematical ideas further improve student proof practices.

The new grant, “How dynamic gestures and directed actions contribute to mathematical proof practices,” runs from July 2016 through June 2020. — Margaret Allen, SMU

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows

17 million-year-old whale fossil provides 1st exact date for East Africa’s puzzling uplift

Uplift and aridification of East Africa causing changes in vegetation has been considered a driver of human evolution. Now a fossil whale stranded far inland in Kenya marks the first time scientists can pinpoint how many millions of years ago the uplift began.

Uplift associated with the Great Rift Valley of East Africa and the environmental changes it produced have puzzled scientists for decades. Timing and starting elevation have been poorly understood.

Now paleontologists have tapped a fossil from the most precisely dated beaked whale in the world to pinpoint for the first time a date when East Africa’s mysterious elevation began. The stranded whale is the only one ever found so far inland on the African continent.

The 17 million-year-old fossil is from the beaked Ziphiidae whale family. It was discovered 740 kilometers inland at a elevation of 620 meters in modern Kenya’s harsh desert region, said vertebrate paleontologist Louis L. Jacobs, Southern Methodist University, Dallas.

At the time the whale was alive, it would have been swimming far inland up a river with a low gradient ranging from 24 to 37 meters over more than 600 to 900 kilometers, said Jacobs, a co-author of the study.

A map of Africa and Kenya showing where a 17-million-year-old whale fossil was found far inland . (Wichura/PNAS)
A map of Africa and Kenya showing where a 17-million-year-old whale fossil was found far inland . (Wichura/PNAS)

The study, published in the Proceedings of the National Academy of Sciences, provides the first constraint on the start of uplift of East African terrain from near sea level.

“The whale was stranded up river at a time when east Africa was at sea level and was covered with forest and jungle,” Jacobs said. “As that part of the continent rose up, that caused the climate to become drier and drier. So over millions of years, forest gave way to grasslands. Primates evolved to adapt to grasslands and dry country. And that’s when — in human evolution — the primates started to walk upright.”

Identified as a Turkana ziphiid, the whale would have lived in the open ocean, like its modern beaked cousins. Ziphiids, still one of the ocean’s top predators, are the deepest diving air-breathing mammals alive, plunging to nearly 10,000 feet to feed, primarily on squid.

In contrast to most whale fossils, which have been discovered in marine rocks, Kenya’s beached whale was found in river deposits, known as fluvial sediments, said Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences of SMU’s Dedman College of Humanities and Sciences.

The whale fossil bones were originally thought to be those of a turtle specimen, as was recorded in the fossil catalogue for the Harvard Loperot Expedition in 1964.
The whale fossil bones were originally thought to be those of a turtle specimen, as was recorded in the fossil catalogue for the Harvard Loperot Expedition in 1964. (Museum of Comparative Zoology, Harvard University.)
SMU, Meltzer, women, body image

The ancient large Anza River flowed in a southeastward direction to the Indian Ocean.

The whale, probably disoriented, swam into the river and could not change its course, continuing well inland.

“You don’t usually find whales so far inland,” Jacobs said. “Many of the known beaked whale fossils are dredged by fishermen from the bottom of the sea.”

Determining ancient land elevation is very difficult, but the whale provides one near sea level.

“It’s rare to get a paleo-elevation,” Jacobs said, noting only one other in East Africa, determined from a lava flow.

Beaked whale fossil surfaced after going missing for more than 30 years
The beaked whale fossil was discovered in 1964 by J.G. Mead in what is now the Turkana region of northwest Kenya.

Mead, an undergraduate student at Yale University at the time, made a career at the Smithsonian Institution, from which he recently retired. Over the years, the Kenya whale fossil went missing in storage. Jacobs, who was at one time head of the Division of Paleontology for the National Museums of Kenya, spent 30 years trying to locate the fossil. His effort paid off in 2011, when he rediscovered it at Harvard University and returned it to the National Museums of Kenya.

The fossil is only a small portion of the whale, which Mead originally estimated was 7 meters long during its life. Mead unearthed the beak portion of the skull, 2.6 feet long and 1.8 feet wide, specifically the maxillae and premaxillae, the bones that form the upper jaw and palate.

The researchers reported their findings in “A 17-My-old whale constrains onset of uplift and climate change in east Africa” online at the PNAS web site.

Modern cases of stranded whales have been recorded in the Thames River in London, swimming up a gradient of 2 meters over 70 kilometers; the Columbia River in Washington state, a gradient of 6 meters over 161 kilometers; the Sacramento River in California, a gradient of 4 meters over 133 kilometers; and the Amazon River in Brazil, a gradient of 1 meter over 1,000 kilometers.

Besides Jacobs, other authors from SMU are Andrew Lin, Michael J. Polcyn, Dale A. Winkler and Matthew Clemens.

From other institutions, authors are Henry Wichura and Manfred R. Strecker, University of Potsdam, and Fredrick K. Manthi, National Museums of Kenya.

Funding for the research came from SMU’s Institute for the Study of Earth and Man and the SMU Engaged Learning program. — Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.