SMU Research Day 2018 featured posters and abstracts from 160 student entrants who have participated this academic year in faculty-led research, pursued student-led projects, or collaborated on team projects with graduate students and faculty scientists.
SMU strongly encourages undergraduate students to pursue research projects as an important component of their academic careers, while mentored or working alongside SMU graduate students and faculty.
Students attack challenging real-world problems, from understanding the world’s newest particle, the Higgs Boson, or preparing mosasaur fossil bones discovered in Angola, to hunting for new chemical compounds that can fight cancer using SMU’s high performance ManeFrame supercomputer.
A highlight for student researchers is SMU Research Day, organized and sponsored by the Office of Research and Graduate Studies and which was held this year on March 28-29 in the Hughes-Trigg Student Center.
The event gives students the opportunity to foster communication between students in different disciplines, present their work in a professional setting, and share the outstanding research conducted at SMU.
SMU and other members of a scientific consortium prepare for installation of the Dark Energy Spectroscopic Instrument to survey the night sky from a mile-high mountain peak in Arizona
As part of a large scientific consortium studying dark energy, SMU physicists are on course to help create the largest 3-D map of the universe ever made.
The map could help solve the mystery of dark energy, which is driving the accelerating expansion of the universe.
DESI will capture about 10 times more data than a predecessor survey of space using an array of 5,000 swiveling robots. Each robot will be carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.
“DESI will provide the first precise measures of the expansion history of the universe covering approximately the last 10 billion years,” said SMU physicist Robert Kehoe, a professor in the SMU Department of Physics. “This is most of the 13 billion year age of the universe, and it encompasses a critical period in which the universe went from being matter-dominated to dark-energy dominated.”
The universe was expanding, but at a slowing pace, until a few billion years ago, Kehoe said.
“Then the expansion started accelerating,” he said. “The unknown ‘dark energy’ driving that acceleration is now dominating the universe. Seeing this transition clearly will provide a critical test of ideas of what this dark energy is, and how it may tie into theories of gravitation and other fundamental forces.”
SMU researchers have conducted observing with the Mayall. Decommissioning of that telescope allows for building DESI in it’s place, as well as reusing some parts of the telescope and adding major new sytems. As part of DESI, SMU is involved in development of software for operation of the experiment, as well as for data simulation to aid data anlysis.
“We are also involved in studying the ways in which observational effects impact the cosmology measurements DESI is pursuing,” Kehoe said. SMU graduate students Govinda Dhungana and Ryan Staten also work on DESI. A new addition to the SMU DESI team, post-doctoral researcher Sarah Eftekharzadeh, is working on the SMU software and has studied the same kinds of galaxies
DESI will be measuring.
Now the dome is closing on the previous science chapters of the 4-meter Mayall Telescope so that it can prepare for its new role in creating the 3-D map.
The temporary closure sets in motion the largest overhaul in the telescope’s history and sets the stage for the installation of the Dark Energy Spectroscopic Instrument, which will begin a five-year observing run next year.
“This day marks an enormous milestone for us,” said DESI Director Michael Levi of the Department of Energy’s Lawrence Berkeley National Laboratory , which leads the project’s international collaboration. “Now we remove the old equipment and start the yearlong process of putting the new stuff on.”
More than 465 researchers from about 71 institutions are participating in the DESI collaboration.
The entire top end of the telescope, which weighs as much as a school bus and houses the telescope’s secondary mirror and a large digital camera, will be removed and replaced with DESI instruments. A large crane will lift the telescope’s top end through the observing slit in its dome.
Besides providing new insights about the universe’s expansion and large-scale structure, DESI will also help to set limits on theories related to gravity and the formative stages of the universe, and could even provide new mass measurements for a variety of elusive yet abundant subatomic particles called neutrinos.
“One of the primary ways that we learn about the unseen universe is by its subtle effects on the clustering of galaxies,” said DESI collaboration co-spokesperson Daniel Eisenstein of Harvard University. “The new maps from DESI will provide an exquisite new level of sensitivity in our study of cosmology.”
Mayall’s sturdy construction is perfect platform for new 9-ton instrument
The Mayall Telescope has played an important role in many astronomical discoveries, including measurements supporting the discovery of dark energy and establishing the role of dark matter in the universe from measurements of galaxy rotation. Its observations have also been used in determining the scale and structure of the universe. Dark matter and dark energy together are believed to make up about 95 percent of all of the universe’s mass and energy.
It was one of the world’s largest optical telescopes at the time it was built, and because of its sturdy construction it is perfectly suited to carry the new 9-ton instrument.
“We started this project by surveying large telescopes to find one that had a suitable mirror and wouldn’t collapse under the weight of such a massive instrument,” said Berkeley Lab’s David Schlegel, a DESI project scientist.
Arjun Dey, the NOAO project scientist for DESI, explained, “The Mayall was precociously engineered like a battleship and designed with a wide field of view.”
The expansion of the telescope’s field-of-view will allow DESI to map out about one-third of the sky.
DESI will transform the speed of science with automated preprogrammed robots
Brenna Flaugher, a DESI project scientist who leads the astrophysics department at Fermi National Accelerator Laboratory, said DESI will transform the speed of science at the Mayall Telescope.
“The telescope was designed to carry a person at the top who aimed and steered it, but with DESI it’s all automated,” she said. “Instead of one at a time we can measure the velocities of 5,000 galaxies at a time – we will measure more than 30 million of them in our five-year survey.”
DESI will use an array of 5,000 swiveling robots, each carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.
The fiber-optic cables will carry the light from these objects to 10 spectrographs, which are tools that will measure the properties of this light and help to pinpoint the objects’ distance and the rate at which they are moving away from us. DESI’s observations will provide a deep look into the early universe, up to about 11 billion years ago.
DESI will capture about 10 times more data than a predecessor survey
The cylindrical, fiber-toting robots, which will be embedded in a rounded metal unit called a focal plate, will reposition to capture a new exposure of the sky roughly every 20 minutes. The focal plane assembly, which is now being assembled at Berkeley Lab, is expected to be completed and delivered to Kitt Peak this year.
DESI will scan one-third of the sky and will capture about 10 times more data than a predecessor survey, the Baryon Oscillation Spectroscopic Survey (BOSS). That project relied on a manually rotated sequence of metal plates – with fibers plugged by hand into pre-drilled holes – to target objects.
All of DESI’s six lenses, each about a meter in diameter, are complete. They will be carefully stacked and aligned in a steel support structure and will ultimately ride with the focal plane atop the telescope.
Each of these lenses took shape from large blocks of glass. They have criss-crossed the globe to receive various treatments, including grinding, polishing, and coatings. It took about 3.5 years to produce each of the lenses, which now reside at University College London in the U.K. and will be shipped to the DESI site this spring.
Precise measurements of millions of galaxies will reveal effects of dark energy
The Mayall Telescope has most recently been enlisted in a DESI-supporting sky survey known as the Mayall z-Band Legacy Survey, which is one of four sky surveys that DESI will use to preselect its targeted sky objects. SMU astrophysicists carried out observing duties on that survey, which wrapped up just days ago on Feb. 11, to support the coming DESI scientific results.
Data from these surveys are analyzed at Berkeley Lab’s National Energy Research Scientific Computing Center, a DOE Office of Science User Facility. Data from these surveys have been released to the public at http://legacysurvey.org.
“We can see about a billion galaxies in the survey images, which is quite a bit of fun to explore,” Schlegel said. “The DESI instrument will precisely measure millions of those galaxies to see the effects of dark energy.”
Levi noted that there is already a lot of computing work underway at the Berkeley computing center to prepare for the stream of data that will pour out of DESI once it starts up.
“This project is all about generating huge quantities of data,” Levi said. “The data will go directly from the telescope to the Berkeley computing center for processing. We will create hundreds of universes in these computers and see which universe best fits our data.”
Installation of DESI’s components is expected to begin soon and to wrap up in April 2019, with first science observations planned in September 2019.
“Installing DESI on the Mayall will put the telescope at the heart of the next decade of discoveries in cosmology,” said Risa Wechsler, DESI collaboration co-spokesperson and associate professor of physics and astrophysics at SLAC National Accelerator Laboratory and Stanford University. “The amazing 3-D map it will measure may solve some of the biggest outstanding questions in cosmology, or surprise us and bring up new ones.” — Berkeley Lab and SMU
Hundreds of students, faculty and townspeople gathered in the rotunda of Dallas Hall on Monday, Aug. 21 to view a projection of the Great American Solar Eclipse at a viewing hosted by Dedman College and the SMU Physics Department. (Jeff McWhorter/SMU)
Dedman College, SMU Physics Department host Great American Solar Eclipse 2017 viewing
The festive event coincided with the kick-off of SMU’s Fall Semester and included Solar Eclipse Cookies served while viewing the rare astronomical phenomenon.
The eclipse reached its peak at 1:09 p.m. in Dallas at more than 75% of totality.
“What a great first day of the semester and terrific event to bring everyone together with the help of Dedman College scientists,” said Dedman Dean Thomas DiPiero. “And the eclipse cookies weren’t bad, either.”
Physics faculty provided indirect methods for observing the eclipse, including a telescope with a viewing cone on the steps of historic Dallas Hall, a projection of the eclipse onto a screen into Dallas Hall, and a variety of homemade hand-held devices.
Outside on the steps of Dallas Hall, Associate Professor Stephen Sekula manned his home-built viewing tunnel attached to a telescope for people to indirectly view the eclipse.
“I was overwhelmed by the incredible response of the students, faculty and community,” Sekula said. “The people who flocked to Dallas Hall were energized and engaged. It moved me that they were so interested in — and, in some cases, had their perspective on the universe altered by — a partial eclipse of the sun by the moon.”
A team of Physics Department faculty assembled components to use a mirror to project the eclipse from a telescope on the steps of Dallas Hall into the rotunda onto a screen hanging from the second-floor balcony.
Adjunct Professor John Cotton built the mount for the mirror — with a spare, just in case — and Professor and Department Chairman Ryszard Stroynowski and Sekula arranged the tripod setup and tested the equipment.
Stroynowski also projected an illustration of the Earth, the moon and the sun onto the wall of the rotunda to help people visualize movement and location of those cosmic bodies during the solar eclipse.
Professor Fred Olness handed out cardboard projectors and showed people how to use them to indirectly view the eclipse.
“The turn-out was fantastic,” Olness said. “Many families with children participated, and we distributed cardboard with pinholes so they could project the eclipse onto the sidewalk. It was rewarding that they were enthused by the science.”
Stroynowski, Sekula and others at the viewing event were interviewed by CBS 11 TV journalist Robert Flagg.
Physics Professor Thomas Coan and Guillermo Vasquez, SMU Linux and research computing support specialist, put together a sequence of photos they took during the day from Fondren Science Building.
“The experience of bringing faculty, students and even some out-of-campus community members together by sharing goggles, cameras, and now pictures of one of the great natural events, was extremely gratifying,” Vasquez said.
Sekula said the enthusiastic response from the public is driving plans to prepare for the next event of this kind.
“I’m really excited to share with SMU and Dallas in a total eclipse of the sun on April 8, 2024,” he said.
Genes common to both the human T-cell leukemia virus and high-risk human papillomaviruses activate survival mechanisms in cancer cells. An SMU lab, with National Cancer Institute funding, is hunting ways to inhibit those genes to halt the development of cancer.
SMU virologist and cancer researcher Robert L. Harrod has been awarded a $436,500 grant from the National Cancer Institute to further his lab’s research into how certain viruses cause cancers in humans.
Under two previous NCI grants, Harrod’s lab discovered that the human T-cell leukemia virus type-1, HTLV-1, and high-risk subtype human papillomaviruses, HPVs, share a common mechanism that plays a key role in allowing cancers to develop.
Now the lab will search for the biological mechanism — a molecular target — to intervene to block establishment and progression of virus-induced cancers. The hope is to ultimately develop a chemotherapy drug to block the growth of those tumor cells in patients.
“The general theme of our lab is understanding the key molecular events involved in how the viruses allow cancer to develop,” said Harrod, an associate professor in SMU’s Department of Biological Sciences whose research focuses on understanding the molecular basis of viral initiation of cancer formation.
While HTLV-1 and HPV are unrelated transforming viruses and lead to very different types of cancers, they’ve evolved a similar mechanism to cooperate with genes that cause cancer in different cell types. The lab discovered that the two viruses tap a common protein that cooperates with cellular genes to help the viruses hide from the immune system.
That common protein, the p30 protein of HTLV-1, binds to a different protein in the cell, p53, which normally has the job of suppressing cancerous growth or tumor development. Instead, however, p30 manages to subvert p53’s tumor suppressor functions, which in turn activates pro-survival pathways for the virus.
From there, the virus can hide inside the infected cell for two to three decades while evading host immune-surveillance pathways. As the cell divides, the virus divides and replicates. Then ultimately the deregulation of gene expression by viral encoded products causes cancer to develop.
“They are essentially using a similar mechanism, p30, to deregulate those pathways from their normal tumor-suppressing function,” Harrod said.
Tumor suppression, DNA damage-repair pathways, begin to fail with age
About 15 percent to 20 percent of all cancers are virus related. Worldwide, about 10 million people are infected with HTLV-1 and, as with other viral-induced cancers, about 3 percent to 5 percent of those infected go on to develop malignant disease.
Cancer is often associated with the process of normal aging, because our tumor suppression and DNA damage-repair pathways begin to break down and fail, explained Harrod. Our pathways don’t as easily repair genetic mutations, which makes us more susceptible to cancers like adult T-cell leukemia and HPV-associated cervical cancers or head-and-neck carcinomas, he said.
The human T-cell leukemia virus is transmitted through blood and body fluid contact, usually infecting infants and children via breastfeeding from their mother. A tropical infectious disease, it’s endemic to Southeast Asia, primarily Japan, Taiwan, China and Malaysia, as well as certain regions in the Middle East, Northern Africa and islands of the Caribbean. In the United States, Hawaii and Florida have the highest incidence of adult T-cell leukemia. HTLV-1 is highly resistant to most modern anticancer therapies, including radiotherapy and bone marrow or matching donor stem cell transplants. The life expectancy of patients with acute or lymphoma-stage disease is about six months to two years after diagnosis.
In the case of HPV, certain high-risk sub-types aren’t inhibited by today’s available HPV vaccines. It’s considered the high-risk HPVs are sexually transmitted through direct contact with the tissues of the virus-producing papillomas or warts. High-risk HPVs can also cause cervical cancers and head and neck carcinomas, many of which are associated with poor clinical outcomes and have high mortality rates.
How do viruses cause cancer?
For both HTLV-1 and HPV, the virus itself does not cause cancer to develop.
“It’s cooperating with oncogenes — cellular genes that become deregulated and have the potential to cause cancer,” Harrod said. “The role of these viruses, it seems, is to induce the proliferation of the cell affected with cancer. We’re trying to understand some of the molecular events that are associated with these cancers. ”
The lab’s three-year NCI grant runs through 2019. Harrod’s two previous grants awarded by the National Institutes of Health were also three-year-grants, for $435,000 and $162,000. Each one has targeted HTLV-1 and the p30 protein.
“We find that the p30 protein is involved in maintaining the latency of these viruses. These viruses have to persist in the body for 20 to 40 years before a person develops disease. To do that they have to hide from the immune response,” Harrod explained. “So p30 plays a role in silencing the viral genome so that the affected cells can hide, but at the same time it induces replication of the affected cells. So when the cell divides, the virus divides. We call that pro-viral replication.”
The term “latency maintenance factor” in reference to p30 originated with Harrod’s lab and has gained traction in the HTLV-1 field.
Under the lab’s second NCI grant, the researchers figured out how to block pro-survival pathways to kill tumor cells.
In the current grant proposal, Harrod’s lab demonstrated that by inhibiting specific downstream targets of p53 — essentially blocking pathways regulated by the p53 protein — they could cause infected tumor cells to collapse on themselves and undergo cell death.
“We do that independent of chemotherapy,” Harrod said. “So that was a big find for us.”
Goal is to eliminate cancer cells by inhibiting pathway
Each grant project builds upon the one before it, and the third grant extends the work, to now include high-risk HPVs.
“Now that we’ve shown we can block one or two of these factors to cause cell death, we’re starting to get an eye really on how we can inhibit these cancer cells and what potentially down the road may lead to a therapeutic,” Harrod said. “That’s the ultimate goal.”
One of the biggest challenges will be to inhibit the pathways in the tumor cells without targeting normal cells, he said. The lab’s recent findings indicate the researchers may soon be within reach of identifying a new strategy to eliminate cancer cells by inhibiting pathways key to their survival.
Harrod’s lab collaborates on the research with: Lawrence Banks, Tumor Virology Group Leader, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Brenda Hernandez, Associate Director, Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu; and Patrick Green, Director, Center for Retrovirus Research, The Ohio State University. — Margaret Allen, SMU
“Recurring cancers have ‘learned’ how to evade chemotherapy by pumping it out of the cancer cells so that only sub-therapeutic concentrations remain in the cell, making the drug useless.” — SMU biochemist Pia Vogel
The SMU undergraduate students and Dallas-area high school students get hands-on experience working on cancer research in the combined SMU Department of Biological Sciences laboratories of Wise and Vogel.
The researchers and students are working to find ways to treat cancer patients whose cancer has either returned after initial chemotherapy or was initially hard to treat using chemotherapeutics. The research is funded in part by the National Institutes of Health.
Students recently in the lab included Victoria Bennet, Hockaday School, and Shaffin Siddiqui and Robert Luo, both from Highland Park High School. SMU undergraduates included Hamilton Scholar Alexis Sunshine, Clinton Osifo, Stefanie Lohse, Brianna Ramirez, Henry Thornton, Shirely Liu, Justin Musser, Jake Oien and Michael Fowler. Also currently working in the lab are M.S. student and Hamilton Scholar Collette Marchesseau (2016 SMU graduate), and Ph.D. students Amila Nanayakkara, Mike Chen, Courtney Follit, Maisa Oliveira and James McCormick.
“Often, recurring cancers have ‘learned’ how to evade chemotherapy by pumping the therapeutic out of the cancer cells so that only sub-therapeutic concentrations remain in the cell, making the drug useless,” said Vogel, a professor and director of the SMU interdisciplinary research institute, the Center for Drug Discovery, Design and Delivery.
The pumps that do the work are proteins that span the cell membranes and use the biological fuel ATP to actively pump chemotherapeutics and other toxins out of the cells.
“We like to compare these proteins to biological sump pumps,” said Wise, associate professor.
Wise and Vogel use a combination of computational, biochemical and human cell-based techniques to find new drug-like compounds that inhibit the action of the pumps. If successful, the novel drugs — or derivatives of them — will be given to patients with therapy-resistant cancer together with the chemotherapeutic.
“Since our novel compounds block the pumps, the chemotherapeutic will remain in the cell and kill the cancer that had not been treatable previously,” Vogel said.
The researchers have discovered drug-like compounds that can be modified and developed into medicines that target the protein, called P-glycoprotein.
The SMU researchers discovered the compounds after virtually screening more than 10 million small drug-like compounds made publically available in digital form from the pharmacology database Zinc at the University of California, San Francisco.
Using SMU’s Maneframe high performance computer, Wise ran the compounds through a computer-generated model of the protein. The virtual model, designed and built by Wise, is the first computational microscope of its kind to simulate the actual behavior of P-glycoprotein in the human body, including interactions with drug-like compounds while taking on different shapes. The promising compounds were then tested in the lab.
“We have been quite successful and already have identified close to 20 novel compounds that block the pumps in our cell-based assays,” said Wise. “In these experiments we culture therapy-resistant prostate or ovarian or colon cancer cells in the lab and then show that we can kill these cancer cells using normal amounts of commonly available therapeutics in the presence of our novel compounds — even though in the absence of our novel compounds, the cancer cells would not be treatable.”
A pharmaceutical hit compound, like those discovered by Vogel and her co-authors, is a compound that is a promising candidate for chemical modification so it can eventually be delivered to patients as a therapeutic drug. In the case reported here, the compounds were commercially available for testing. The timeline from drug discovery to development to clinical trials and approval can take a decade or more.
SMU undergraduates and high school students experience world-class research
SMU undergraduate and high school students have been involved in different aspects of the research. Typically the beginning students work together with graduate or advanced undergraduate students to learn techniques used in the lab.
Some perform small research projects. Others have simply learned state-of-the-art techniques and “how science works” in the context of critical human health problems.
“High school student Robert Luo was interested in the computational side of our work, so he’s worked with senior SMU Ph.D. candidate James McCormick on trying to evaluate how strongly one of the therapy-sensitizing compounds we found potentially interacts with the pump protein at different proposed binding sites,” said Wise. “It is actually a significant project and will help with our research.”
The opportunities available for students to learn how science works using high performance computing, biochemistry and cell biology can be valuable even for those who won’t necessarily become practicing scientists, said Wise, citing as an example a recent SMU graduate who previously worked in the lab.
“Ketetha Olengue (SMU ’15) is a good example,” he said. “She is now in her second year at the Keck School of Medicine at the University of Southern California, where she is pursuing her M.D. degree in a novel program with USC Engineering.” — Margaret Allen, SMU
One of the longest Etruscan texts ever found, the inscription’s mention of Uni may indicate she was patroness of the Poggio Colla cult, with stone’s language spelling out ceremonial religious rituals
Archaeologists translating a very rare inscription on an ancient Etruscan temple stone have discovered the name Uni — an important female goddess.
The discovery indicates that Uni — a divinity of fertility and possibly a mother goddess at this particular place — may have been the titular deity worshipped at the sanctuary of Poggio Colla, a key settlement in Italy for the ancient Etruscan civilization.
The mention is part of a sacred text that is possibly the longest such Etruscan inscription ever discovered on stone, said archaeologist Gregory Warden, professor emeritus at Southern Methodist University, Dallas, main sponsor of the archaeological dig.
Scientists on the research discovered the ancient stone slab embedded as part of a temple wall at Poggio Colla, a dig where many other Etruscan objects have been found, including a ceramic fragment with the earliest birth scene in European art. That object reinforces the interpretation of a fertility cult at Poggio Colla, Warden said.
Now Etruscan language experts are studying the 500-pound slab — called a stele (STEE-lee) — to translate the text. It’s very rare to identify the god or goddess worshipped at an Etruscan sanctuary.
“The location of its discovery — a place where prestigious offerings were made — and the possible presence in the inscription of the name of Uni, as well as the care of the drafting of the text, which brings to mind the work of a stone carver who faithfully followed a model transmitted by a careful and educated scribe, suggest that the document had a dedicatory character,” said Adriano Maggiani, formerly Professor at the University of Venice and one of the scholars working to decipher the inscription.
“It is also possible that it expresses the laws of the sanctuary — a series of prescriptions related to ceremonies that would have taken place there, perhaps in connection with an altar or some other sacred space,” said Warden, co-director and principal investigator of the Mugello Valley Archaeological Project that made the discovery.
Warden said it will be easier to speak with more certainty once the archaeologists are able to completely reconstruct the text, which consists of as many as 120 characters or more. While archaeologists understand how Etruscan grammar works, and know some of its words and alphabet, they expect to discover new words never seen before, particularly since this discovery veers from others in that it’s not a funerary text.
The Mugello Valley archaeologists had planned to announce discovery of the goddess Uni at an exhibit in Florence on Aug. 27, “Scrittura e culto a Poggio Colla, un santuario etrusco nel Mugello,” and in a forthcoming article in the scholarly journal Etruscan Studies. The exhibit opening has been delayed to Sept. 2 due to the recent devastating earthquake in areas of Italy unrelated to the Poggio Colla research.
Text may specify the religious ritual for temple ceremonies dedicated to the goddess
It’s possible the text contains the dedication of the sanctuary, or some part of it, such as the temple proper, so the expectation is that it will reveal the early beliefs of a lost culture fundamental to western traditions.
The sandstone slab, which dates to the 6th century BCE and is nearly four feet tall by more than two feet wide, was discovered in the final stages of two decades of digging at Mugello Valley, which is northeast of Florence in north central Italy.
Etruscans once ruled Rome, influencing that civilization in everything from religion and government to art and architecture. A highly cultured people, Etruscans were also very religious and their belief system permeated all aspects of their culture and life.
Inscription may reveal data to understand concepts and rituals, writing and language
Permanent Etruscan inscriptions are rare, as Etruscans typically used linen cloth books or wax tablets. The texts that have been preserved are quite short and are from graves, thus funerary in nature.
“We can at this point affirm that this discovery is one of the most important Etruscan discoveries of the last few decades,” Warden said. “It’s a discovery that will provide not only valuable information about the nature of sacred practices at Poggio Colla, but also fundamental data for understanding the concepts and rituals of the Etruscans, as well as their writing and perhaps their language.”
Besides being possibly the longest Etruscan inscription on stone, it is also one of the three longest sacred texts to date.
One section of the text refers to “tinaś,” a reference to Tina, the name of the supreme deity of the Etruscans. Tina was equivalent to ancient Greece’s Zeus or Rome’s Jupiter.
Slab was once an imposing and monumental symbol of authority
The slab was discovered embedded in the foundations of a monumental temple where it had been buried for more than 2,500 years. At one time it would have been displayed as an imposing and monumental symbol of authority, said Warden, president and professor of archaeology at Franklin University Switzerland.
The text is being studied by two noted experts on the Etruscan language, including Maggiani, who is an epigrapher, and Rex Wallace, professor of classics at the University of Massachusetts Amherst, who is a comparative linguist.
A hologram of the stele will be shown at the Florence exhibit, as conservation of the stele is ongoing at the conservation laboratories of the Archaeological Superintendency in Florence. Digital documentation is being done by experts from the architecture department of the University of Florence. The sandstone is heavily abraded and chipped, so cleaning should allow scholars to read the inscription.
Other objects unearthed in the past 20 years have shed light on Etruscan worship, beliefs, gifts to divinities, and discoveries related to the daily lives of elites and non-elites, including workshops, kilns, pottery and homes. The material helps document ritual activity from the 7th century to the 2nd century BCE.
Besides SMU, other collaborating institutions at Mugello Valley Archaeological Project include Franklin and Marshall College, the University of Pennsylvania Museum of Archaeology, the Center for the Study of Ancient Italy at The University of Texas at Austin, The Open University (UK), and Franklin University Switzerland. — Margaret Allen, SMU
Satellite radar images reveal ground movement of infamous sinkholes near Wink, Texas; suggest the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.
Residents of Wink and neighboring Kermit have grown accustomed to the two giant sinkholes that sit between their small West Texas towns.
But now radar images taken of the sinkholes by an orbiting space satellite reveal big changes may be on the horizon.
A new study by geophysicists at Southern Methodist University, Dallas, finds the massive sinkholes are unstable, with the ground around them subsiding, suggesting the holes could pose a bigger hazard sometime in the future.
The two sinkholes — about a mile apart — appear to be expanding. Additionally, areas around the existing sinkholes are unstable, with large areas of subsidence detected via satellite radar remote sensing.
That leaves the possibility that new sinkholes, or one giant sinkhole, may form, said geophysicists and study co-authors Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, in the Roy M. Huffington Department of Earth Sciences at SMU.
“This area is heavily populated with oil and gas production equipment and installations, hazardous liquid pipelines, as well as two communities. The intrusion of freshwater to underground can dissolve the interbedded salt layers and accelerate the sinkhole collapse,” said Kim, who leads the SMU geophysical team reporting the findings. “A collapse could be catastrophic. Following our study, we are collecting more high-resolution satellite data over the sinkholes and neighboring regions to monitor further development and collapse.”
Unstable ground linked to rising, falling groundwater
The sinkholes were originally caused by the area’s prolific oil and gas extraction, which peaked from 1926 to 1964. Wink Sink No. 1, near the Hendricks oil well 10-A, opened in 1980. Wink Sink No. 2, near Gulf WS-8 supply well, opened 22 years later in 2002.
It appears the area’s unstable ground now is linked to changing groundwater levels and dissolving minerals, say the scientists. A deep-seated salt bed underlies the area, part of the massive oil-rich Permian Basin of West Texas and southeastern New Mexico.
With the new data, the SMU geophysicists found a high correlation between groundwater level in the underlying aquifer and further sinking of the surface area during the summer months, influenced by successive roof failures in underlying cavities.
Satellite images and groundwater records indicate that when groundwater levels rise, the ground lifts. But the presence of that same groundwater then speeds the dissolving of the underground salt, which then causes the ground surface to subside.
Everything’s bigger in Texas, and the Wink sinkholes are no exception
Officials have fenced off the two sinkholes near Wink, a town of about 940 people, and Kermit, a town of about 6,000 people. The giant holes are notable features on the area’s vast plains, which are dotted mostly with oil pump jacks, storage facilities, occasional brush and mesquite trees.
Based on modeling of satellite image datasets, SMU’s researchers report that Wink Sink No. 1, which is closer to the town of Kermit, appears to be the most unstable. The smaller hole of the two, it has grown to 361 feet (110 meters) across — the length of a football field.
“Even though Wink No. 1 collapsed in 1980, its neighboring areas are still subsiding,” say the authors, “and the sinkhole continues to expand.” An oval-shaped deformation circling the sinkhole measures three-tenths of a mile (500 meters) wide and is subsiding up to 1.6 inches (4 centimeters) a year.
Wink Sink No. 2, which is nine-tenths of a mile south of No. 1 and which sits closer to the town of Wink, is the larger of the sinkholes. It varies from 670 feet to 900 feet across.
Wink No. 2 is not experiencing as much subsidence as Wink No. 1. However, its eastern side is collapsing and eroding westward at a rate of up to 1.2 inches (3 centimeters) a year.
“Wink No. 2 exhibits depression associated with the ongoing expansion of the underground cavity,” the authors report.
Some ground that doesn’t even border the edges of the two sinkholes is also subsiding, the scientists observed. An area more than half a mile (1 kilometer) northeast of No. 2 sank at a rate of 1.6 inches (4 centimeters) in just four months.
Ground northeast of sinkholes is subsiding, suggesting new ones forming
The largest rate of ground subsidence is not at either sinkhole, but at an area about seven-tenths of a mile (1.2 kilometers) northeast of No. 2. Ground there is subsiding at a rate of more than 5 inches (13 centimeters) a year.
It’s aerial extent, the researchers report, has also enlarged over the past eight years when a previous survey was done.
“The enlarged deformation could be an alarming precursor to the potential future development of hazards in the vicinity,” said the authors.
Additionally, ground along a road traveled by oil field vehicles, about a quarter mile (400 meters) directly north of No. 2, is subsiding about 1.2 inches (3 centimeters) a year.
Ground’s movement detected with radar technique
The satellite radar datasets were collected over five months between April 2015 and August 2015. With them, the geophysicists observed both two-dimension east-west deformation of the sinkholes, as well as vertical deformation.
The SMU scientists used a technique called interferometric synthetic aperture radar, or InSAR for short, to detect changes that aren’t visible to the naked eye.
“From 435 miles above the Earth’s surface, this InSAR technique allows us to measure inch-level subsidence on the ground. This is a monumental human achievement, and scientists will not stop endeavoring to improve this technique for more precise measurements,” said Lu, who is world-renowned for leading scientists in InSAR applications. Lu is a member of the Science Definition Team for the dedicated U.S. and Indian NASA-ISRO InSAR mission, set for launch in 2020 to study hazards and global environmental change.
InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A. Sentinel-1A was launched in April 2014 as part of the European Union’s Copernicus program.
Simply put, Sentinel-1A bounces a radar signal off the earth, then records the signal as it bounces back, delivering measurements. The measurements allow geophysicists to determine the distance from the satellite to the ground, revealing how features on the Earth’s surface change over time.
“Sinkhole formation has previously been unpredictable, but satellite remote sensing provides a great means to detect the expansion of the current sinkholes and possible development of new sinkholes,” said Kim. “Monitoring the sinkholes and modeling the rate of change can help predict potential sinkhole development.”
Pawpawsaurus’s hearing wasn’t keen, and it lacked the infamous tail club of Ankylosaurus. But first-ever CT scans of Pawpawsaurus’s skull indicate the dino’s saving grace from predators may have been an acute sense of smell.
Well-known armored dinosaur Ankylosaurus is famous for a hard knobby layer of bone across its back and a football-sized club on its tail for wielding against meat-eating enemies.
It’s prehistoric cousin, Pawpawsaurus campbelli, was not so lucky. Pawpawsaurus was an earlier version of armored dinosaurs but not as well equipped to fight off meat-eaters, according to a new study, said vertebrate paleontologist Louis Jacobs, Southern Methodist University, Dallas. Jacobs is co-author of a new analysis of Pawpawsaurus based on the first CT scans ever taken of the dinosaur’s skull.
A Texas native, Pawpawsaurus lived 100 million years ago during the Cretaceous Period, making its home along the shores of an inland sea that split North America from Texas northward to the Arctic Sea.
Like Ankylosaurus, Pawpawsaurus had armored plate across its back and on its eyelids. But unlike Ankylosaurus, Pawpawsaurus didn’t have the signature club tail that was capable of knocking the knees out from under a large predator.
Ankylosaurus lived about 35 million years after Pawpawsaurus, around 66 million years ago toward the end of the Cretaceous. During the course of its evolution, ankylosaurids developed the club tail, and bone structure in its skull that improved its sense of smell and allowed it to hear a broader range of sounds. “Stable gaze” also emerged, which helped Ankylosaurus balance while wielding its clubbed tail.
“CT imaging has allowed us to delve into the intricacies of the brains of extinct animals, especially dinosaurs, to unlock secrets of their ways of life,” said Jacobs, a professor in the SMU Roy M. Huffington Department of Earth Sciences.
While Pawpawsaurus’s sense of smell was inferior to Ankylosaurus, it was still sharper than some primitive dinosaur predators such as Ceratosaurus, said vertebrate paleontologist Ariana Paulina-Carabajal, first author on the study.
“Pawpawsaurus in particular, and the group it belonged to — Nodosauridae — had no flocculus, a structure of the brain involved with motor skills, no club tail, and a reduced nasal cavity and portion of the inner ear when compared with the other family of ankylosaurs,” said Paulina-Carabajal, researcher for the Biodiversity and Environment Research Institute (CONICET-INIBIOMA), San Carlos de Bariloche, Argentina. “But its sense of smell was very important, as it probably relied on that to look for food, find mates and avoid or flee predators.”
Most dinosaurs don’t have bony ridges in their nasal cavities to guide airflow, but ankylosaurs are unique in that they do.
“We can observe the complete nasal cavity morphology with the CT scans,” Paulina-Carabajal said. “The CT scans revealed an enlarged nasal cavity compared to dinosaurs other than ankylosaurians. That may have helped Pawpawsaurus bellow out a lower range of vocalizations, improved its sense of smell, and cooled the inflow of air to regulate the temperature of blood flowing into the brain.”
First CT scans shed light on Pawpawsaurus’s sensory tools Pawpawsaurus is more primitive than the younger derived versions of the dinosaur that evolved later, Jacobs said, although both walked on all fours and held their heads low to the ground.
“So we don’t know if their sense of smell also evolved and improved even more,” Jacobs said. “But we do suspect that scenting the environment was useful for a creature’s survival, and the sense of smell is fairly widely distributed among plant eaters and meat eaters alike.”
The skull was identified in 1996 by Yuong-Nam Lee, Seoul National University, Korea, a co-author on the paper, who was then a doctoral student under Jacobs.
The team’s discoveries emerged from Computed Tomography (CT) scans of the braincase of Pawpawsaurus campbelli’s skull. Pawpawsaurus belongs to one of the least explored clades of dinosaurs when it comes to endocranial anatomy — the spaces in the skull housing the brain.
The Pawpawsaurus skull was discovered 24 years ago by 19-year-old Cameron Campbell in the PawPaw Formation of Tarrant County near Dallas. Conventional analysis of the skull was carried out years ago to identify it as a never-before-seen nodosaurid ankylosaur. However, these are the first CT scans of Pawpawsaurus’s skull because it’s only been in recent years that fossils have been widely explored with X-rays.
In humans, a medical CT will scan the body to “see inside” with X-rays and capture a 3-D picture of the bones, blood vessels and soft tissue. In fossils, a much stronger dose of radiation than can be tolerated by humans is applied to fossils to capture 3-D images of the interior structure.
From the scans, paleontologists can then digitally reconstruct the brain and inner ear using special software.
“Once we have the 3D model, we can describe and measure all its different regions,” Paulina-Carabajal said. “We can then compare that to existing reptile brains and their senses of hearing and smell. Hearing, for example, can be determined from the size of the lagena, the region of the inner ear that perceives sounds.”
The size of the lagena in Pawpawsaurus suggests a sense of hearing similar to that of living crocodiles, she said.
Olfactory acuity, the sense of smell, is calculated from the size ratio of the olfactory bulb of the brain and the cerebral hemisphere.
“In Pawpawsaurus, the olfactory ratio is somewhat lower than it is in Ankyloxaurus, although both have high ratios when compared with most carnivorous dinosarus,” Paulina-Carabajal said. “They are exceeded only by carcharodontosaurids and tyrannosaurids. The olfactory ratios of ankylosaurs in general are more or less similar to those calculated by other authors for the living crocodile.”
Analysis of exploding star’s light curve and color spectrum reveal spectacular demise of one of the closest supernova to Earth in recent years; its parent star was so big it’s radius was 200 times larger than our sun
A giant star that exploded 30 million years ago in a galaxy near Earth had a radius prior to going supernova that was 200 times larger than our sun, according to astrophysicists at Southern Methodist University, Dallas.
The sudden blast hurled material outward from the star at a speed of 10,000 kilometers a second. That’s equivalent to 36 million kilometers an hour or 22.4 million miles an hour, said SMU physicist Govinda Dhungana, lead author on the new analysis.
The comprehensive analysis of the exploding star’s light curve and color spectrum have revealed new information about the existence and sudden death of supernovae in general, many aspects of which have long baffled scientists.
“There are so many characteristics we can derive from the early data,” Dhungana said. “This was a big massive star, burning tremendous fuel. When it finally reached a point its core couldn’t support the gravitational pull inward, suddenly it collapsed and then exploded.”
The massive explosion was one of the closest to Earth in recent years, visible as a point of light in the night sky starting July 24, 2013, said Robert Kehoe, SMU physics professor, who leads SMU’s astrophysics team.
The explosion, termed by astronomers Supernova 2013ej, in a galaxy near our Milky Way was equal in energy output to the simultaneous brightness of 100 million of the Earth’s suns.
The star was one of billions in the spiral galaxy M74 in the constellation Pisces.
Considered close by supernova standards, SN 2013ej was in fact so far away that light from the explosion took 30 million years to reach Earth. At that distance, even such a large explosion was only visible by telescopes.
Dhungana and colleagues were able to explore SN 2013ej via a rare collection of extensive data from seven ground-based telescopes and NASA’s Swift satellite.
The data span a time period prior to appearance of the supernova in July 2013 until more than 450 days after.
The team measured the supernova’s evolving temperature, its mass, its radius, the abundance of a variety of chemical elements in its explosion and debris and its distance from Earth. They also estimated the time of the shock breakout, the bright flash from the shockwave of the explosion.
The star’s original mass was about 15 times that of our sun, Dhungana said. Its temperature was a hot 12,000 Kelvin (approximately 22,000 degrees Fahrenheit) on the tenth day after the explosion, steadily cooling until it reached 4,500 Kelvin after 50 days. The sun’s surface is 5,800 Kelvin, while the Earth’s core is estimated to be about 6,000 Kelvin.
Shedding new light on supernovae, mysterious objects of our universe
Supernovae occur throughout the universe, but they are not fully understood. Scientists don’t directly observe the explosions but instead detect changes in emerging light as material is hurled from the exploding star in the seconds and days after the blast.
Telescopes such as SMU’s robotic ROTSE-IIIb telescope at McDonald Observatory in Texas, watch our sky and pick up the light as a point of brightening light. Others, such as the Hobby Eberly telescope, also at McDonald, observe a spectrum.
SN 2013ej is M74’s third supernova in just 10 years. That is quite frequent compared to our Milky Way, which has had a scant one supernova observed over the past 400 years. NASA estimates that the M74 galaxy consists of 100 billion stars.
M74 is one of only a few dozen galaxies first cataloged by the astronomer Charles Messier in the late 1700s. It has a spiral structure — also the Milky Way’s apparent shape — indicating it is still undergoing star formation, as opposed to being an elliptical galaxy in which new stars no longer form.
It’s possible that planets were orbiting SN 2013ej’s progenitor star prior to it going supernova, in which case those objects would have been obliterated by the blast, Kehoe said.
“If you were nearby, you wouldn’t know there was a problem beforehand, because at the surface you can’t see the core heating up and collapsing,” Kehoe said. “Then suddenly it explodes — and you’re toast.”
Distances to nearby galaxies help determine cosmic distance ladder
Scientists remain unsure whether supernovae leave behind a black hole or a neutron star like a giant atomic nucleus the size of a city.
“The core collapse and how it produces the explosion is particularly tricky,” Kehoe said. “Part of what makes SN 2013ej so interesting is that astronomers are able to compare a variety of models to better understand what is happening. Using some of this information, we are also able to calculate the distance to this object. This allows us a new type of object with which to study the larger universe, and maybe someday dark energy.”
Being 30 million light years away, SN 2013ej was a relatively nearby extragalactic event, according to Jozsef Vinko, astrophysicist at Konkoly Observatory and University of Szeged in Hungary.
“Distances to nearby galaxies play a significant role in establishing the so-called cosmic distance ladder, where each rung is a galaxy at a known distance.”
Vinko provided important data from telescopes at Konkoly Observatory and Hungary’s Baja Observatory and carried out distance measurement analysis on SN 2013ej.
“Nearby supernovae are especially important,” Vinko said. “Paradoxically, we know the distances to the nearest galaxies less certainly than to the more distant ones. In this particular case we were able to combine the extensive datasets of SN 2013ej with those of another supernova, SN 2002ap, both of which occurred in M74, to suppress the uncertainty of their common distance derived from those data.”
Supernova spectrum analysis is like taking a core sample
While stars appear to be static objects that exist indefinitely, in reality they are primarily a burning ball, fueled by the fusion of elements, including hydrogen and helium into heavier elements. As they exhaust lighter elements, they must contract in the core and heat up to burn heavier elements. Over time, they fuse the various chemical elements of the periodic table, proceeding from lightest to heaviest. Initially they fuse helium into carbon, nitrogen and oxygen. Those elements then fuel the fusion of progressively heavier elements such as sulfur, argon, chlorine and potassium.
“Studying the spectrum of a supernova over time is like taking a core sample,” Kehoe said. “The calcium in our bones, for example, was cooked in a star. A star’s nuclear fusion is always forging heavier and heavier elements. At the beginning of the universe there was only hydrogen and helium. The other elements were made in stars and in supernovae. The last product to get created is iron, which is an element that is so heavy it can’t be burned as fuel.”
Dhungana’s spectrum analysis of SN 2013ej revealed many elements, including hydrogen, helium, calcium, titanium, barium, sodium and iron.
“When we have as many spectra as we have for this supernova at different times,” Kehoe added, “we are able to look deeper and deeper into the original star, sort of like an X-ray or a CAT scan.”
SN 2013ej’s short-lived existence was just tens of millions of years
Analysis of SN 2013ej’s spectrum from ultraviolet through infrared indicates light from the explosion reached Earth July 23, 2013. It was discovered July 25, 2013 by the Katzman Automatic Imaging Telescope at California’s Lick Observatory. A look back at images captured by SMU’s ROTSE-IIIb showed that SMU’s robotic telescope detected the supernova several hours earlier, Dhungana said.
“These observations were able to show a rapidly brightening supernova that started just 20 hours beforehand,” he said. “The start of the supernova, termed ‘shock breakout,’ corresponds to the moment when the internal explosion crashes through the star’s outer layers.”
Like many others, SN 2013ej was a Type II supernova. That is a massive star still undergoing nuclear fusion. Once iron is fused, the fuel runs out, causing the core to collapse. Within a quarter second the star explodes.
Supernovae have death and birth written all over them
Massive stars typically have a shorter life span than smaller ones.
“SN 2013ej probably lived tens of millions of years,” Kehoe said. “In universe time, that’s the blink of an eye. It’s not very long-lived at all compared to our sun, which will live billions of years. Even though these stars are bigger and have a lot more fuel, they burn it really fast, so they just get hotter and hotter until they just gobble up the matter and burn it.”
For most of its brief life, SN 2013ej would probably have burned hydrogen, which then fused to helium, burning for a few hundred thousand years, then perhaps carbon and oxygen for a few hundred days, calcium for a few months and silicon for several days.
“Supernovae have death and birth written all over them,” Kehoe said. “Not only do they create the elements we are made of, but the shockwave that goes out from the explosion — that’s where our solar system comes from.”
Outflowing material slams into clouds of material in interstellar space, causing it to collapse and form a solar system.
“The heavy elements made in the supernova and its parent star are those which comprise the bulk of terrestrial planets, like Earth, and are necessary for life,” Kehoe said.
Besides physicists in the SMU Department of Physics, researchers on the project also included scientists from the University of Szeged, Szeged, Hungary; the University of Texas, Austin, Texas; Konkoly Observatory, Budapest, Hungary; and the University of California, Berkeley, Calif. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
SMU faculty and students presented research and led field trips for various sessions of the 2015 annual meeting in Dallas of the international Society of Vertebrate Paleontology.
Reporting for KERA News, North Texas’ public media news source, journalist Kat Chow covered the 2015 annual meeting in Dallas in October of the international Society of Vertebrate Paleontology.
The meeting was hosted locally by the Roy M. Huffington Department of Earth Sciences at SMU and the Perot Museum of Nature and Science in Dallas. SMU faculty and students presented research and led field trips for various SVP sessions.
He carried out the study with paleontologist Anthony Fiorillo, vice president of research and collections and chief curator at the Perot Museum of Nature and Science, Dallas, and an adjunct research professor at SMU.
Jacobs and Fiorillo are co-authors of a study about the identification of new fossils from the oddball creature Desmostylia, discovered in the same waters where the popular “Deadliest Catch” TV show is filmed. The hippo-like creature ate like a vacuum cleaner and is a new genus and species of the only order of marine mammals ever to go extinct — surviving a mere 23 million years.
Desmostylians, every single species combined, lived in an interval between 33 million and 10 million years ago. Its strange columnar teeth and odd style of eating don’t occur in any other animal, Jacobs said. The new specimens — from at least four individuals — were recovered from Unalaska, an Aleutian island in the North Pacific.
The authors reported their discovery in a special volume of the international paleobiology journal, Historical Biology. The article published online Oct.1 at http://bit.ly/1PQAHZJ.
The KERA article aired and published Oct. 14, 2015.
By Kat Chow
KERA News
Everything I knew about paleontology conferences, I learned from TV and “Friends.” There was that time Ross and his girlfriend were prepping for a conference in Barbados.
“By using CT scans and computer imaging, we can in a very real way bring the Mesozoic era into the 21st century,” Ross says.
In the real world, at the conference put on by the Society of Vertebrate Paleontology, the lingo isn’t so simple. Here are some of the session titles:
“A new large non-pterodactyloid pterosaur from a late-Jurassic interdunal desert environment with a neo-eolian nugget sandstone of Northeastern Utah.”
“The hemodynamics of vascular retia: Testing a hypothesis of blood pressure regulation through the artiodactyl carotid rete.”
“The effects of substrate, body position, and plasticity on the morphology of ruminant unguals.”
Louis Jacobs, a vertebrate paleontologist at Southern Methodist University, and Anthony Fiorillo, a paleontologist at Dallas’ Perot Museum, are helping organize the conference. Walking with them is like trailing a rock star — they’re inundated with fans and well-wishers.
”We specialize in animals with backbones, and how they’re preserved in the rocks, and what they mean, and what they tell us about the earth got to be the way it is,” Jacobs explains.
“No significant signs of new physics with the present data yet but it takes only one significant deviation in the data to change everything.” — Albert De Roeck, CERN
First collisions of protons at the world’s largest science experiment are expected to start the first or second week of June, according to a senior research scientist with CERN’s Large Hadron Collider in Geneva.
“It will be about another six weeks to commission the machine, and many things can still happen on the way,” said physicist Albert De Roeck, a staff member at CERN and a professor at the University of Antwerp, Belgium and UC Davis, California. De Roeck is a leading scientist on CMS, one of the Large Hadron Collider’s key experiments.
The LHC in early April was restarted for its second three-year run after a two-year pause to upgrade the machine to operate at higher energies. At higher energy, physicists worldwide expect to see new discoveries about the laws that govern our natural universe.
Book a live interview
To book a live or taped interview with SMU Physics Department Chair Fred Olness in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email news@smu.edu.
De Roeck made the comments Monday while speaking during an international meeting of more than 250 physicists from 30 countries on the campus of Southern Methodist University, Dallas.
“There are no significant signs of new physics yet,” De Roeck said of the data from the first run, adding however that especially SUSY diehards — physicists who predict the existence of a unique new theory of space and time called SuperSymmetry — maintain hopes of seeing evidence soon of that theory.
De Roeck in fact has high expectations for the possibility of new discoveries that could change the current accepted theory of physical reality, the Standard Model.
“It will take only one significant deviation in the data to change everything,” De Roeck said. “The upgraded machine works. Now we have to get to the real operation for physics.”
“Unidentified Lying Object” not a problem — remains stable
But work remains to be done. One issue the accelerator physicists remain cautiously aware of, he said, is an “Unidentified Lying Object” in the beam pipe of the LHC’s 17-mile underground tunnel, a vacuum tube where proton beams collide and scatter particles that scientists then analyze for keys to unlock the mysteries of the Big Bang and the cosmos.
Because the proton beam is sensitive to the geometry of the environment and can be easily blocked, the beam pipe must be free of even the tiniest amount of debris. Even something as large as a nitrogen particle could disrupt the beam. Because the beam pipe is a sealed vacuum it’s impossible to know what the “object” is.
“The unidentified lying object turns out not to be a problem for the operation, it’s just something to keep an eye on,” De Roeck said. “It’s in the vacuum tube and it’s not a problem if it doesn’t move and remains stable.”
The world’s largest particle accelerator, the Large Hadron Collider made headlines when its global collaboration of thousands of scientists in 2012 observed a new fundamental particle, the Higgs boson. After that, the collider was paused for the extensive upgrade. Much more powerful than before, as part of Run 2 physicists on the Large Hadron Collider’s experiments are analyzing new proton collision data to unravel the structure of the Higgs.
The Large Hadron Collider straddles the border between France and Switzerland. Its first run began in 2009, led by CERN, the European Organization for Nuclear Research, in Geneva, through an international consortium of thousands of scientists.
Particle discoveries unlock mysteries of cosmos, pave way for new technology
The workshop in Dallas, the “2015 International Workshop on Deep-Inelastic Scattering,” draws the world’s leading scientists each year to an international city for nuts and bolts talks that drive the world’s leading-edge physics experiments, such as the Large Hadron Collider.
Going into the second run, De Roeck said physicists will continue to look for anomalies, unexpected decay modes or couplings, multi-Higgs production, or larger decay rates than expected, among other things.
Particle discoveries by physicists resolve mysteries, such as questions surrounding Dark Matter and Dark Energy, and the earliest moments of the Big Bang. But particle discoveries also are ultimately applied to other fields to improve everyday life, such as medical technologies like MRIs and PET scans, which diagnose and treat cancer.
For example, proton therapy is the newest non-invasive, precision scalpel in the fight against cancer, with new centers opening all over the world.
Hosted by the SMU Department of Physics in Dedman College, the Dallas meeting of physicists began Monday, April 27, 2015, and runs through Friday, May 1, 2015.
The workshop is sponsored by SMU, U.S. Department of Energy’s Office of Science, CERN, National Science Foundation, Fermi National Accelerator Laboratory, Brookhaven National Laboratory, DESY national research center and Thomas Jefferson National Accelerator Facility. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Games let people experience the unknown and unfamiliar in a virtual world, and have the power to engage their users.
SMU’s engineering students will help test a new virtual reality game that will someday be rolled out to classrooms everywhere to help students design, inspect and test geotechnical — soil and rock — systems virtually.
SMU will receive $80,000 in funding as part of a larger $650,000 grant from the National Science Foundation, which was awarded to professors at Rensselaer Polytechnic Institute, Troy, N.Y.
“Nowadays, Students get hands-on lab experiences testing element-level samples in geotechnical engineering classes,” said El Shamy. “When it comes to field testing, they only see images of the instrument and deal with raw test data.”
The game will broaden the learning experience considerably.
“The game is intended to place the students in a virtual environment where they can perform the field test, and gather and interpret its data as they play,” he said.
“Other modules of the game will place the student in the position of an engineer inspecting the integrity of a levee after a rain storm. The student should be able to promptly report any warning signs of potential failure of the levee,” El Shamy said. “Failure to do a timely report would result in failure of the levee, or, in other words, game over.”
Mixed-reality and mobile game virtually brings students into the field with immersive learning
Geo Explorer is a mixed-reality and mobile game to virtually bring students into the field to conduct geotechnical site investigations and evaluations. It’s being developed by Rensselaer civil engineering faculty Tarek Abdoun and Victoria Bennett.
Book a live interview
To book a live or taped interview with Usama El Shamy in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email news@smu.edu.
“Geo Explorer has a tremendous potential to teach students about the deadly consequences of deteriorating infrastructure,” Bennett said. “Games let people experience the unknown and unfamiliar in a virtual world, and have the power to engage their users.”
The immersive learning from playing Geo Explorer will let students participate in geotechnical field testing, inspect levees during and after extreme storms, assess stability and make decisions about future actions related to flood-control infrastructure.
El Shamy will test the use of the game in SMU’s undergraduate geotechnical engineering classes, which are part of the Lyle School’s civil engineering program, then provide feedback on the game’s design and impact on intended learning outcomes. Preliminary testing of the game in classes will start in April.
A bridge to the lab, Geo Explorer incorporates testing actual soil samples
Geo Explorer also includes a bridge to the actual laboratory. Players will not only use mobile devices, downloading field data, receiving messages from characters and collaborating with classmates, but will test actual soil samples in the lab and can upload results to the game.
Abdoun and Bennett note that natural disasters such as Hurricane Katrina illustrate the serious consequences of a deteriorating infrastructure and a public ill-equipped to respond to weather extremes.
Such challenges cannot be adequately met in the traditional classroom.
Games like Geo Explorer can address the gaps in geotechnical engineering education by providing realistic virtual experience with the unfamiliar, letting participants weigh choices and experience their consequences.
“Ultimately, Geo Explorer will be available for free and be scaled for use by students from kindergarten through high school, particularly in districts with a high percentage of minorities who are underrepresented in technical fields,” Abdoun said.
Concept opens up possibilities for developing games in other areas of science and technology Geo Explorer is intended to educate the workforce in science, technology, engineering and math, said Rensselaer’s Shekhar Garde, dean of the School of Engineering.
“Geo Explorer has a great potential to educate students about grand challenges in infrastructure resilience, sustainability and stewardship,” Garde said. “It also opens up possibilities for developing games in other areas of science and technology for a range of applications in human health, including chemical and biological safety.”
Funds will be used to utilize the game in a geotechnical course that integrates Geo Explorer. The project builds on game modules developed by Deltares, an institute for applied research in water, subsurface and infrastructure based in the Netherlands.
Besides SMU and Rensselaer faculty, other partners include Casper Harteveld, Northeastern University; Flora McMartin, Broad-Based Knowledge; and Joseph Tront, Virginia Polytechnic Institute and State University; Manhattan College; and California State University Fullerton. — Southern Methodist University, Rensselaer Polytechnic
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Uplift and aridification of East Africa causing changes in vegetation has been considered a driver of human evolution. Now a fossil whale stranded far inland in Kenya marks the first time scientists can pinpoint how many millions of years ago the uplift began.
Uplift associated with the Great Rift Valley of East Africa and the environmental changes it produced have puzzled scientists for decades. Timing and starting elevation have been poorly understood.
Now paleontologists have tapped a fossil from the most precisely dated beaked whale in the world to pinpoint for the first time a date when East Africa’s mysterious elevation began. The stranded whale is the only one ever found so far inland on the African continent.
The 17 million-year-old fossil is from the beaked Ziphiidae whale family. It was discovered 740 kilometers inland at a elevation of 620 meters in modern Kenya’s harsh desert region, said vertebrate paleontologist Louis L. Jacobs, Southern Methodist University, Dallas.
At the time the whale was alive, it would have been swimming far inland up a river with a low gradient ranging from 24 to 37 meters over more than 600 to 900 kilometers, said Jacobs, a co-author of the study.
A map of Africa and Kenya showing where a 17-million-year-old whale fossil was found far inland . (Wichura/PNAS)
“The whale was stranded up river at a time when east Africa was at sea level and was covered with forest and jungle,” Jacobs said. “As that part of the continent rose up, that caused the climate to become drier and drier. So over millions of years, forest gave way to grasslands. Primates evolved to adapt to grasslands and dry country. And that’s when — in human evolution — the primates started to walk upright.”
Identified as a Turkana ziphiid, the whale would have lived in the open ocean, like its modern beaked cousins. Ziphiids, still one of the ocean’s top predators, are the deepest diving air-breathing mammals alive, plunging to nearly 10,000 feet to feed, primarily on squid.
The whale fossil bones were originally thought to be those of a turtle specimen, as was recorded in the fossil catalogue for the Harvard Loperot Expedition in 1964. (Museum of Comparative Zoology, Harvard University.)
Book a live interview
To book a live or taped interview with Louis Jacobs in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email news@smu.edu.
The ancient large Anza River flowed in a southeastward direction to the Indian Ocean.
The whale, probably disoriented, swam into the river and could not change its course, continuing well inland.
“You don’t usually find whales so far inland,” Jacobs said. “Many of the known beaked whale fossils are dredged by fishermen from the bottom of the sea.”
Determining ancient land elevation is very difficult, but the whale provides one near sea level.
“It’s rare to get a paleo-elevation,” Jacobs said, noting only one other in East Africa, determined from a lava flow.
Beaked whale fossil surfaced after going missing for more than 30 years
The beaked whale fossil was discovered in 1964 by J.G. Mead in what is now the Turkana region of northwest Kenya.
Mead, an undergraduate student at Yale University at the time, made a career at the Smithsonian Institution, from which he recently retired. Over the years, the Kenya whale fossil went missing in storage. Jacobs, who was at one time head of the Division of Paleontology for the National Museums of Kenya, spent 30 years trying to locate the fossil. His effort paid off in 2011, when he rediscovered it at Harvard University and returned it to the National Museums of Kenya.
The fossil is only a small portion of the whale, which Mead originally estimated was 7 meters long during its life. Mead unearthed the beak portion of the skull, 2.6 feet long and 1.8 feet wide, specifically the maxillae and premaxillae, the bones that form the upper jaw and palate.
Modern cases of stranded whales have been recorded in the Thames River in London, swimming up a gradient of 2 meters over 70 kilometers; the Columbia River in Washington state, a gradient of 6 meters over 161 kilometers; the Sacramento River in California, a gradient of 4 meters over 133 kilometers; and the Amazon River in Brazil, a gradient of 1 meter over 1,000 kilometers.
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
First detailed chemical analysis of ancient soil from the Morrison Formation — a massive source of significant dinosaur discoveries for more than 100 years— reveals there was an unexpected abrupt change from arid to wet environments during the Jurassic.
The climate 150 million years ago of a large swath of the western United States was more complex than previously known, according to new research from Southern Methodist University, Dallas.
It’s been held that the climate during the Jurassic was fairly dry in New Mexico, then gradually transitioned to a wetter climate northward to Montana.
But based on new evidence, the theory of a gradual transition from a dry climate to a wetter one during the Jurassic doesn’t tell the whole story, says SMU paleontologist Timothy S. Myers, lead author on the study.
Geochemical analysis of ancient soils, called paleosols, revealed an unexpected and mysterious abrupt transition from dry to wet even though some of the samples came from two nearby locales, Myers said.
Myers discovered the abrupt transition through geochemical analysis of more than 40 ancient soil samples.
Paleosol matrix was collected in the field by SMU paleontologist Timothy S. Myers for chemical analysis of the ancient soil by grinding it to a powder, which was then fused into a glass disc for elemental analysis. (Myers, SMU)
He collected the samples from the Morrison Formation, a vast rock unit that has been a major source of significant dinosaur discoveries for more than 100 years.
The Morrison extends from New Mexico to Montana, sprawling across 13 states and Canada, formed from sediments deposited during the Jurassic.
Myers’ study is the first in the Morrison to significantly draw on quantitative data — the geochemistry of the rocks.
The abrupt transition, Myers says, isn’t readily explained.
“I don’t have a good explanation,” he said. “Normally when you see these dramatic differences in climate in areas that are close to one another it’s the result of a stark variation in topography. But in this case, there weren’t any big topographic features like a mountain range that divided these two localities in the Jurassic.”
Surprisingly, paleosols from the sample areas did not reveal marked differences until they were analyzed using geochemical weathering indices.
Paleosol samples from the Jurassic in Wyoming indicate this area of the massive Morrison Formation surprisingly was more arid than its counterpart in New Mexico. (Credit: Myers, SMU)
“It’s sobering to think that by just looking at the paleosols superficially at these localities, they don’t appear incredibly different. We see the same types of ancient soils in both places,” Myers said. “So these are some fairly major climate differences that aren’t reflected in the basic ancient soil types. Yet this is what a lot of scientists, myself included, depend on for a first pass idea of paleoclimate in an area — certain types of soils form in drier environments, others in wetter, others in cooler, that sort of thing.”
That didn’t hold true for the current study.
Book a live interview
To book a live or taped interview with Dr. Scott Myers in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
With the geochemical analysis, Myers estimated the mean average precipitation during the Jurassic for northern Montana was approximately 45 inches, 20 inches for northern Wyoming and 30 inches for New Mexico.
“This changes how we view the distribution of the types of environments in the Morrison,” Myers said. “Too many times we talk about the Morrison as though it was this monolithic unit sprinkled with patchy, but similar, variations. But it’s incredibly large. It spans almost 10 degrees of latitude. So it’s going to encompass a lot of different environments. Regions with broadly similar climates can have internal differences, even over short distances. That’s the take-home.”
Co-authors of the study were Neil J. Tabor, SMU earth sciences professor and an expert in ancient soil, and Nicholas Rosenau, a stable isotope geochemist, Dolan Integration Group.
The popular artistic representations we see today of dinosaurs in a landscape setting are based on bits of evidence from plant and animal fossils found in various places, Tabor said. While that’s based on the best information to date, it’s probably inaccurate, he said. Myers’ findings provide new insights to many studies that have been done prior to his. This will drive paleontologists and geologists to seek out more quantitative data about the ancient environment.
“The geology of the Morrison has been studied exhaustively from an observational standpoint for 100 years,” Tabor said. “I have no doubt there will be many more fossil discoveries in the Morrison, even though over the past century we’ve gained a pretty clear understanding of the plants and animals at that time. But now we can ask deeper questions about the landscape and how organisms in the ancient world interacted with their environment.”
Surprising results: Northern locale more arid than southern locale
The Morrison Formation has produced some of our most familiar dinosaurs, as well as new species never seen before. Discoveries began in the late 1800s and ultimately precipitated the Bone Wars — the fossil equivalent of California’s Gold Rush.
After Myers studied dinosaur fossils from the Morrison, he became curious about the climate. Embarking on the geochemical analysis, Myers, like scientists before him, hypothesized the climate would be similar to modern zonal circulation patterns, which are driven by the distribution of the continents. Under that hypothesis, New Mexico would be relatively arid, and Wyoming and Montana both would be wetter at the time dinosaurs roamed the landscape.
Myers analyzed 22 paleosol samples from northern New Mexico, 15 from northern Wyoming and seven from southern Montana. The samples from Montana were younger than those from New Mexico, but roughly contemporary with the samples from Wyoming.
“We found that, indeed, New Mexico was relatively arid,” Myers said. “But the surprising part was that the Wyoming locality was more arid and had less rainfall than New Mexico, even though it was at a higher latitude, and above the mid-latitude arid belt. And the Montana locality, which is not far from the Wyoming locality, had the highest rainfall of all three. And there’s a very abrupt transition between the two.”
During the Jurassic, the Morrison was between 30 degrees north and 45 degrees north, which is about five degrees south of where it sits now. Its sediments were deposited from 155 to 148 million years ago. Some areas show evidence of a marine environment, but most were continental. The mean average precipitation determined for the Jurassic doesn’t match our modern distribution, Myers said.
Study underscores that understanding climate requires multiple approaches
Previously scientists speculated on the climate based on qualitative measures, such as types of soils or rocks, or types of sedimentary structures, and inferred climate from that.
“I tried to find quantitative information, but no one had done it,” Myers said. “There are entire volumes about Morrison paleoclimate, but not a single paper with quantitative estimates. Given the volume of important fossils that have come out of the Morrison, and how significant this formation is, it just struck me as important that it be done.”
Myers classified the fossil soils according to the Mack paleosol classification, and established the elemental composition of each one to determine how much weathering the paleosols had undergone.
“There are some elements, such as aluminum, that are not easily weathered out of soils,” Myers said. “There are others that are easily flushed out. We looked at the ratio of the elements, such as aluminum versus elements easily weathered. From that, we used the ratios to determine how weathered or not the soil was.”
These findings suggest that scientists must use different approaches to quantify paleoclimate, he said.
“It’s not enough to just look at soil types and draw conclusions about the paleoclimate,” Myers said. “It’s not even enough to look at rainfall in this quantitative fashion. There are numerous factors to consider.”
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
New research finds that world-class sprinters attack the ground to maximize impact forces and speed
The world’s fastest sprinters have unique gait features that account for their ability to achieve fast speeds, according to two new studies from Southern Methodist University, Dallas.
The new findings indicate that the secret to elite sprinting speeds lies in the distinct limb dynamics sprinters use to elevate ground forces upon foot-ground impact.
“Our new studies show that these elite sprinters don’t use their legs to just bounce off the ground as most other runners do,” said human biomechanics expert and lead author on the studies Ken Clark, a researcher in the SMU Locomotor Performance Laboratory. “The top sprinters have developed a wind-up and delivery mechanism to augment impact forces. Other runners do not do so.”
The new findings address a major performance question that has remained unanswered for more than a decade.
Previous studies had established that faster runners attain faster speeds by hitting the ground more forcefully than other runners do in relation to their body weight. However, how faster runners are able to do this was fully unknown. That sparked considerable debate and uncertainty about the best strategies for athletes to enhance ground-force application and speed.
“Elite speed athletes have a running pattern that is distinct,” Clark said. “Our data indicate the fastest sprinters each have identified the same solution for maximizing speed, which strongly implies that when you put the physics and the biology together, there’s only one way to sprint really fast.”
The critical and distinctive gait features identified by the study’s authors occur as the lower limb approaches and impacts the ground, said study co-author and running mechanics expert Peter Weyand, director of the SMU Locomotor Performance Lab.
“We found that the fastest athletes all do the same thing to apply the greater forces needed to attain faster speeds,” Weyand said. “They cock the knee high before driving the foot into the ground, while maintaining a stiff ankle. These actions elevate ground forces by stopping the lower leg abruptly upon impact.”
The new research indicates that the fastest runners decelerate their foot and ankle in just over two-hundredths of a second after initial contact with the ground.
Book a live interview
To book a live or taped interview with Ken Clark in the SMU News Broadcast Studio call News at 214-768-7650 or email news@smu.edu.
Studies compared data from competitive sprinters to other athletes The tests conducted at SMU’s Locomotor Performance Lab compared competitive sprinters to other fast-running athletes.
The competitive sprinting group included track athletes who specialized in the 100- and 200-meter events. More than half had international experience and had participated in the Olympics and Track and Field World Championships.
They were compared to a group of athletes that included competitive soccer, lacrosse and football players.
All the athletes in both groups had mid- and fore-foot strike patterns. Their running mechanics were tested on a custom, high-speed force treadmill that allowed the researchers to capture and analyze hundreds of footfalls at precisely controlled speeds. Video captured for the studies is posted to the SMU Locomotor Performance Lab Youtube channel. Images on flickr are at http://bit.ly/YKwAtB.
The researchers measured ground-force patterns over a full range of running speeds for each athlete from a jog to top sprinting speed.
“We looked at running speeds ranging from 3 to 11 meters per second,” Clark said. “Earlier studies in the field of biomechanics have examined ground reaction force patterns, but focused primarily on jogging speeds between 3 and 5 meters per second. The differences we found became identifiable largely because of the broad range of speeds we examined and the caliber of the sprinters who participated in the study.”
Classic spring model of running does not explain the unique gait features of top sprinters The contemporary view of running mechanics has been heavily influenced by the simple spring-mass model, a theory first formulated in the late 1980s. The spring-mass model assumes the legs work essentially like the compression spring of a pogo stick when in contact with the ground.
In this theory, during running at a constant speed on level ground, the body falls down out of the air. Upon landing, the support leg acts like a pogo stick to catch the body and pop it back up in the air for the next step.
It’s been generally assumed that this classic spring model applies to faster running speeds and faster athletes as well as to slower ones.
Elite sprinters do not conform to widely accepted theories of running mechanics Clark, Ryan and Weyand questioned whether such a passive catch-and-rebound explanation could account for the greater ground forces widely understood as the reason why sprinters achieve faster speeds.
After the researchers gathered ground reaction force waveform data, they found that sprinters differed from other athletes. From there they compared the waveforms to those predicted by the simple spring in the classic model.
“The elite sprinters did not conform to the spring-model predictions,” said Clark. “They deviated a lot, specifically during the first half of the ground-contact phase. Our athlete non-sprinters, on the other hand, conformed fairly closely to the spring-model predictions, even at their top speeds.”
Weyand said the new findings indicate that the classic spring model is not sufficient for understanding the mechanical basis of sprint running performance.
“We found all the fastest athletes applied greater ground forces with a common and apparently characteristic pattern that resulted from the same basic gait features,” he said. “What these sprinters do differently is in their wind up and delivery mechanics. The motion of their limbs in the air is distinct; so even though the duration of their limb-swing phase at top speed does not differ from other runners, the force delivery mechanism differs markedly.”
Sprinters have a common mechanical solution for speed — one that athletes who aren’t as fast do not execute.
“This provides scientific information so coaches and athletes can fully identify what to train,” Clark said. “It is our hope that our results can translate into advances in evidence-based approaches to training speed.”
The research was funded by the U.S. Army Medical Research and Materiel Command and SMU’s Simmons School of Education and Human Development. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Known as a gamma-ray burst, the intense light captured in the night sky resulted from one of the biggest and hottest explosions in the universe, occurring shortly after the Big Bang.
Intense light from the enormous explosion of a star more than 12 billion years ago — shortly after the Big Bang — recently reached Earth and was visible in the sky.
Known as a gamma-ray burst, light from the rare, high-energy explosion traveled for 12.1 billion years before it was detected and observed by a telescope, ROTSE-IIIb, owned by Southern Methodist University, Dallas.
Gamma-ray bursts are believed to be the catastrophic collapse of a star at the end of its life. SMU physicists report that their telescope was the first on the ground to observe the burst and to capture an image, said Farley Ferrante, a graduate student in SMU’s Department of Physics, who monitored the observations along with two astronomers in Turkey and Hawaii.
Gamma-ray burst 1404191 was spotted at 11 p.m. April 19 by SMU’s robotic ROTSE-IIIb telescope at McDonald Observatory, Fort Davis, Texas.
Gamma-ray bursts are not well understood by astronomers, but they are considered important, Ferrante said.
“As NASA points out, gamma-ray bursts are the most powerful explosions in the universe since the Big Bang,” he said. “These bursts release more energy in 10 seconds than our Earth’s sun during its entire expected lifespan of 10 billion years.”
Some of these gamma-ray bursts appear to be related to supernovae, and correspond to the end-of-life of a massive star, said Robert Kehoe, physics professor and leader of the SMU astronomy team.
“Gamma-ray bursts may be particularly massive cousins to supernovae, or may correspond to cases in which the explosion ejecta are more beamed in our direction. By studying them, we learn about supernovae,” Kehoe said.
Scientists weren’t able to detect optical light from gamma-ray bursts until the late 1990s, when telescope technology improved. Among all lights in the electromagnetic spectrum, gamma rays have the shortest wavelengths and are visible only using special detectors.
Gamma-ray bursts result from hot stars that measure as enormous as 50 solar masses. The explosion occurs when the stars run out of fuel and collapse in on themselves, forming black holes.
The ROTSE-IIIb robotic telescope at McDonald Observatory, Fort Davis, Texas. (Photo: McDonald Observatory)
Outer layers detonate, shooting out material along the rotation axis in powerful, high-energy jets that include gamma radiation.
As the gamma radiation declines, the explosion produces an afterglow of visible optical light. The light, in turn, fades very quickly, said Kehoe. Physicists calculate the distance of the explosion based on the shifting wavelength of the light, or redshift.
“The optical light is visible for anywhere from a few seconds to a few hours,” Kehoe said. “Sometimes optical telescopes can capture the spectra. This allows us to calculate the redshift of the light, which tells us how fast the light is moving away from us. This is an indirect indication of the distance from us.”
Observational data from gamma-ray bursts allows scientists to understand structure of the early universe
To put into context the age of the new gamma-ray burst discoveries, Kehoe and Ferrante point out that the Big Bang occurred 13.81 billion years ago. GRB 140419A is at a red shift of 3.96, Ferrante said.
“That means that GRB 140419A exploded about 12.1 billion years ago,” he said, “which is only about one-and-a-half billion years after the universe began. That is really old.”
Armed with images of the burst, astronomers can analyze the observational data to draw further conclusions about the structure of the early universe.
“At the time of this gamma-ray burst’s explosion, the universe looked vastly different than it does now,” Kehoe said. “It was an early stage of galaxy formation. There weren’t heavy elements to make Earth-like planets. So this is a glimpse at the early universe. Observing gamma-ray bursts is important for gaining information about the early universe.”
GRB 140419A’s brightness, measured by its ability to be seen by someone on Earth, was of the 12th magnitude, Kehoe said, indicating it was only 10 times dimmer than what is visible through binoculars, and only 200 times dimmer than the human eye can see, Kehoe said.
“The difference in brightness is about the same as between the brightest star you can see in the sky, and the dimmest you can see with the naked eye on a clear, dark night,” Kehoe said. “Considering this thing was at the edge of the visible universe, that’s an extreme explosion. That was something big. Really big.”
SMU telescope responded to NASA satellite’s detection and notification
SMU’s Robotic Optical Transient Search Experiment (ROTSE) IIIb is a robotic telescope. It is part of a network of ground telescopes responsive to a NASA satellite that is central to the space agency’s Swift Gamma-Ray Burst Mission. Images of the gamma-ray bursts are at http://bit.ly/1kKZeh5.
When the Swift satellite detects a gamma-ray burst, it instantly relays the location. Telescopes around the world, such as SMU’s ROTSE-IIIb, swing into action to observe the burst’s afterglow and capture images, said Govinda Dhungana, an SMU graduate student who participated in the gamma-ray burst research.
SMU’s ROTSE-IIIb observes optical emission from several gamma-ray bursts each year. It observed GRB 140419A just 55 seconds after the burst was detected by Swift.
Just days later, ROTSE-IIIb observed and reported a second rare and distant gamma-ray burst, GRB 140423A, at 3:30 a.m. April 23. The redshift of that burst corresponds to a look back in time of 11.8 billion years. ROTSE-IIIb observed it 51 seconds after the burst was detected by Swift.
“We have the brightest detection and the earliest response on both of those because our telescope is fully robotic and no human hands were involved,” Ferrante said.
Ferrante, the first to check observations on GRB 140423A, is first-author on that gamma-ray burst. Tolga Guver, associate professor in the Department of Astronomy and Space Sciences at Istanbul University, Turkey, is second author. On GRB 140419A, Guver is first author and Ferrante is second.
The research is funded by the Texas Space Grant Consortium, an affiliate of NASA. — Margaret Allen
From dinosaurs to sea turtles, and from technical assistance to advisory roles, SMU faculty and students, the SMU Shuler Museum, and the SMU Innovation Gymnasium have teamed with the nation’s new premier museum of nature and science in Dallas
Fossils on loan by SMU to the new Perot Museum of Nature and Science include those of animals from an ancient sea that once covered Dallas.
The fossils represent a slice of SMU’s scientific collaboration with the Perot Museum and its predecessor, the Dallas Museum of Natural History.
Items from SMU’s scientists include a 35-foot skeletal cast of the African dinosaur Malawisaurus standing sentry in the spacious glass lobby of the Perot, which opened Dec. 1 near downtown Dallas.
“The new museum building itself is an icon, but it’s also a statement by the city about taking the advances of science to the public,” said vertebrate paleontologist Louis L. Jacobs, an SMU Earth Sciences professor, who serves on the Perot Museum’s Advisory Board and Collections Committee.
Book a live interview
To book a live or taped interview with a researcher in the Roy M. Huffington Department of Earth Sciences in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
Jacobs, who was ad interim director of the Dallas Museum of Natural History in 1999, led the team that discovered Malawisaurus in Africa. He provided the cast to the museum.
A 35-foot skeletal cast of the African dinosaur Malawisaurus, discovered by a team led by SMU paleontologist Louis L. Jacobs, is on display at the Perot Museum. (Image: Rich Tate, Alford Media)
“Here at SMU we train students and create new knowledge. The museum’s mission is to take the stories of science out to the general public so they can be used,” said Jacobs. “Anthony Fiorillo, Perot Museum Curator of Earth Sciences, is a world-class scientist with whom we work. We have a junction between the mission, training and knowledge we have here, infused into and enhanced by what the museum does. That’s why the museum is important to SMU and that’s why SMU is important to the museum.”
Also on exhibit from SMU is a miniature unmanned autonomous helicopter designed for fighting fires that was built by SMU engineering students.
Herbivorous dinosaur is exhibited with ancient Texas plant fossils Shuler Museum fossils can be viewed in the T. Boone Pickens Life Then and Now Hall. They include an unnamed 113 million-year-old herbivorous dinosaur discovered in 1985 at Proctor Lake southwest of Stephenville, Texas.
For perspective on that exhibit’s paleoenvironment in Texas at the time, SMU paleobotanist Bonnie F. Jacobs provided fossil wood, fossil cones, fossil leaves and images of microscopic pollen grains from the Shuler Museum. The fossils provided information used to create a model of an extinct tree to accompany the exhibit.
Fossil cones and leaves discovered in Hood County are from an extinct ancient tree, says SMU paleobotanist Bonnie F. Jacobs. (Image: SMU)
Plant fossils inform scientists of the ecological setting in which dinosaurs lived and died, said Bonnie Jacobs, an SMU associate professor in the Huffington Department. Her collaboration with the Perot’s Fiorillo, who also is an adjunct research professor of paleoecology in the SMU Earth sciences department, includes fossil plants from Alaska.
“Understanding past climate and climate change will help us understand what may happen in the future,” she said. Bonnie Jacobs is featured in a Perot Museum Career Inspirations video that is part of the permanent exhibit and also advised on the text of some exhibits.
“The world of the past is a test case for global climate models, which are computer driven,” she said. “If we can reconstruct climates of the ancient Earth accurately, then we can create better models of what may happen in the future.”
Understanding paleoclimate through fossil soils is the expertise of Neil Tabor, an SMU associate professor in the Earth Sciences Department whose Perot Museum video discusses ancient soils, environments and the biggest extinction event in Earth’s history.
Fossils date from period when D/FW was covered by ancient sea The plant fossils are from the geologic period called the Cretaceous, from 146 million years ago to 66 million years ago. They were discovered at the prolific Jones Ranch fossil beds southwest of Fort Worth in Hood County.
At that time, the Jones Ranch — famous as the discovery site of Paluxysaurus jonesi, the state dinosaur of Texas — was not far inland from the muddy coastal shore of a vast shallow sea that a dozen years later would divide North America.
Giant fossil sea turtles were discovered in northeast Texas in 2006 by a 5-year-old girl, Preston Smith. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)
Other SMU fossils on loan also date from that period. They include sea turtles, as well as mosasaurs, which were ancient sea lizards that evolved flippers and streamlined bodies for life in the sea.
Stunning examples of fossil sea turtles were discovered in 2006 by a 5 year-old girl, Preston Smith, during a family outing along the North Sulphur River near Ladonia in northeast Texas. The turtles were stacked one on top of the other as if caught in sudden death 80 million years ago.
Diana Vineyard, director of administration and research associate at SMU’s Institute for the Study of Earth and Man, identified the turtles as Toxochelys while an SMU graduate student.
Also on loan from the Shuler Museum, and also identified by Vineyard, are 110-million-year-old sea turtles from the Early Cretaceous of Texas, discovered near Granbury. They represent early specimens in the transition of turtles from land and shallow marine animals to fully developed sea turtles, Vineyard said.
Exhibit includes mosasaur named for the city of Dallas
A Perot Museum exhibit includes a giant fossil sea turtle discovered in northeast Texas in 2006 by a 5-year-old girl. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)
Michael Polcyn, director of SMU’s Digital Earth Sciences Laboratory, put his expertise to work providing technical assistance for the museum’s Ocean Dallas marine reptile exhibit.
An expert in mosasaurs, Polcyn created digital reconstructions of Dallasaurus, named for the city of Dallas, and physically reconstructed the skeletons of Dallasaurus and another mosasaur, Tethysaurus, for the exhibit.
“The Ocean Dallas exhibit was a great opportunity to showcase the extraordinary story that the rocks in the Dallas area tell us about life in the deep past,” said Polcyn, whose mosasaur fieldwork extends from the United States to Angola.
“It was a great experience working with the museum’s creative and technical professionals on this project,” Polcyn said, “but it should be mentioned that many of the fossils in the exhibit were found by interested citizens walking the local creeks and rivers in search of these beasts, and it is they who deserve tremendous credit for bringing these finds to the public.”
Polcyn, who also is featured in a Perot Museum Career Inspirations video, created a skull reconstruction of the Perot Museum’s duck-billed dinosaur Protohadros, named by former SMU doctoral student Jason Head.
Other SMU fossils include dino footprint, croc egg and giant ammonite
The ammonite Parapuzosia, more than 3 feet in diameter and discovered in Dallas County, is on loan from SMU’s Shuler Museum to the Perot Museum.
SMU vertebrate paleontologist Dale A. Winkler, SMU research professor and director of the Shuler Museum, said other fossils on loan include:
a rare 110 million-year-old crocodile egg discovered with specimens of the crocodile Pachycheilosuchus trinquei west of Glen Rose. Pachycheilosuchus trinquei was named by Jack Rogers, a former SMU student. Rogers also found and identified the egg.
an ammonite, Parapuzosia, more than 3 feet in diameter and discovered in Dallas County.
In 2006, two SMU doctoral students assisted with excavation of the new species of dinosaur named for the museum’s namesakes, Margot and Ross Perot.
The dinosaur, Pachyrhinosaurus perotorum, was discovered by the Perot Museum’s Fiorillo and prepared by Perot Museum researcher Ronald Tykoski.
Using portable 3D laser technology, SMU scientists preserved electronically a rare 110 million-year-old fossilized dinosaur footprint from ichnospecies Eubrontes glenrosensis. The model is on display in the Perot Museum. (Image: SMU)
SMU doctoral student Christopher Strganac and former SMU doctoral student Thomas L. Adams helped dig Pachyrhinosaurus perotorum in Alaska. The only skeletal mount of its kind in the world, the 69 million-year-old skull is on display in the Life Then and Now Hall of the Perot Museum.
Also on view in the museum is a 3D cast of a dinosaur footprint that Adams and Strganac created from the laser scan of a 110 million-year-old fossilized dinosaur footprint, from ichnospecies Eubrontes glenrosensis, that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.
Another former SMU doctoral student highlighted among the exhibits is Yoshitsugu Kobayashi, who describes in a video the mentoring he received from the Perot’s Fiorillo while the two worked together in Alaska’s Denali National Park.
SMU’s Shuler Museum is named for Ellis W. Shuler, founder of the University’s geology department. Shuler was a driving force behind the precursor to the Perot Museum, the Dallas Museum of Natural History, established in 1936, said geologist James E. Brooks, SMU professor emeritus and SMU Provost emeritus. Brooks served on the Dallas Museum of Natural History’s board of directors from the 1980s until 2005.
Perot Museum presents a strong scientific face of Dallas “Any first-rate city needs a strong public scientific face with which it’s identified,” Brooks said. “The Perot Museum is going to be that organization.”
Brooks was instrumental in the negotiations with Egypt that enabled the Dallas Museum of Natural History to bring Ramses the Great, its first major exhibit, to Dallas in 1989.
“Museums, in addition to educating children and the general public, also have the responsibility to generate new knowledge, because that makes the city a more intellectually vibrant place,” he said.
Brooks and Louis Jacobs serve on the Perot Museum’s Collections Committee, which serves in an advisory role to Perot Earth Sciences Curator Fiorillo. He and other SMU faculty and staff collaborate on field expeditions to Alaska and Mongolia.
SMU’s Innovation Gymasium contributes to Perot exhibit
Pegasus, an unmanned autonomous helicopter that can fight fires, was designed and built by Lyle Engineering students under Innovation Gymnasium Director Nathan Huntoon. (Image: SMU)
SMU’s Innovation Gymnasium is featured in an exhibit in the Texas Instruments Engineering and Innovation Hall at the Perot Museum, said Nathan R. Huntoon, director of the Innovation Gymnasium at the SMU Bobby B. Lyle School of Engineering.
Central to the Engineering and Innovation Hall exhibit is an unmanned autonomous helicopter that can fight fires, built by SMU engineering students.
The Innovation Gym enables SMU students to hone their engineering and creative skills by working on real world, design challenges. Companies, researchers and non-profits all provide real challenges for the students to develop innovative solutions, often under intense time and financial pressure.
The firefighting helicopter featured in the new museum was the first such project.
Accompanying the helicopter is a video demonstration of the helicopter fighting simulated fires, as well as a touch-screen application with interviews of Huntoon and SMU students discussing engineering and innovation.
Huntoon has been a member of the Technology Committee and the Engineering and Innovation Committee for the Perot Museum.
James Quick, a professor of Earth sciences, as well as SMU’s associate vice president for research and dean of graduate studies, applauded the establishment of the Perot Museum, the result of decades of work by many people.
“Every great urban center should have an outstanding museum of nature and science to stimulate the imaginations of people of all ages and attract them to science,” Quick said. “The contribution the Perot Museum will make to North Texas cannot be overstated.” — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Species is now the youngest coelacanth from Texas; fish jaw and cranial material indicate a new family — Dipluridae — that was evolutionary transition between two previously known families
A new species of coelacanth fish has been discovered in Texas.
Pieces of tiny fossil skull found in Fort Worth have been identified as 100 million-year-old coelacanth bones, according to paleontologist John F. Graf, Southern Methodist University, Dallas.
The coelacanth has one of the longest lineages — 400 million years — of any animal. It is the fish most closely related to vertebrates, including humans.
The SMU specimen is the first coelacanth in Texas from the Cretaceous, said Graf, who identified the fossil. The Cretaceous geologic period extended from 146 million years ago to 66 million years ago.
Graf named the new coelacanth species Reidus hilli.
Coelacanths have been found on nearly every continent Reidus hilli is now the youngest coelacanth identified in the Lone Star State.
Previously the youngest was a 200 million-year-old coelacanth from the Triassic. Reidus hilli is the first coelacanth ever identified from the Dallas-Fort Worth area.
Coelacanth fossils have been found on every continent except Antarctica. Few have been found in Texas, Graf said.
The coelacanth fish has eluded extinction for 400 million years. Scientists estimate the coelacanth reached its maximum diversity during the Triassic.
The coelacanth was thought to have gone extinct about 70 million years ago. That changed, however, when the fish rose to fame in 1938 after live specimens were caught off the coast of Africa. Today coelacanths can be found swimming in the depths of the Indian Ocean.
Chart courtesy of the British Geological Survey.
Closest living fish to all vertebrates alive on land “These animals have one of the longest lineages of any vertebrates that we know,” Graf said.
The SMU specimen demonstrates there was greater diversity among coelacanths during the Cretaceous than previously known.
“What makes the coelacanth interesting is that they are literally the closest living fish to all the vertebrates that are living on land,” he said. “They share the most recent common ancestor with all of terrestrial vertebrates.”
Coelacanths have boney support in their fins, which is the predecessor to true limbs.
Book a live interview
To book a live or taped interview with John Graf in the SMU News Broadcast Studio call 214-768-7650 or email news@smu.edu.
“Boney support in the fins allows a marine vertebrate to lift itself upright off the sea floor,” Graf said, “which would eventually lead to animals being able to come up on land.”
Texas coelacanth, Reidus hilli, represents a new species and a new family Graf identified Reidus hilli from a partial skull, including gular plates, which are bones that line the underside of the jaw.
“Coelacanths are not the only fish that have gular plates, but they are one of the few that do,” Graf said. “In fact, the lenticular shape of these gular plates is unique to coelacanths. That was the first indicator that we had a fossil coelacanth.”
Reidus hilli was an adult fish of average size for the time in which it lived, said Graf. While modern coelacanths can grow as large as 3 meters, Reidus hilli was probably no longer than 40 centimeters. Its tiny skull is 45 millimeters long by 26 millimeters wide, or about 1.75 inches long by 1 inch wide.
Reidus hilli’s total body size is typical of the new family of coelacanths, Dipluridae, which Graf describes and names. He chose the name for the least primitive coelacanth in the family, Diplurus, which lived during the Triassic.
“Reidus hilli helped me tie a group of coelacanths together into what I identify as a new family of coelacanths,” he said. “This family represents a transition between the two large groups of youngest living coelacanths from the fossil record, Mawsoniidae and Latimeriidae.”
Diplurid coelacanths are typically smaller than the two families with which they are most closely associated, Mawsoniidae and Latimeriidae. Mawsoniidae and Latimeriidae both have late Cretaceous members reaching large body sizes, ranging from 1 meter to 3 meters in total body length, Graf said.
Reidus hilli provides clues to missing coelacanth history Reidus hilli is named, in part, for the amateur collector who discovered the fish, Robert R. Reid.
A Fort Worth resident, Reid has collected fossils for decades. He found the fossil specimen while walking some land that had been prepared for construction of new homes. Reid noticed the fossil lying loose on the ground in a washed out gully created by run-off.
Following Graf’s analysis, Reid was surprised to learn he’d collected a coelacanth — and a new species.
“When I found it, I could tell it was a bone but I didn’t think it was anything special,” said Reid, recalling the discovery. “I certainly didn’t think it was a coelacanth.”
“It is astounding what can be learned from the discoveries that people like Rob Reid make in their own backyards,” said Jacobs, an SMU professor of earth sciences and president of SMU’s Institute for the Study of Earth and Man. “The discovery of living coelacanths in the Indian Ocean after being presumed extinct for 70 million years highlights one of the great mysteries of ocean life. Where were they all that time? The new fossil from Texas is a step toward understanding this fascinating history.”
Reidus hilli is the latest of many fossils Reid has discovered. Others also have been named for him.
Reidus hilli discovered in Duck Creek Formation of North Texas Reidus hilli came from the fossil-rich Duck Creek Formation, which is a layer-cake band of limestone and shale about 40 feet thick.
The fossil was found in marine sediments, Graf said. It is one of many marine fossils found in the North Texas area, which 100 million years ago was covered by the Western Interior Seaway that divided North America from the Gulf of Mexico to the Arctic Ocean.
“That is unique to younger coelacanths,” Graf said. “The oldest coelacanths were usually found in freshwater deposits and it wasn’t until the Cretaceous that we start seeing this transition into a more marine environment.”
Fossil also named for Robert T. Hill, “Father of Texas Geology” Graf also named the fossil for Robert T. Hill, a geologist with the U.S. Geological Survey who led surveys of Texas during the 1800s. Hill described much of the geology of Texas, including the Duck Creek Formation. Hill is acclaimed as the “Father of Texas Geology.”
Identification of Reidus hilli brings the number of coelacanth species worldwide to 81, including two that are alive today. Sources report that 229 living coelacanths have been caught since 1938.
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Field-changing book: New study is a work of history richly informed by the anthropology of religion and art
In a new and potentially field-changing study, A. Azfar Moin explores why Muslim sovereigns in the early modern era began to imitate the exalted nature of Sufi saints.
Uncovering a startling but widespread phenomenon, Moin shows how the charismatic pull of sainthood (wilayat) — rather than the draw of religious law (sharia) or holy war (jihad) —inspired a new style of sovereignty in Islam.
Moin’s research is published in his new book, The Millennial Sovereign (Columbia University Press, 2012).
Book a live interview
To book a live or taped interview with A. Azfar Moin in the SMU News Broadcast Studio call 214-768-7650 or email news@smu.edu.
At the end of the sixteenth century and the turn of the first Islamic millennium, the powerful Mughal emperor Akbar declared himself the most sacred being on earth.
The holiest of all saints and above the distinctions of religion, he styled himself as the messiah reborn. Yet the Mughal emperor was not alone in doing so.
The title of the book reflects the Mughal emperors’ messianic and Sufi beliefs, which also led these Muslim rulers to explore European Christianity, says Moin.
“The Mughal emperors of sixteenth and seventeenth century India — of Taj Mahal fame — were also avid collectors of Christian art. They even invited Jesuit missionaries to discuss the Bible. At first the Catholic priests were delighted that such powerful Muslim kings were attracted to Christianity, but they eventually realized that their hosts were more interested in the millennium,” Moin says.
“The first millennium of Islam occurred at the end of the sixteenth century,” he says. “The Mughals used this religiously charged moment to style themselves as saintly and messianic sovereigns. They called their queens ‘The Mary of the Age’ and ‘Of the Stature of Mary.’ This didn’t mean that they had turned Christian, but that they were Jesus-like in their sacredness.”
Innovative contribution to our understanding of Mughal history
“This is a brilliant book,” said South Asia expert Francis Robinson, a professor at Royal Holloway, University of London. “It is the most innovative contribution to our understanding of Mughal history of my time. As a work of the first importance, and a step change in our knowledge of sixteenth-century India, it must be read by anyone interested in the fields of Islamic kingship, millenarianism and astrology in the Muslim world, and in the early modern world in general.”
A work of history richly informed by the anthropology of religion and art, The Millennial Sovereign traces how royal dynastic cults and shrine-centered Sufism came together in the imperial cultures of Timurid Central Asia, Safavid Iran and Mughal India. By juxtaposing imperial chronicles, paintings and architecture with theories of sainthood, apocalyptic treatises and manuals on astrology and magic, Moin uncovers a pattern of Islamic politics shaped by Sufi and millennial motifs.
He shows how alchemical symbols and astrological rituals enveloped the body of the monarch, casting him as both spiritual guide and material lord.
Ultimately, Moin offers a striking new perspective on the history of Islam and the religious and political developments that linked South Asia and Iran in early modern times.
Moin is assistant professor in the Clements Department of History at Southern Methodist University. His research and writing focuses on early-modern South Asia and the Islamic world. — Columbia University Press
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Unprecedented study relies on more than 1,500 years of tree-ring data and hundreds of years of fire-scar records gathered from Ponderosa Pine forests
Today’s mega forest fires of the southwestern U.S. are truly unusual and exceptional in the long-term record, suggests a new study that examined hundreds of years of ancient tree ring and fire data from two distinct climate periods.
Researchers constructed and analyzed a statistical model that encompassed 1,500 years of climate and fire patterns to test, in part, whether today’s dry, hot climate alone is causing the megafires that routinely destroy millions of acres of forest, according to study co-author and fire anthropologist Christopher I. Roos, Southern Methodist University, Dallas.
The researchers found that even when ancient climates varied from each other — one hotter and drier and the other cooler and wetter — the frequencies of year-to-year weather patterns that drive fire activity were similar.
The findings suggest that today’s megafires, at least in the southwestern U.S., are atypical, according to Roos and co-author Thomas W. Swetnam, the University of Arizona. Furthermore, the findings implicate as the cause not only modern climate change, but also human activity over the last century, the researchers said.
Book a live interview
To book a live or taped interview with Christopher I. Roos in the SMU News Broadcast Studio call SMU News and Communications at 214-768-7650 or email SMU News at news@smu.edu.
“The U.S. would not be experiencing massive large-canopy-killing crown fires today if human activities had not begun to suppress the low-severity surface fires that were so common more than a century ago,” said Roos, an assistant professor in the SMU Department of Anthropology.
Today’s extreme droughts caused by climate change probably would not cause megafires if not for a century of livestock grazing and firefighting, which have combined to create more dense forests with accumulated logs and other fuels that now make them more vulnerable than ever to extreme droughts. One answer to today’s megafires might be changes in fire management.
“If anything, what climate change reminds us is that it’s pretty urgent that we deal with the structural problems in the forests. The forests may be equipped to handle the climate change, but not in the condition that they’re currently in. They haven’t been in that condition before,” Roos said.
Roos and Swetnam, director of the University of Arizona Laboratory of Tree-Ring Research, published their findings in the scientific journal The Holocene.
Study combines fire-scar records and tree-ring data of U.S. southwest This new study is based on a first-of-its-kind analysis that combined fire-scar records and tree-ring data for Ponderosa Pine forests in the southwest United States.
Earlier research by other scientists has looked at forest fire records spanning the years from 1600 to the mid-1800s — a climate period known as the Little Ice Age — to understand current forest fire behavior. Those studies have found that fires during the Little Ice Age occurred frequently in the grasses and downed needles on the surface of the forest floor, but stayed on the floor and didn’t burn into the canopies.
Critics dispute the relevance of the Little Ice Age, however, saying the climate then was cooler and wetter than the climate now. They say a better comparison is A.D. 800 to 1300, known as the Medieval Warm Period, when the climate was hotter and drier, like today’s.
Scientists who favor that comparison hypothesize that forest fires during the Medieval Warm Period probably were similar to today’s megafires and probably more destructive than during the Little Ice Age.
Tree rings and fire scars provide the evidence for moisture, drought and burn activity Scientists rely on tree rings not only to calculate a tree’s age, but also to determine wet and dry weather patterns of moisture and drought. Similarly, scientists’ best evidence for fire activity is the scarring on tree rings that dates the occurrence of fires. While tree-ring data for climate are available for long time periods, annual forest fire records don’t yet exist for the Medieval Warm Period.
In response to the need for data, Roos and Swetnam tested the Medieval Warm Period hypothesis by calibrating a statistical model that combined 200 years of Little Ice Age fire-scar data and nearly 1,500 years of climate data derived from existing tree rings. With that they were able to predict what the annual fire activity would have been almost 1,500 years ago.
They discovered that the Medieval Warm Period was no different from the Little Ice Age in terms of what drives frequent low-severity surface fires: year-to-year moisture patterns.
“It’s true that global warming is increasing the magnitude of the droughts we’re facing, but droughts were even more severe during the Medieval Warm Period,” Roos said. “It turns out that what’s driving the frequency of surface fires is having a couple wet years that allow grasses to grow continuously across the forest floor and then a dry year in which they can burn. We found a really strong statistical relationship between two or more wet years followed by a dry year, which produced lots of fires.”
“The best way to look at how fires may have varied — if climate were the only driver — is to do this type of modeling,” Roos said. “Our study is the first in the world to go this far back using this methodology. But this method can be used anyplace for which there is a fire-scar record.”
The study’s tree-ring-derived climate data are from the southern Colorado Plateau, a region that includes the world’s largest continuous stand of Ponderosa Pine stretching from Flagstaff, Ariz., into New Mexico. Large Ponderosa Pine forests have existed in the area for more than 10,000 years.
Fire-scar data for the region go back as far as the 1500s, but are most prevalent during the Little Ice Age period. Fire scientists have analyzed fire-scars from hundreds of trees from more than 100 locations across the Southwest. All fire-scar data are publically available through the International Multiproxy Paleofire Database, maintained by the federal National Oceanic and Atmospheric Administration’s paleoclimatology program.
Ancient fires were frequent, but didn’t burn the forest canopy Fire scientists know that in ancient forests, frequent fires swept the forest floor, often sparked by lightning. Many of the fires were small, less than a few dozen acres. Other fires may have been quite large, covering tens of thousands of acres before being extinguished naturally. Fuel for the fires included grass, small trees, brush, bark, pine needles and fallen limbs on the ground.
“The fires cleaned up the understory, kept it very open, and made it resilient to climate changes because even if there was a really severe drought, there weren’t the big explosive fires that burn through the canopy because there were no fuels to take it up there,” Roos said. “The trees had adapted to frequent surface fires, and adult trees didn’t die from massive fire events because the fires burned on the surface and not in the canopy.”
Today’s huge canopy fires are the cumulative result of human activity The ancient pattern of generally small, frequent fires changed by the late 1800s. The transcontinental railroad had pushed West, bringing farmers, ranchers, cattle and sheep. Those animals grazed the forest floor, consuming the grasses that fueled small fires but leaving small saplings and brush, which then grew up into dense, mature bushes and trees. In addition, the U.S. began to restrict the traditional land use of the region’s Native American communities, including confining them to reservations. This removed another source for frequent surface fires in the forests — burning by Native Americans for horticulture and hunting.
By the early 20th century, the U.S. Forest Service had been established, and fighting fires was a key part of the agency’s mission. Without continuous fuel, fires on the forest floor ceased.
“Many of our modern forests in central Arizona and New Mexico haven’t had a fire of any kind on them in 130 or 140 years,” Roos said. “That’s very different from the records of the ancient forests. The longest they would have gone without fires was 40 or 50 years, and even that length of time would have been exceptional.”
The research reported in The Holocene is the basis for a new four-year, $1.5 million grant from the National Science Foundation in which Roos and Swetnam are co-principal investigators. That project will examine how human activities have changed forests and forest fires over the past 1,000 years of Native American occupation, as well as the influence of droughts during the Medieval Warm Period and Little Ice Age in New Mexico’s Jemez Mountains. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Rare find alters origins and distribution of Terminonaris; first home was Texas and North America — not Europe
http://www.youtube.com/watch?v=oHS6vE4o3XY
Making its first appearance in Texas, a prehistoric crocodile thought to have originated in Europe now appears to have been a native of the Lone Star State.
The switch in origins for the genus known as Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of a lake near Dallas.
The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, according to paleontologist Thomas L. Adams at Southern Methodist University, Dallas, who identified the reptile.
A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.
“With the recognition of Terminonaris here in Texas, this actually changes a lot about what we thought we knew about this group,” Adams said.
“Now we know the group had a wider distribution range, and that it’s much older. It represents a unique find for Texas. This is the first occurrence of Terminonaris in Texas. It’s also the oldest occurrence of Terminonaris in the world, and it’s also the southernmost occurrence of Terminonaris anywhere.”
There are six other known Terminonaris fossil specimens: five from North America and one from Europe. The European specimen, from Germany, previously was thought to be the oldest. Scientists had concluded that Terminonaris originated in Europe and then traversed the Atlantic and dispersed throughout North America.
Big Texas crocodile swam the shores of North America’s prehistoric seaway Adams identified the reptile primarily from its long snout, which measures more than 2 feet long and 7 inches wide, or 62 centimeters. With a snout that long, Adams estimates the head would have been about one meter long.
Book a live interview
To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.
“Based on Nile crocodiles and the Indian gharial, which are both large crocodiles, a regression analysis indicates this Terminonaris probably would have been 23 to 25 feet long,” said Adams. “The largest living crocodile today is the saltwater crocodile, which can reach up to 20 feet in length.”
The Texas Terminonaris was an adult and most likely weighed more than a ton, he said.
Adams identified the fossils in “First Occurrence of the Long-Snouted Crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas” in the Journal of Vertebrate Paleontology.
Prehistoric crocodiles such as Terminonaris together with living crocodiles make up a large group called crocodyliformes. While technically there are differences between living crocodiles and each of the different types of fossil crocodile forms, all of them are often commonly referred to as crocodiles.
Today there are only 23 species of living crocodiles, a small number compared to the many species of mammals, birds, lizards, snakes and fish alive today, Adams said. That’s in stark contrast to prehistoric times.
“In the past, the crocodilian forms were very diverse and they were very successful. There were hundreds of species. Even at the time of the Texas Terminonaris, they were found everywhere,” Adams said.
Texas specimen fills gap, expands age and range of group Texas Terminonaris was discovered by Dallas-area amateur fossil enthusiast Brian Condon, a rural mail carrier. Condon discovered the heavy pieces of the snout and a vertebrate in 2005 while fossil hunting near his home on Lake Lewisville, a 26,000-acre recreational and fishing lake managed by the U.S. Army Corps of Engineers. He spotted the first of the pieces along the shoreline. Condon donated the fossils to SMU’s Shuler Museum of Paleontology.
In prehistoric times, Texas Terminonaris would have made its home in a marine setting, along the eastern shore of North America’s vast prehistoric Western Interior Seaway. One hundred million years ago the seaway was a wide, shallow sea that split the North American continent in half from the Arctic to the Gulf of Mexico, said Adams, lead author on the scientific article. The seaway would have covered Lake Lewisville’s location.
In its day-to-day life on the seaway, Terminonaris would have kept close to shore, perhaps in a shallow lagoon or estuary, also venturing into the seaway’s warm salty water to hunt for fish. Like modern crocodiles and alligators, Terminonaris would have eaten whatever it could catch, Adams said. Its long, slender snout was well-suited for devouring fish, small mammals and even small dinosaurs.
North America’s other Terminonaris fossil specimens also were found along the seaway. A Kansas specimen is the youngest, about 91 million years, while those from Saskatchewan, Canada, and Montana are 93 million years old. The German specimen is 94 million years old.
“Terminonaris now here in Texas fills in a gap that we didn’t have information for,” Adams said. “It tells us that as a group, as a genus, they were around much longer, because we extend the age back to 96 million years. The range for them is now expanded, because this is the most southern occurrence of them.”
Well-preserved fossil offers no clues to adult reptile’s cause of death While the Texas fossil is well-preserved, how the reptile died remains a mystery since only the snout was found.
It probably died in the water or washed out into the open sea, where it floated to the bottom and was buried very quickly, said Adams. The discovery of seven Terminonaris fossil specimens worldwide is significant, he said.
“To be fossilized, it requires they die at the right time in the right place, be buried very quickly, then eventually be exposed and uncovered,” he said. “So the odds of being fossilized and being found as a fossil are very slim.”
Condon found one piece at the water’s edge of Lake Lewisville. The other pieces were further up a bank that sloped toward the shore, Condon said. The pieces had been deposited on the ground by receding water, pulled from the Woodbine Formation by constant waves that had washed away a soil bank and uncovered the heavy fossils. The outcrop of the Woodbine Formation visible at Lake Lewisville starts at the Red River in North Texas and thins as it nears Dallas.
Condon, who had previously found other fossils in the area, initially thought the pieces were petrified wood.
“This piece looked like a loaf of bread from Subway. It was all wrinkled,” Condon said. “Then I picked it up and turned it over and saw it had teeth — big, round conical teeth — and I thought, ‘This is amazing. It’s a jaw.'”
The research was funded by Southern Methodist University???s Institute for the Study of Earth & Man. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Birch mouse is now 9 million years older than previously known and migrated from Asia to North America
Tiny fossil teeth discovered in Inner Mongolia are a new species of birch mouse, indicating that ancestors of the small rodent are much older than previously reported, according to paleontologist Yuri Kimura, Southern Methodist University in Dallas.
Fossils of the new species were discovered in sediments that are 17 million years old, said Kimura, who identified the new species and named it Sicista primus to include the Latin word for “first.”
Previously the oldest prehistoric ancestor of the modern-day birch mouse was one that inhabited Inner Mongolia 8 million years ago.
Adding 9 million years to the ancestry of the rodent family that includes birch mice and jumping mice distinguishes this genus, Sicista, as a “living fossil,” Kimura said. That places the genus among some of the most unique rodents on earth — those whose ancestry spans 2 to 3 times the average, she said.
Kimura identified Sicista primus from 17 tiny teeth, whose size makes them difficult to find. A single molar is about the size of half a grain of rice. The teeth, however, are distinctive among the various genera of rodents known as Dipodidae. Cusps, valleys, ridges and other distinguishing characteristics on the surface of the teeth are identifiable through a microscope.
“We are very lucky to have these,” Kimura said. “Paleontologists usually look for bones, but a mouse is very tiny and its bones are very thin and fragile. The teeth, however, are preserved by enamel. Interestingly, small mammal teeth are very diverse in terms of their structure, so from that we can identify a species.”
An SMU doctoral student in the Huffington Department of Earth Sciences, Kimura was part of the international team that discovered the fossils during expeditions to Inner Mongolia in 2004, 2005 and 2007.
Book a live interview
To book a live or taped interview with Yuri Kimura in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
Microscopic evidence of a living fossil The new fossils of Sicista primus from the Early Miocene age are also now the earliest known record of Sicista, the birch mouse genus that comprises 13 modern and 7 fossil species, said Kimura. As a result, Sicista now boasts the most ancient ancestry of the 326 genera in the largest rodent suborder to which it belongs, Myomorpha. The suborder includes laboratory mice and rats.
“The birch mouse is a rare case of a small mammal genus persisting from the Early Miocene without significant morphological changes,” Kimura said in reporting the findings.
Rodents, both modern and prehistoric, rank as the most prolific mammals on earth. After the reign of dinosaurs, 65 million years ago, rodents evolved and dispersed worldwide during the Cenozoic, the “Age of Mammals.” They comprise about 42 percent of all living mammals. Scientists know now that only 1.5 percent of modern rodent genera, however, go as far back as the Early Miocene or older.
“Diversity within a rodent genus is not unusual, but the long record of the genus Sicista, first recognized at 17 million years ago, is unusual,” said Kimura. “The discovery of Early Miocene S. primus reveals that Sicista is fundamental to understanding how a long-lived genus persisted among substantially fast-evolving rodent groups.”
Birch mice migrated from Asia to North America Previously the record for the oldest species of Sicista belonged to an 8 million-year-old species identified in Eurasia, Kimura said.
In identifying the new species, Kimura also reverses the long-held hypothesis that ancestors of birch mice migrated from North America to Asia. That hypothesis has been based on a 14.8 million-year-old specimen from South Dakota, which was identified in 1977 as the separate rodent genus Macrognathomys. Kimura’s analysis, however, concludes that Macrognathomys is actually Sicista. For that reason, she concluded, Sicista first inhabited the forests and grasslands of prehistoric Asia and then dispersed to North America via the Bering Land Bridge, Kimura said.
In a comparison of the molars and premolars from Macrognathomys and Sicista primus, Kimura reported finding 12 shared dental characteristics. In addition, phylogenetic analysis to identify evolutionary relationships indicated that both belong to the same genus, Sicista, she said.
Reconnaissance of earlier Central Asiatic Expedition localities yields small mammals The teeth of Sicista primus were discovered in fine sediments gathered from Gashunyinadege, a fossil locality in the central region of Inner Mongolia.
Gashunyinadege is one of several fossil localities near Tunggur, a fossil site discovered in the 1920s by the Central Asiatic Expedition, which was led by Roy Chapman Andrews from the American Museum of Natural History.
Kimura is a member of an international scientific team sponsored by the Chinese Academy of Sciences Institute of Vertebrate Paleontology and Paleoanthropology and the Natural History Museum of Los Angeles County. The team’s expeditions have been led by paleontologists Qiu Zhuding, IVPP; Wang Xiaoming, Natural History Museum of Los Angeles County; and Li Qiang, IVPP. Their expeditions retrace important classic localities, as well as prospect new fossil localities.
Kimura and other members of the team discovered the birch mouse fossils by first prospecting Gashunyinadege for small mammal fossils visible to the naked eye. Those fossils indicated the possibility of even smaller mammal fossils, so the team gathered 6,000 kilograms, more than 13,000 pounds, of Early Miocene sediment. Using standing water from recent rains, they washed the sediments repeatedly through continually smaller screens to separate out small fossils. Bags of concentrate containing particles the size of mouse teeth were returned to IVPP laboratories to hunt for fossils with a microscope.
The research was funded by the Institute for the Study of Earth and Man at SMU, Dallas Paleontological Society, Geological Society of America, Chinese Academy of Sciences Institute of Vertebrate Paleontology and Paleoanthropology. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with SMU’s Yuri Kimura or to book her in the SMU studio, call SMU News & Communications at 214-768-7650.
Mapping of Maya’s “Holtun” site in Central Lakes region of Guatemala locates triadic pyramid, astronomical observatory, ritual ball court, residential mounds, plazas
Archaeologists have made the first three-dimensional topographical map of ancient monumental buildings long buried under centuries of jungle at the Maya site “Head of Stone” in Guatemala.
The map puts into 3-D perspective the location and size of Head of Stone’s many buildings and architectural patterns, which are typical of Maya sites: 70-foot-tall “triadic pyramid,” an astronomical observatory, a ritual ball court, numerous plazas and also residential mounds that would have been the homes of elites and commoners, according to archaeologist Brigitte Kovacevich, Southern Methodist University, Dallas.
The map situates the primary buildings relative to one another and also places them within the context of the site’s hills and valleys in the Central Lakes agricultural region of north-central Guatemala.
The buildings date from 800 B.C. to 900 A.D., says Kovacevich, an expert in Meso-American cultures and co-leader of an international scientific team that has been granted permission by the Guatemalan government to work the site, which has never before been excavated.
Movement to understand early periods, how kingship developed Known for its far-reaching state-level government, Maya civilization during the “Classic” period from 200 A.D. to 900 A.D. consisted of huge monumental cities with tens of thousands of people ruled by powerful kings, palaces, pyramidal temples and complex political and economic alliances, Kovacevich says.
The ancient culture at its peak during the Classic period has been well-documented by archaeologists studying the civilization’s large urban centers, such as Tikal, which was one of the most powerful and long-lasting of the Maya kingdoms.
In contrast, “Head of Stone,” called “Holtun” in Maya, is a modest site from the “Pre-Classic” period, 600 B.C. to 250 A.D., she says. The small city had no more than 2,000 people at its peak. Situated about 35 kilometers south of Tikal, “Head of Stone” in its heyday preceded the celebrated vast city-states and kingship culture for which the Maya are known.
Book a live interview
To book a live or taped interview with Dr. Brigitte Kovacevich in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
By excavating a small city, Kovacevich says, the archaeologists hope to understand early Maya trade routes and alliances, the importance of ritual for developing political power, how political power emerged, and how kingship lines evolved and solidified.
“There is a movement toward a greater understanding of these early periods, with smaller sites and common people,” says Kovacevich, an assistant professor in SMU’s Anthropology Department. “Little is known about how kingship developed, how individuals grabbed political power within the society, how the state-level society evolved and why it then was followed by a mini-collapse between 100 A.D. and 250 A.D.”
Kovacevich presented “‘Head of Stone’: Archaeological Investigation at the Maya Site of Holtun, Guatemala” during the 76th annual meeting of the Society for American Archaeology in Sacramento, Calif., March 30 to April 3.
Besides Kovacevich, archaeologists on the team and co-authors of the paper are Michael G. Callaghan, University of Texas at Arlington; Patricia R. Castillo, Universidad San Carlos, Guatemala; and Rodrigo Guzman, Universidad del Valle, Guatemala. The 3-D topographic map expands surveys from 1995 and 2002 by Guatemalan archaeologist Vilma Fialko and Guatemala’s Institute of Anthropology and History, which were documented by Fialko and archaeologist Erick M. Ponciano.
Situated in a patch of rainforest on defensible escarpment Head of Stone today sits in a patch of rainforest surrounded by cow pastures and cornfields on a limestone escarpment, which would have made it highly defensible, Kovacevich says.
Holtun’s structures — more than 100 of them — now are overgrown with a thin layer of centuries-old jungle foliage and soil. The site is about one kilometer long and half a kilometer wide, or almost three-quarters of a mile long and one-third of a mile wide. The large mounds protruding here and there from the jungle floor signal to archaeologists the familiar building arrangements customary at a Maya site, Kovacevich says.
As with most Maya sites, looters have tunneled into many of the important structures. Kovacevich and her colleagues will dig more tunnels to further explore the buildings with the help of Guatemalan experts skilled at working Maya sites.
Key structures: “E Group,” residential group The 3-D mapping has confirmed an “E Group,” a key Maya architectural structure. Holtun’s “E Group” dates from 600 B.C. to 600 A.D. and consists of stair-step pyramids and elongated buildings that likely served as astronomical observatories central to Maya rituals. A stepped pyramid to the west of a long narrow building directly oriented north-south served as the observational structure and was related to veneration of sacred ancestors, Kovacevich says.
“From the observational structure you can see the sun rising at the different solstices throughout the year, which is very important agriculturally, to know the timing of the seasons and when to plant and when to harvest,” she says. “So the people creating this are harnessing that knowledge to show their followers and constituents that they possibly are even controlling the change of seasons.”
Adjacent to the “E Group” are four structures that face one another around a central patio. The pattern usually indicates a residential group, where cooking and food processing were carried out on the patio, Kovacevich says.
“The closeness of the residential structure to the “E Group” suggests these were very early elites, and possibly kings,” she says. “Kingship was just being established during this period.”
The Maya often left offerings to their ancestors, such as jade or ceramics, at the base of structures.
Triadic pyramid represents Maya mythology? Besides the “E Group,” a triadic pyramid dating from 300 B.C. to 300 A.D. sits at the north end of the site. As is typical at Maya sites, three pyramids about 10 feet tall sit atop a high platform that rises about 60 feet from the jungle floor, Kovacevich says. One of the pyramids faces south, flanked on either side by the other two, which face inward around a central patio. The platform sits atop — and obscures — an earlier sub-structure platform, buried underground and decorated with monumental masks that are visible from the looters’ tunnels.
“Some archaeologists argue that this configuration represents elements of Maya mythology: the three hearthstones of creation that were set down by the gods to create the first home and hearth, thereby civilizing humanity,” Kovacevich says. “Re-creation of that by the people at Holtun would show piousness and connection to ancestors.”
During the Classic period, kings were typically buried in Maya pyramids. During the Pre-Classic period, however, that isn’t the case and they were typically buried in their residence. It’s possible an early king of Holtun was buried in one of the residential structures, Kovacevich says.
“Ancestors are buried beneath the floor and kept very close and venerated,” she says. “The more ancestors a residence has, the more times the family redoes their floor, making a new floor, and so their mound gets higher and higher. A person with more ties, more ancestors, has more status.”
Another familiar structure is a ball court, signified by two long mounds that are exactly parallel, said Kovacevich.
“Those are the two sides of the ball court, and the ball would have been bounced in the center off of the sides,” she said. “Almost all Maya sites had a ball court.”
The team’s Holtun excavation is scheduled to start this summer. Funding is from the Institute for the Study of Earth and Man, the Downey Family Fund for Faculty Excellence and SMU. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Dr. Kovacevich or to book her in the SMU studio, call SMU News & Communications at 214-768-7650.
Bamboo knives are easy to make — and will cut meat, but not hides, suggesting prehistoric people preferred crudely made stone flakes
The long-held theory that early human ancestors in East Asia crafted their tools from bamboo and wood is much more complicated than originally conceived, according to a new study.
Research until now has failed to address a fundamental question: Is it even possible to make complex bamboo tools with simple stone tools?
Now an experimental archaeological study — in which a modern-day flint knapper replicated the crafting of bamboo knives — confirms that it is possible to make a variety of bamboo tools with the simplest stone tools.
However, rather than confirming the long-held “bamboo hypothesis,” the new research shows there’s more to the theory, says archaeologist Metin I. Eren, the expert knapper who crafted the tools for the study.
Study: Bamboo knives were efficiently crafted and able to cut meat, but not hide
Book a live interview
To book a live or taped interview with Metin I. Eren in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
The researchers found that crudely knapped stone choppers made from round rock “cobbles” performed remarkably well for chopping down bamboo. In addition, bamboo knives were efficiently crafted with stone tools.
While the knives easily cut meat, they weren’t effective at cutting animal hides, however, possibly discouraging their use during the Stone Age, say the authors. Some knives made from a softer bamboo species entirely failed to produce and hold a sharp edge.
“The ‘bamboo hypothesis’ has been around for quite awhile, but was always represented simply, as if all bamboo species, and bamboo tool-making were equal,” says Eren, a doctoral candidate in anthropology at Southern Methodist University in Dallas. “Our research does not debunk the idea that prehistoric people could have made and used bamboo implements, but instead suggests that upon arriving in East and Southeast Asia they probably did not suddenly start churning out all of their tools on bamboo raw materials either.”
“The importance of experimental archaeology, of replicating the production of bamboo tools with simple stone artifacts, was needed for a long time. Due to successful cooperation in every stage of the experiments with our Chinese colleagues, we managed to demonstrate the potential of a simple stone tool technology to produce many different daily tools made of bamboo,” said archaeologist and lead author Ofer Bar-Yosef, professor of Stone Age archaeology at Harvard University.
In addition to Bar-Yosef and Eren, co-authors were archaeologists Jiarong Yuan and Yiyuan Li of Hunan Provincial Institute of Archaeology and Cultural Relics; and archaeologist David J. Cohen of Boston University.
Poor diversity of prehistoric stone tools in Southeast Asia As in Africa, previous fossil discoveries in East Asia have indicated that early human ancestors continuously inhabited those regions for as much as 1.6 million years. Unlike Africa and western Eurasia, however, where stone tools show increasing and decreasing complexity, East Asia’s stone tools remain relatively simple.
Researchers know that simple flaked “cobble” industries existed in some parts of the vast East and Southeast Asia region, which includes present-day China, Brunei, Cambodia, Indonesia, Laos, parts of Malaysia, Myanmar, Philippines, Thailand, East Timor and Vietnam. Stone tool discoveries there have been limited to a few hand axes, cleavers and choppers flaked on one side, however, indicating a lack of more advanced stone tool-making processes, innovation and diversity found elsewhere, say the authors.
The lack of complex prehistoric stone tool technologies has remained a mystery. Some researchers have concluded that prehistoric people in East Asia must have instead crafted and used tools made of bamboo — a resource that was readily available to them.
Scientists suggest several reasons for missing stone tool industry Scientists have hypothesized various explanations for the lack of complex stone tools in East and Southeast Asia. On one hand, it’s been suggested that human ancestors during the early Stone Age left Africa with rudimentary tools and were then cut-off culturally once they reached East Asia, creating a cultural backwater.
Others have suggested a lack of appropriate stone raw materials in East and Southeast Asia. In the new study, however, Bar-Yosef, Eren and colleagues showed otherwise by demonstrating that more complex stone tools could be manufactured on stone perceived to be “poor” in quality.
Studies set out to test “bamboo theory” by replicating stone tools Prolific in East and Southeast Asia, bamboo stands grow fast and thick, reaching maturity in 5 to 7 years and totaling more than 1,000 species, the authors say.
In a 2007 pilot study and a 2008 expanded study the authors worked with the Archaeological Field Research Station of the Hunan Provincial Institute of Archaeology and Cultural Relics in Shimen, China. Experiments were carried out in three locations across Hunan province known to possess clusters of Paleolithic sites.
The researchers gathered different kinds of cobble-sized rocks along the banks of the Li, Wu and Xiao Shui rivers, similar to those that would have been available to prehistoric human ancestors.
From those rocks, Eren easily replicated flake tools and stone choppers, some of them flaked on one side and some flaked on two sides. The team then observed a local bamboo toolmaker — who used metal tools to easily slice the bamboo — to learn techniques for sawing, shaving, splitting, peeling and chopping bamboo.
Stone tools efficiently chopped down bamboo stalks and produced knives Using the crudely knapped stone choppers, the researchers in 84 minutes chopped down 14 bamboo stalks representing five species. When cut, the stalks, both small and large in diameter, totaled more than 65 meters in length. The stone tools performed remarkably well for that purpose, the authors write. That was especially true, they said, considering the tools were wielded by two modern people who were inexperienced with chopping bamboo, researchers Eren and Li. But Eren sometimes found himself scrambling up trees to release felled bamboo wedged in branches.
After numerous trials, the researchers developed a simple “bamboo knife reduction sequence” that could produce 20 sharp, durable bamboo knives in about five hours. Using pork purchased from a local market, the researchers write, they found that the knives easily cut meat, but not hide.
In other findings, the authors write that with a simple stone unifacial chopper, Bar-Yosef was able in 30 minutes to easily make a sharp spear that would have been capable of killing an animal. Also, using the replicated stone tools they were able to produce strips of bamboo thin enough for weaving baskets. “For some items, like baskets, bamboo might have been an ideal raw material,” Eren said.
“But one is left to wonder, at least for butchery tasks, why a prehistoric person would go to the trouble of producing a bamboo knife when a stone flake would certainly do the trick,” the authors write.
Unprecedented study confronts long-standing assumption “The so-called bamboo hypothesis, to explain the virtual absence of complex prehistoric stone tool technologies in eastern and southeastern Asia, has been often cited but always remained somewhat ambiguous,” said Chauhan, co-editor of the Quaternary International issue in which the article will be published. “This unprecedented experimental study by Ofer Bar-Yosef, Metin Eren and colleagues represents a first step in the right direction, to confront a long-standing assumption about early human technological adaptations.”
Funding for the research was provided by the American School of Prehistoric Research, Harvard University; a National Science Foundation Graduate Research Fellowship; and the Department of Anthropology, Southern Methodist University.
SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smuresearch.com. Follow SMU Research on Twitter, @smuresearch.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with Metin Eren or book him in the studio, call SMU News & Communications at 214-768-7650.
Unique specimen is first of its kind discovered as far south as Texas, where it flew over a vast ancient sea
Fossilized bones discovered in Texas from a flying reptile that died 89 million years ago may be the earliest occurrence of the prehistoric creature known as Pteranodon.
Previously, Pteranodon bones have been found in Kansas, South Dakota and Wyoming in the Niobrara and Pierre geological formations. This likely Pteranodon specimen is the first of its kind found in Texas, according to paleontologist Timothy S. Myers at Southern Methodist University in Dallas, who identified the reptile. The specimen was discovered north of Dallas by an amateur fossil hunter who found various bones belonging to the left wing.
Pteranodon was a type of pterosaur that lived about the same time as some dinosaurs, about 100 million to 65 million years ago. The only reptiles to dominate the ancient skies, pterosaurs had broad leathery wings and slim torsos.
Adult pterosaur, toothless variety with about a 12-foot wing span
The specimen identified by Myers is an adult pterosaur of the toothless variety and while larger than most birds, wasn’t among the largest pterosaurs, Myers said, noting it had a wing span between 12 and 13 feet, or 3.6 to 4 meters. It was discovered in the Austin Group, a prominent rock unit in Texas that was deposited around 89 million years ago, early in the geological time period called the Late Cretaceous.
Pterosaurs, many of which survived on fish, lived at a time when a massive ancient sea cut across the central United States. The Western Interior Seaway was a shallow body of water that split North America in half from the Arctic Ocean to the Gulf of Mexico.
More than a thousand Pteranodon fossils have been unearthed from the middle part of the seaway.
No definitive Pteranodon specimens have emerged from the southern part that is now Texas.
The SMU specimen, if it is Pteranodon, would be the first discovered so far south in the Western Interior Seaway, said Myers, a postdoctoral researcher in SMU’s Huffington Department of Earth Sciences.
Left wing suggests Pteranodon; cause of death a mystery
Key to identifying the SMU fossils as Pteranodon is a humerus of 5.7 inches, or 14.5 centimeters. The humerus is the uppermost bone in the wing and attaches to the torso. The humerus of the SMU specimen, while complete, did suffer some damage during fossilization when it became compressed and distorted through millions of years of compaction.
Book a live interview
To book a live or taped interview with Timothy S. Myers in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email news@smu.edu.
“If it wasn’t crushed so badly, it would be possible to determine if it really is Pteranodon,” Myers said. “These bones are easily flattened. They are hollow inside, because they have to be lightweight to allow a pterosaur to fly. So they compress like a pancake as they’re embedded in layers of rock.”
While it’s difficult to narrow the humerus definitively to a specific genus and species, some features clearly identify the specimen as part of the Pteranodontidae family, most likely the genus Pteranodon. It exhibits, for example, the prominent warped deltopectoral crest that is characteristic of members of the Pteranodontidae family, called pteranodontids, he said.
Discovered along with the humerus were parts of the elongated fourth finger that in pterosaurs forms the wing. The SMU specimen’s metacarpal — at 20 centimeters — is incomplete, missing an estimated 37 percent of its length.
The fossils do not solve the mystery of the reptile’s cause of death, Myers said. But it appears the animal probably died in flight over the sea and then fell into the water. Its carcass probably floated for some time, so that when the flesh decomposed the bones separated at the joints, known as “disarticulation,” before they settled to the sea floor and were buried.
“We know it was disarticulated when it was buried because the bones weren’t preserved in correct anatomical position,” Myers said. “Abrupt truncation of the broken end of one of the bones and infilling of the break with sediment also indicates that the breakage and disarticulation took place prior to burial.”
May be oldest Pteranodon in world
If the specimen represents Pteranodon, Myers said, it would be the oldest one in North America by 1 million to 2 million years, and the second oldest pteranodontid in the world.
Pterosaurs were alive from the Late Triassic — more than 200 million years ago — to the Late Cretaceous, evolving from small-bodied creatures to some of the largest animals to ever inhabit the skies, Myers said. An older pteranodontid specimen, belonging to the genus Ornithostoma, previously was identified in England.
“Any pterosaur material is fairly rare to find unless you have exceptional preservation conditions. They are frail, fragile bones, and they require rapid burial to be well preserved,” Myers said. “The SMU specimen was deposited relatively far offshore in deep water, perhaps 50 to 80 feet deep. It’s fairly exceptional because of the number of elements. Typically you’ll only find one piece, or one part of a piece in the local rock.”
During the Early Cretaceous, many types of pterosaurs lived around the world, Myers said. The earliest ones had thin, razor-sharp teeth. In the transition from Early to Late Cretaceous, the toothed variety disappear from the fossil record and toothless forms, like the SMU specimen, become more common, he said.
Dallas area specimens illustrate pterosaur evolution
North Texas is fortunate to have had both the toothed and toothless kinds discovered in the area, illustrating the evolutionary transition, noted Myers.
Besides the toothless specimen just identified by Myers, an older toothed pterosaur, Aetodactylus halli, previously was discovered in the Dallas area. Aetodactylus, also identified by Myers, lived 95 million years ago.
“This new specimen adds a lot more information about pterosaurs in North America,” Myers said. “It helps constrain the timing of the transition from toothed to toothless because there’s only a few million years separating this specimen and Aetodactylus.”
Amateur fossil collector Gary Byrd of Rockwall, Texas, discovered the new SMU pterosaur fossils about 10 years ago.
A roofing contractor who keeps an eye out for fossils, Byrd made the find after stopping to look at two freshly excavated culverts while driving through a new subdivision in Collin County. Using a hammer and pick he dug out the bones and brought them to SMU paleontologists Louis Jacobs and Dale Winkler. Jacobs and Winkler indicated the fossils were likely a pterosaur. Byrd donated the fossils to SMU’s Shuler Museum of Paleontology.
“I found a couple parts of a fish, and then when I saw these my initial thought was that they weren’t fish,” Byrd recalled. “I kind of knew it was something different — a birdlike thing. It’s very rare you find those thin, long bones.”
This isn’t the first time Byrd has hit it lucky finding fossils. In 1994 he discovered dinosaur bones that he donated to SMU’s Shuler Museum. The specimen was identified as a rare primitive duck-billed dinosaur and named Protohadros byrdi after Byrd. — Margaret Allen
Paleontologists propose the new term “digitype” for full-resolution three-dimensional digital models that preserve and archive endangered fossils
Portable laser scanning technology allows researchers to tote their latest fossil discovery from the field to the lab in the form of lightweight digital data stored on a laptop. But sharing that data as a 3D model with others requires standard formats that are currently lacking, say paleontologists at Southern Methodist University.
The SMU researchers used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile. They share their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.
The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says SMU paleontologist Thomas L. Adams, lead author of the scientific article. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation. Click here for the download link.
“This paper demonstrates the feasibility of using portable 3D laser scanners to capture field data and create high-resolution, interactive 3D models of at-risk natural history resources,” write the authors.
“3D digitizing technology provides a high-fidelity, low-cost means of producing facsimiles that can be used in a variety of ways,” they say, adding that the data can be stored in online museums for distribution to researchers, educators and the public.
SMU paleontologist Louis L. Jacobs is one of the coauthors on the article.
“The protocol for distance scanning presented in this paper is a roadmap for establishing a virtual museum of fossil specimens from inaccessible corners across the globe,” Jacobs said.
Paleontologists propose the term “digitype” for digital models Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites.
SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say.
Book a live interview
To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.
Laser scanning is superior to other methods commonly used to create a model because the procedure is noninvasive and doesn’t harm the original fossil, the authors say. Traditional molding and casting procedures, such as rubber or silicon molds, can damage specimens.
But the paleontologists call for development of standard formats to help ensure data accessibility.
“Currently there is no single 3D format that is universally portable and accepted by all software manufacturers and researchers,” the authors write.
Digitype is baseline for measuring future deterioration SMU’s digital model archives a fossil that is significant within the scientific world as a type specimen — one in which the original fossil description is used to identify future specimens. The fossil also has cultural importance in Texas. The track is a favorite from well-known fossil-rich Dinosaur Valley State Park, where the iconic footprint draws tourists.
The footprint was left by a large three-toed, bipedal, meat-eating dinosaur, most likely the theropod Acrocanthosaurus. The dinosaur probably left the footprint as it walked the shoreline of an ancient shallow sea that once immersed Texas, Adams said. The track was described and named in 1935 as Eubrontes (?) glenrosensis. Tracks are named separately from the dinosaur thought to have made them, he explained.
“Since we can’t say with absolute certainty they were made by a specific dinosaur, footprints are considered unique fossils and given their own scientific name,” said Adams, a doctoral candidate in the Roy M. Huffington Department of Earth Sciences at SMU.
The fossilized footprint, preserved in limestone, was dug up in the 1930s from the bed of the Paluxy River in north central Texas about an hour’s drive southwest of Dallas. In 1933 it was put on prominent permanent display in Glen Rose, Texas, embedded in the stone base of a community bandstand on the courthouse square.
The footprint already shows visible damage from erosion, and eventually it will be destroyed by gravity and exposure to the elements, Adams said. The 3D model provides a baseline from which to measure future deterioration, he said.
In comparing the 3D model to an original 1930s photograph made of the footprint, the researchers discovered that some surface areas have fractured and fallen away. By comparing the 3D model with a synthetically altered version, the researchers were able to calculate volume change, which in turn enables reconstruction of lost volume for restoration purposes.
Model comprises 52 scans totaling 2 gigabytes Adams and his research colleagues took a portable scanner to the bandstand site to capture the 3D images. They employed a NextEngine HD Desktop 3D scanner and ScanStudio HD PRO software running on a standard Windows XP 32 laptop. The scanner and laptop were powered from outlets on the bandstand. The researchers used a tent to control lighting and maximize laser contrast.
Because of the footprint’s size — about 2 feet by 1.4 feet (64 centimeters by 43 centimeters) — multiple overlapping images were required to capture the full footprint.
Raw scans were imported into Rapidform XOR2 Redesign to align and merge them into a single 3D model. The final 3D model was derived from 52 overlapping scans totaling 2 gigabytes, the authors said.
The full-resolution 3D digital model comprises more than 1 million poly-faces and more than 500,000 vertices with a resolution of 1.2 millimeters. It is stored in Wavefront format. In that format the model is about 145 megabytes. The model is free for downloading from a link on Palaeontologia Electronica‘s web site.
3D digital footprint also available as a QuickTime virtual object A smaller facsimile is also available from the journal as a QuickTime Virtual Reality object. In that format, users can slide their mouse pointer over the 3D footprint image to drag it to a desired viewing angle, and zoom and pan. Click here for the link to the QuickTime video.
Besides the 3D model, included with the Palaeontologia Electronica article is a link to a pdf of the original 1935 scientific article in which SMU geology professor Ellis W. Shuler described and identified the dinosaur that made the track.
SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Adams or to book him in the SMU studio, call SMU News & Communications at 214-768-7650.
Identification of Africa’s rodents provides important collaborating information on the ecology of the locales and on environmental change through time,” — Winkler
Rodents get a bad rap as vermin and pests because they seem to thrive everywhere. They have been one of the most common mammals in Africa for the past 50 million years.
From deserts to rainforests, rodents flourished in prehistoric Africa, making them a stable and plentiful source of food, says paleontologist Alisa J. Winkler, an expert on rodent and rabbit fossils. Now rodent fossils are proving their usefulness to scientists as they help shed light on human evolution.
Rodents can corroborate evidence from geology and plant and animal fossils about the ancient environments of our human ancestors and other prehistoric mammals, says Winkler, a research professor at Southern Methodist University.
“Rodents are often known in abundance, and there are many different kinds from a number of famous hominid and hominoid localities,” says Winkler. “Many paleoanthropologists are very interested in the faunal and ecological context in which our own species evolved.”
Rodents: World’s most abundant mammal — and Africa’s too
Rodents — rats, mice, squirrels, porcupines, gerbils and others — are the largest order of living mammals, constituting 42 percent of the total mammalian diversity worldwide. That’s according to data drawn from the research literature in an analysis by Winkler and her paleontology colleagues Christiane Denys, of the Museum National d’Histoire Naturelle in Paris, and D. Margaret Avery of the Iziko South African Museum in Cape Town.
Their review documents more than 130 formally named genera in “Fossil Rodents of Africa,” the first comprehensive summary and distribution analysis of Africa’s fossil rodents since 1978.
The analysis is a chapter in the new 1008-page scientific reference book “Cenozoic Mammals of Africa” (University of California Press, 2010), the first comprehensive scientific review of Africa’s fossil mammals in more than three decades. The book comprises 48 chapters by 64 experts, summarizing and interpreting the published fossil research to date of Africa’s mammals, tectonics, geography, climate and flora of the past 65 million years.
Rodents are human’s best friend?
Rodents have been around much longer than humans or human ancestors in Africa, with the earliest from northern Africa dating from about 50 million years ago. Today scientists are aware of 14 families of rodents in Africa.
Winkler cites locales where fossils of the sharp-toothed, gnawing creatures have been found relevant to our human ancestors:
Ethiopia’s Middle Awash, where some fossils date to when the chimpanzee and human lines split 4 million to 7 million years ago and where the famous “Ardi” primate was discovered;
Tanzania’s Olduvai Gorge, dubbed the “Cradle of Mankind”;
The Tugen Hills and Lake Turkana sites of Kenya, where important human ancestor fossils have been discovered;
In younger southern African cave faunas dating to the Stone Age.
Their fossils also have been found in other older Eastern Africa sites, where apes and humans have been linked to the monkey lineage.
“At many of these sites, identification of Africa’s rodents provides important collaborating information on the ecology of the locales and on environmental change through time,” the authors write.
Rodent diversity likely underestimated; more fossils than scientists
The diversity of ancient Africa’s rodents most likely has been underestimated, say the authors. Just how much isn’t known, though, because the quantity of rodent fossils being discovered far exceeds the handful of scientists who specialize in identifying and studying the specimens.
That diversity continues to expand. The last exhaustive analysis of Africa’s rodents was carried out by R. Lavocat in 1978. At that time scientists recorded 54 genera, 76 fewer than those documented by Winkler, Denys and Avery in their analysis.
Winkler and her colleagues summarize the distribution and ecology of existing rodent families, as well as the systematics, biochronology and paleobiogeography of rodent families in Africa’s fossil record. The diversity they document reflects “the wide variety of habitats present on the continent” and paints a picture of Africa’s paleoecology.
Given the huge rodent diversity in modern Africa, “it is likely that such an extensive fauna was also present in the past,” the scientists write.
Tremendous diversity reflects wide variety of habitats
An example of that relationship is the scaly-tailed flying squirrel, an exclusively African group of forest-dwelling rodents that are not related to true squirrels. They are well known from about 18 million to 20 million years ago in eastern Africa, Winkler says, suggesting the presence of closed habitats, such as forests. That corroborates other evidence of forests from fossil animals, plants and geology, she says.
“Although there are even older scaly-tailed flying squirrels known from the currently arid regions of northern Africa,” says Winkler, “they do not appear to have been gliders, as are most current forms, and the question of when members of the group first developed gliding locomotion still remains.”
Funding for “Cenozoic Mammals of Africa” came from the Swedish Research Council; the University of Michigan’s College of Literature, Science, and the Arts, and Museum of Paleontology; and the Regents of the University of California.
Winkler is in the Roy M. Huffington Department of Earth Sciences at SMU, and is also an assistant professor at the University of Texas Southwestern Medical Center, Dallas. — Margaret Allen
WFAA reporter Jonathan Betz interviewed SMU scientist Jodi Cooley, an assistant professor of experimental particle physics in the SMU Physics Department.
The experiment is located deep in the Soudan Underground Laboratory in the abandoned Soudan Underground Mine in a national park in Minnesota.
Cooley was part of a scientific group of experimental particle physicists who earlier reported in the journal Science that they couldn’t rule out that they may have seen a glimpse of dark matter.
Watch WFAA’s coverage
Book a live interview
To book a live or taped interview with Jodi Cooley in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.
By Jonathan Betz
WFAA
SOUDAN, Minnesota — It’s invisible, but people still look for it.
It’s cosmic, but confusing.
We’re talking about “dark matter.” Find it, and it’s worth millions.
For SMU physicists that — and curiosity — make it worth the search.
SMU professor Jodi Cooley tries to teach how the universe works. Still, it’s a subject even she doesn’t fully understand.
“I’ve always been attracted to things that are hard or difficult,” she said. “If people say, ‘It can’t be done,’ I’ve always said, ‘Really? Are you sure? I’m going to go do it!'”
It’s a drive that sends her to extremes.
Twice a year, Professor Cooley embarks on a journey that she hopes will take her to the farthest reaches of the universe.
That quest is by way of Soudan, Minnesota — a four-hour drive north of Minneapolis. It’s a place where the skies open to land untouched by developers, and tiny towns forged a century ago by people working underground.
It’s those old iron mines that now draw the country’s top minds to this remote location.
“We’re on the cutting edge,” Cooley said. “We’re trying things nobody has tried to do.”
Her day starts before the sun rises, traveling deep underground using the same elevator the original miners took in the 1920s.
It’s a bone-rattling three-minute drop in complete darkness, taking Cooley 2,000 feet under the earth’s surface.
And it is a striking case of old meets new, where the most sophisticated technology known to man is found in a mine that was dug in the late 1800s.
Evidence is weak for tropical rainforest 65 million years ago in Africa’s low-latitudes
The landscape of Central Africa 65 million years ago was a low-elevation tropical belt, but the jury is still out on whether the region’s mammals browsed and hunted beneath the canopy of a lush rainforest.
The scientific evidence for a tropical rainforest at that time is weak and far from convincing, says paleobotanist Bonnie F. Jacobs, Southern Methodist University in Dallas.
Fossil pollen from Central and West Africa provide no definitive evidence for communities of rainforest trees at the beginning of the Cenozoic, says Jacobs, an expert in the paleobotany of Africa soon after dinosaurs had gone extinct. It was the start of the age of mammals, and Africa was largely an island continent.
Many Cenozoic mysteries remain to be solved
The rainforest mystery is characteristic of the scientific uncertainty and unknowns surrounding Africa’s ancient flora during the period called the Cenozoic.
There are large gaps in the fossil record, says Jacobs, a co-author of “A Review of the Cenozoic Vegetation History of Africa.” She is an associate professor in SMU’s Roy M. Huffington Department of Earth Sciences.
The analysis, a chapter in “Cenozoic Mammals of Africa” (University of California Press, 2010), is the first of its kind since 1978 to review and interpret the Cenozoic paleobotanical record of Africa, with paleogeographic maps showing paleobotanical site distributions through time. Jacobs co-authored the paper with Aaron D. Pan, a paleobotanist at the Fort Worth Museum of Science and History, and Christopher R. Scotese, in the Earth Sciences Department at the University of Texas at Arlington.
The 1008-page “Cenozoic Mammals of Africa” is the first scientific reference of its kind since 1978, comprising 48 chapters by 64 experts. The volume summarizes and interprets the published fossil research to date of Africa’s mammals, tectonics, geography, climate and flora of the past 65 million years.
Details sparse, but big picture emerges for past 65 million years
Paleobotanical data for Africa are generally meager and uneven for the Cenozoic, according to Jacobs and her co-authors.
In an original series of maps, they chart each Cenozoic Africa paleobotanical locale described in the published research to date. There are a mere 82 sites in all. Most of the sites date to 50 million years ago. Fewer date to 20 million, 30 million, 10 million and — perhaps most important — 2 million years ago, when the human family was evolving.
“Africa is disappointingly undersampled,” say Jacobs and her colleagues. “This vast continent, roughly three times the area of the United States, has so far been documented by only a handful of Paleogene plant and vertebrate localities, and it has a Neogene record heavily biased toward the depositional basins of the East African Rift.”
Shift from descriptive to analytic approach driven by holistic view
For a continent so important for its role in the evolution of mammals, the scarcity of plant fossil data stands in sharp contrast.
“As impressive as is the contemporary mammalian diversity of Africa, it is dwarfed by that of the Cenozoic,” write the volume’s editors, paleozoologist Lars Werdelin, the Swedish Museum of Natural History, and paleontologist William Joseph Sanders, the University of Michigan. Africa today represents 20 percent of the world’s land mass, is the only continent to occupy both the north and south temperate zones, and is home now to more than 1,100 mammalian species, they write in the introduction.
Africa’s paleobotanical record is key to a holistic understanding of ancient mammals, says H.B.S. Cooke in the preface. A mammal expert, Cooke was editor of the earlier 1978 scientific reference, “Evolution of African Mammals” (Harvard University Press).
“Most striking over the past years has been a shift in studying fossils from a largely descriptive taxonomy to a more analytical approach, including consideration of faunal associations, their distribution in time and space, and the environmental and climatic factors that prevailed and changed through time,” Cooke writes. ” … African prehistory has become more a study of paleobiology than mere paleontology.”
For images from Jacobs’ fieldwork in Africa go to SMU Research on Flickr.
More scientific exploration needed to fill gaps
Scientific exploration to learn more about Africa’s ancient vegetation is on the increase, say Jacobs and her co-authors. That should start to fill gaps in understanding, including the mystery of Africa’s palms.
While palm trees are common in wet tropical forests worldwide, that’s not the case in Africa today. Palm trees have not been found in abundance in Africa for the past 24 million years, regardless of whether the regional vegetation was forest, say the authors. Oddly, though, abundant palm samples have been found in some African locations dating between 65 million and 25 million years ago, including at Chilga in Ethiopia by Jacobs and Pan.
The implications of that difference are significant for the various endemic mammals of that time, many of which were absent by 23 million years ago, say the authors.
“We are fortunate that the sampling scale of most fossil localities is at the plant community level, and larger-scale changes took place one community at a time,” they write. “Thus, as Africa becomes better sampled, the uneven record will ultimately become a more complete narrative of dynamic change at the community and ecosystem levels.”
Funding for “Cenozoic Mammals of Africa” came from the Swedish Research Council; the University of Michigan’s College of Literature, Science, and the Arts, and the Museum of Paleontology; and the Regents of the University of California. — Margaret Allen
SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.
Archaeologists who interpret Stone Age culture from discoveries of ancient tools and artifacts may need to reanalyze some of their conclusions.
Archaeologists who interpret Stone Age culture from discoveries of ancient tools and artifacts may need to reanalyze some of their conclusions.
That’s the finding suggested by a new study that for the first time looked at the impact of water buffalo and goats trampling artifacts into mud.
In seeking to understand how much artifacts can be disturbed, the new study documented how animal trampling in a water-saturated area can result in an alarming amount of disturbance, says archaeologist Metin I. Eren, a graduate student at Southern Methodist University and one of eight researchers on the study.
In a startling finding, the animals’ hooves pushed artifacts as much as 21 centimeters into the ground — a variation that could equate to a difference of thousands of years for a scientist interpreting a site, said Erin.
The findings suggest archaeologists should reanalyze some previous discoveries, he said.
Book a live interview
To book a live or taped interview with Metin I. Eren in the SMU News Broadcast Studio call SMU News and Communications at 214-768-7650 or email SMU News at news@smu.edu.
“Given that during the Lower and most of the Middle Pleistocene, hominids stayed close to water sources, we cannot help but wonder how prevalent saturated substrate trampling might be, and how it has affected the context, and resulting interpretation, of Paleolithic sites throughout the Old World,” conclude the authors in a scientific paper detailing their experiment and its findings.
Animal trampling not new; current study adds new variable
The idea that animal trampling may reorient artifacts is not new.
“Believe it or not, there have been dozens of trampling experiments in archaeology to see how artifacts may be affected by animals walking over them. These have involved human trampling and the trampling of all sorts of animals, including elephants, in dry sediments,” Eren said. “Our trampling experiments in dry sediments, for the most part, mimicked the results of previous experiments.”
But this latest study added a new variable to the mix — the trampling of artifacts embedded in ground saturated with water, Eren said.
Researchers from the United States, Britain, Australia and India were inspired to perform the unique experiment while doing archaeological survey work in the Jurreru River Valley in Southern India.
They noticed that peppering the valley floor were hardened hoof prints left from the previous monsoon season, as well as fresh prints along the stream banks. Seeing that the tracks sunk quite deeply into the ground, the researchers began to suspect that stone artifacts scattered on the edges of water bodies could be displaced significantly from their original location by animal trampling.
Early humans drawn to water’s edge
“Prehistoric humans often camped near water sources or in areas that receive lots of seasonal rain. When we saw those deep footprints left over from the previous monsoon season, it occurred to us that animal trampling in muddy, saturated sediments might distort artifacts in a different way than dry sediments,” Eren said. “Given the importance of artifact context in the interpretation of archaeological sites and age, it seems like an obvious thing to test for, but to our surprise it never had been.”
Eren and seven other researchers tested their theory by scattering replicated stone tools over both dry and saturated areas of the valley. They then had water buffalo and goats trample the “sites.” Once sufficient trampling occurred, the archaeologists proceeded to excavate the tools, taking careful measurements of where the tools were located and their inclination in the ground.
The researchers found that tools salted on ground saturated with water and trampled by buffalo moved up to 21 centimeters vertically, or a little more than 8 inches. Tools trampled by goats moved up to 16 centimeters vertically, or just over 6 inches.
“A vertical displacement of 21 centimeters in some cases might equal thousands of years when we try to figure out the age of an artifact,” Eren said. “This amount of disturbance is more than any previously documented experiment — and certainly more than we anticipated.”
A new “diagnostic marker” for interpreting sites
Unfortunately for archaeologists who study the Stone Age, artifacts left behind by prehistoric humans do not stay put, said Eren. Over thousands or even millions of years, all sorts of geological or other processes can move artifacts out of place, he said.
The movement distorts the cultural and behavioral information that is contained in the original artifact patterning, what archaeologists call “context.” Archaeologists must discern whether artifacts are in their original context, and thus provide reliable information, or if they’ve been disturbed in some way that biases the interpretation, Eren said.
Given that artifacts embedded in the ground at vertical angles appear to be a diagnostic marker of trampling disturbance, the researchers concluded that sites with water-saturated sediments should be identified and reanalyzed.
Other researchers on the study include Adam Durant, University of Cambridge; Christina Neudorf, University of Wollongong; Michael Haslam, University of Oxford; Ceri Shipton, Monash University; Janardhana Bora, Karnatak University; Ravi Korisettar, Karnatak University; and Michael Petraglia, University of Oxford. Korisettar and Petraglia are the principal investigators of the archaeological field research in Kurnool, India.
The research was funded by Leverhulme Trust, British Academy, National Science Foundation, Australian Research Council, National Science Foundation Graduate Research Fellowship Program, and Lockheed Martin Corporation.
A private university located in the heart of Dallas, SMU is building on the vision of its founders, who in 1911 imagined a distinguished center for learning emerging from the spirit of the city. Today, nearly 11,000 students benefit from the national opportunities and international reach afforded by the quality of SMU’s seven degree-granting schools.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with Metin I. Eren or to book a live or taped interview in the studio, call SMU News & Communications at 214-768-7650 or email news@smu.edu.
Can a manufacturing industry purr along without a class system of managers and workers? That’s part of a longtime mystery that may soon be solved: How did a prehistoric, egalitarian people called the Hohokam produce large quantities of decorated ceramic vessels without a “manager” hierarchy?
Archaeologists from Southern Methodist University in Dallas and the Cultural Resource Management Program of the Gila River Indian Community in Arizona have launched a unique research partnership to solve the puzzling mechanics of the large-scale industry.
The vessels were made in about 1000 A.D. by a culture archaeologists call the Hohokam. The ancient people used the pottery for daily serving, storage, and social and religious gatherings. Today’s Gila River residents, the O’odham, are descendants of the Hohokam.
Book a live interview
To book a live or taped interview with Sunday Eiselt in the SMU Broadcast Studio call News and Communi- cations at 214-768-7650 or email news@smu.edu.
The National Science Foundation is funding the research with a $134,636 grant.
Unprecedented partnership
Under the landmark research partnership, the tribe and SMU hope to decipher the mechanics of the Hohokam ceramic technology and manufacturing techniques.
The three-year project examines artifacts and ceramic production materials from 12 sites in the Sonoran Desert just south of what is now Phoenix, according to archaeologists and co-investigators Sunday Eiselt and J. Andrew Darling. Eiselt is director of the SMU-in-Taos Archaeological Field School and an SMU assistant professor in the SMU Department of Anthropology. Darling is director of the O’odham tribe’s Cultural Resource Management Program.
The analysis looks at a slice of time from 1000 A.D. to 1070 A.D. when production of the decorated ceramic pots, known as “red-on-buff,” was at its peak, said Eiselt and Darling.
Ritually regulated or a managerial elite?
The researchers will probe how a prehistoric society that was fairly egalitarian, without cities or strict social classes, was able to mass-produce ceramic pottery, Eiselt said.
The pottery was critical to a complex system of water management devised by the Hohokam. They used hand-dug canals to irrigate thousands of miles of desert, making the land suitable for growing a wide variety of farm crops.
As pottery specialists living along the middle Gila River, the Hohokam produced and perhaps traded thousands of vessels to the entire region in return for agricultural commodities from surrounding groups, according to the researchers.
“With production output at the level suggested by the millions of sherds and vessel fragments recovered from archaeological sites of this period, we would expect to find political hierarchies, craft specialists, guilds and mass-production techniques,” Eiselt said. “In this situation that wasn’t the case. The results have the potential to show that highly productive craft industries can occur in the absence of managerial elites.”
Hierarchical forms of management for mass-production are more familiar in the non-Indian world, Darling said.
“It’s been postulated by archaeologists that stratification and ranking can be superceded by alternative approaches to production in quantity,” Darling said. “That’s particularly true for societies whose traditional beliefs are not ruled by the bottom line or production and demand.”
Which theory is right?
Eiselt and Darling said the current study will test two competing hypotheses by probing the organizational principles and capacity of core Hohokam technological systems:
The first proposes that a number of villages were producing ceramics independently and trading them for agricultural products — such as cotton — to outside consumers.
The second proposes that ceramic manufacturing was highly concentrated in one or a few villages that were supplied with raw materials by other villages. That implies a greater level of inter-village coordination to create greater economies of scale at the expense of emerging settlement hierarchies.
“The competing hypotheses will be tested through geochemical and petrographic examination of raw materials and ceramic artifacts in order to determine how the Hohokam achieved such great economic and production success,” Eiselt said.
Petrographic thin-section analysis and chemical assays will target the components of red-on-buff sherds — including clay, temper and paint — to identify and characterize raw material sources and reconstruct patterns of ceramic manufacture, the researchers said.
The mineralogical and chemical composition of raw material from different geographical sources will be compared to ceramics from sites across the region.
“This will enable us to map the circulation of raw materials, not just finished products, and thereby identify, geochemically, not only resource trade, but the segmentation of tasks among producer communities, in so far as that existed,” Eiselt said.
From there the researchers can test whether ceramic manufacture for exchange was concentrated at independent centers, or whether there was a division of labor in the production and distribution of raw materials that was part of a broader system for enhancing production efficiency. It will also show whether or how the productive system connected with regional exchange or nascent market systems.
Building on existing Gila research
The project is part of the community’s efforts to recover information from archaeological sites impacted by centuries of development, said Darling. Work will take place on the Gila River Indian Community Reservation under the oversight of the Cultural Resource Management Program.
Results will aid the Pima-Maricopa Irrigation Project, an ongoing effort to restore water resources that were historically lost to the O’odham — previously called Pima — through diversion and damming, Darling said.
The research project builds on earlier fieldwork conducted by the Gila River’s tribal archaeology program. The tribe, in turn, hopes to benefit from SMU’s archaeological expertise, Darling said.
“This is building the tribe’s capacity to conduct scientific research on its own,” he said. “Through collaborative research projects with SMU the tribe is able to exercise its sovereignty in the areas of intellectual research and academic development — not just to inform the world, but to restore the past to the community for their benefit and for future generations at Gila River.”
Both entities benefit, Eiselt said.
“The Gila River Indian Community is investigating the past within the confines of its community with its own team of cultural resource specialists and highly trained archaeologists,” Eiselt said. “It is a rare privilege for SMU to collaborate.” — Margaret Allen
A 95 million-year-old fossilized jaw discovered in Texas has been identified as a new genus and species of flying reptile, Aetodactylus halli.
Aetodactylus halli is a pterosaur, a group of flying reptiles commonly referred to as pterodactyls.
The rare pterosaur — literally winged lizard — is one of the youngest members in the world of the pterosaur family Ornithocheiridae, says paleontologist Timothy S. Myers, who identified and named Aetodactylus halli.
The newly identified reptile is only the second ornithocheirid ever documented in North America, Myers says. He is a postdoctoral fellow in the Roy M. Huffington Department of Earth Sciences at Southern Methodist University in Dallas.
Aetodactylus halli would have soared over what is now the Dallas-Fort Worth area during the Cretaceous Period when much of the Lone Star state was under water, covered by a vast ancient sea.
While rare in North America, toothed pterosaurs belonging to the Ornithocheiridae are a major component of Cretaceous pterosaur faunas elsewhere in the world, Myers says. The Texas specimen — a nearly complete mandible with most of its 54 teeth missing — is definitively younger than most other ornithocheirid specimens from Brazil, England and China, he says. It is five million years younger than the only other known North American ornithocheirid.
Myers named the pterosaur Aetodactylus halli after Lance Hall, a member of the Dallas Paleontological Society who hunts fossils for a hobby. Hall found the specimen in 2006 in North Texas. It was embedded in a soft, powdery shale exposed by excavation of a hillside next to a highway. The site was near the city of Mansfield, southwest of Dallas and west of Joe Pool Lake. Hall donated the specimen to SMU.
Pterosaurs ruled the skies from the late Triassic, more than 200 million years ago, to the end of the Cretaceous, about 65 million years ago, when they went extinct. They represent the earliest vertebrates capable of flying.
Fossil hunter saw long row of teeth sockets
The Aetodactylus halli jaw was discovered in the geologic unit known as the Eagle Ford Group, which comprises sediments deposited in a shallow sea, Myers says. Outcrop of the Eagle Ford Group extends northward from southwestern Texas into southern Oklahoma and southwestern Arkansas.
“I was scanning the exposure and noticed what at first I thought was a piece of oyster shell spanning across a small erosion valley,” Hall recalls of the discovery. “Only about an inch or two was exposed. I almost passed it up thinking it was oyster, but realized it was more tan-colored like bone. I started uncovering it and realized it was the jaw to something — but I had no idea what. It was upside down and when I turned over the snout portion it was nothing but a long row of teeth sockets, which was very exciting.”
SMU vertebrate paleontologist Louis L. Jacobs, a dinosaur expert internationally recognized for his fossil discoveries in Texas and Africa, and SMU paleontologist Michael J. Polcyn, recognized for his expertise on the extinct marine reptiles called mosasaurs, both told Hall it was a pterosaur and an important find.
Unique jaw differs from others
The 38.4-centimeter Aetodactylus jaw originally contained 54 slender, pointed teeth, but only two remain in their sockets, Myers says. The lower teeth were evenly spaced and extended far back along the jaw, covering nearly three quarters of the length of the mandible. The upper and lower teeth interlaced when the jaws were closed.
In Aetodactylus, changes in tooth size along the jaw follow a similar pattern to those of other ornithocheirids. However, Aetodactylus differs from all other ornithocheirids in that its jaws were thin and delicate, with a maximum thickness not much greater than 1 centimeter, Myers says. But the specimen does compare favorably with Boreopterus, a related pterosaur from the Early Cretaceous of China, in terms of the number of teeth present in the lower jaw, he says.
Myers has estimated the wingspan around roughly 3 meters, or about 9 feet, indicating Aetodactylus would have been a “medium-sized” pterosaur, he says. While it’s not known how Aetodactylus died, at the time of death the reptile was flying over the sea and fell into the water, perhaps while fishing, Jacobs says.
Find hints at new diversity of pterosaurs
North American pterosaurs that date from the Cretaceous are all toothless, except for Aetodactylus and Coloborhynchus, Myers says. The thinness of the jaws, upward angle of the back half of the mandible and the lack of a pronounced expansion of the jaw tips indicate that Aetodactylus is different from other ornithocheirids and represents a new genus and species of pterosaur.
“Discovery of another ornithocheirid species in Texas hints at a diversity of pterosaurs in the Cretaceous of North America that wasn’t previously realized,” Myers says. “Aetodactylus also represents one of the final occurrences of ornithocheirids prior to the Late Cretaceous transition to pterosaur faunas that were dominated by the edentulous, or toothless, species.”
Texas now claims the only two of their kind
Hall on April 14 was presented with the Dallas Paleontological Society’s highest honor, the Lloyd Hill award. The award is named for the late Lloyd Hill, an amateur fossil hunter and longtime member of the Dallas Paleontological Society. Hill wrote the well-regarded novel The Village of Bom Jesus.
Much of Texas was once submerged under the Western Interior Seaway. The massive sea split North America from the Gulf of Mexico to the Arctic Ocean.
On shore, the terrain was flat and flowering plants were already dominating flora communities in this part of North America, according to paleobotanist Bonnie Jacobs, associate professor of Earth Sciences at SMU.
“There were still conifers and ferns as well, but mostly of the sort that had tiny needle leaves, like junipers,” says Bonnie Jacobs. “Sycamores and their relatives would have been among the flowering plants.”
The first ornithocheirid remains from North America, discovered in Fort Worth, were described by former SMU student Young-Nam Lee and donated by amateur collector Chris Wadleigh, says SMU’s Louis Jacobs.
“The ancient sea that covered Dallas provided the right conditions to preserve marine reptiles and other denizens of the deep, as well as the delicate bones of flying reptiles that fell from their flight to the water below,” says Louis Jacobs, a professor in SMU’s Huffington Department of Earth Sciences.
“The rocks and fossils here record a time not well represented elsewhere in North America,” says Louis Jacobs. “That’s why two species of ornithocheirids have been found here but nowhere else, and that’s why discoveries of other new fossils are sure to be made by Lance Hall and other fossil lovers.”
Myers’ article in the Journal of Vertebrate Paleontology is titled “A new ornithocheirid pterosaur from the Upper Cretaceous (Cenomanian-Turonian) Eagle Ford Group of Texas.”
Technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty now will be pioneered to monitor active volcanoes in the Northern Mariana Islands near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.
The two-year, $250,000 project of the U.S. Geological Survey and Southern Methodist University will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.
The archipelago’s active volcanoes threaten not only residents of the island chain and the U.S. military, but also passenger airlines and cargo ships.
The USGS project calls for installing infrasound devices alongside more traditional volcano monitoring equipment — seismometers and global positioning systems.
Book a live interview
To book a live or taped interview with James E. Quick in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
Scientists at SMU, which the USGS named the prime cooperator on the project, will install the equipment and then monitor the output via remote sensing. The project is a scientific partnership of the USGS, SMU and the Marianas government.
An infrasound experiment
Infrasound hasn’t been widely used to monitor volcanoes, according to noted volcano expert and SMU geology professor James E. Quick, who is project chief. Infrasound can’t replace seismometers but may help scientists interpret volcanic signals, Quick said.
“This is an experiment to see how much information we can coax out of the infrasound signal,” he said. “My hope is that we’ll see some distinctive signals in the infrasound that will allow us to discriminate the different kinds of eruptive styles — from effusive events that produce lava flows, or small explosive events we call vulcanian eruptions, to the large ‘Plinian’ events of particular concern to aviation. They are certain to have some characteristic sonic signature.”
SMU geologists in recent decades pioneered the use of infrasound to monitor nuclear test-ban compliance, and they continue to advance the technology. For the USGS project, they’ll install equipment on three of the Marianas’ 15 islands. In the event magma begins forcing its way upward, breaking rocks underground and ultimately erupting, seismometers will measure ground vibrations throughout the process, GPS will capture any subtle changes or deformities in the surface of the Earth, and infrasound devices will record sound waves at frequencies too low to be heard by humans. Infrasound waves move slower than the speed of light but can travel for hundreds of miles and easily penetrate the earth as well as other material objects.
Volcanoes active on nine islands
Nine Mariana islands have active volcanoes. On average, the archipelago experiences about one eruption every five years, said Quick, who was previously program coordinator of the USGS Volcano Hazards Program.
Most recently a volcano erupted in 2005 on the island of Anatahan, the largest historical eruption of that volcano, according to the USGS. It expelled some 50 million cubic meters of ash, the USGS reported, noting at the time that the volcanic plume was “widespread over the western Philippine Sea, more than 1300 nautical miles west of Anatahan.” A volcano that erupted on the island of Pagan in 1981 has been showing many signs of unrest, Quick said.
Besides the USGS volcano project, SMU has been active in the Marianas through a memorandum of agreement to help the local government search for alternative energy sources, in particular geothermal.
The Marianas volcano project is part of a larger USGS program that is investing $15.2 million of American Recovery and Reinvestment Act funds to boost existing monitoring of high-risk volcanic areas in partnership with universities and state agencies nationwide.
US military deploying to nearby Guam
In targeting the Marianas, the USGS cited the evacuation of residents from the northern islands after the 1981 eruption on Pagan, as well as the threat to the main island of Saipan and to nearby Guam. A U.S. territory, Guam is expected to be home to about 40,000 U.S. military and support personnel by 2014, including 20,000 Marines and dependents redeployed from Okinawa. The Marines will use the island as a rapid-response platform for both military and humanitarian operations. The military also has proposed using the Northern Marianas for military exercises.
The USGS cited also the threat of volcanic ash plumes to commercial and military planes. Air routes connect Saipan and Guam to Asia and the rest of the Pacific Rim, as well as Northeast Asia to Australia, Indonesia, the Philippines and New Zealand.
Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.
Volcanic ash hazard to aircraft
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick said. Winds carry plumes thousands of miles from the volcanoes, he explained, and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.
Monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.
“Monitoring on the ground gives early warning when an eruption begins, as well as an indication that an eruption might be imminent,” Quick said. “The contribution by the USGS and its university partners for volcano monitoring is to provide that earliest warning — or even a pre-eruption indication — that a volcano is approaching eruption so that the volcanic ash advisory centers can get the word out and alerts can be issued.”
The USGS objective is for infrasound on Saipan, four seismometers on Anatahan, which currently has only one functioning seismometer, two seismometers on Sarigan, and GPS on Anatahan, Sarigan and Saipan.
Safer for residents
Improved monitoring, Quick said, even might allow evacuated islanders to return to their homes — especially understandable for the island of Pagan, given its freshwater lakes, lush forests, black and white sand beaches and abundant fishing.
“A lot of people would like to move back, but it’s considered unsafe absent monitoring,” he said. “If we can establish monitoring networks on these islands, then I think it becomes more practical for people to think about returning. Properly monitored, one should be able to give adequate warning so that people could evacuate.”
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com. Follow SMU Research on Twitter, @smuresearch.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
The Early Cretaceous sauropod Paluxysaurus jonesi weighed 20 tons, was 60 feet long and had a neck 26 feet long, according to the scientists who have prepared the world’s first full skeletal mount of the dinosaur.
The massive Paluxysaurus jonesi, prepared for the Fort Worth Museum of Science and History in Fort Worth, was unveiled Nov. 20 when the museum opened in a new $80 million facility. The Paluxysaurus mount enables Texans to see their state dinosaur in three dimensions for the first time.
The reconstructed skeleton is yielding clues to the biology of the animal and its relationship to other similar dinosaurs, says Dale Winkler, lead consultant for anatomy and posture on the skeletal mount.
Book a live interview
To book a live or taped interview with a researcher in the Roy M. Huffington Department of Earth Sciences in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.
In preparing the mount, Winkler said he was surprised at how extremely long the neck was — at 26 feet — compared to the tail, and he found the head especially striking.
“It was really exciting to see what the head looked like,” Winkler says. “Paluxysaurus had very high cheeks compared to its relatives. Once the bones defining the opening of the nose were connected, it showed that the nostrils were turned up on top of the snout, instead of out like Brachiosaurus.”
Skeletal mount reveals animal’s anatomy, size and stature
A relative of Brachiosaurus and Camarasaurus, Paluxysaurus lived about 110 million to 115 million years ago. The dinosaur was identified and named in 2007 by Peter J. Rose. The Fort Worth skeleton was assembled from a combination of actual fossil bones from at least four different dinosaurs found on private ranch land in North Central Texas and from cast lightweight foam pieces modeled on original bones. The mount enables scientists to better understand the animal’s anatomy, size and stature on questions like “How were the legs situated, and how did the shoulders relate to the hips?”
From the skeletal mount, the scientists learned that Paluxysaurus was more than 6 feet wide and nearly 12 feet tall at the shoulder, although built fairly light, Winkler says. Its teeth are a lot slimmer than those of its closest relatives, indicating Paluxysaurus gathered and processed food differently, using its teeth not for chewing, but to grab food, he says.
Paluxysaurus had a long neck like Brachiosaurus, and a tail almost as long, but wasn’t quite so gigantic. Scientists also learned Paluxysaurus had relatively long front arms, unlike Diplodocus, making its back more level. The dinosaur’s shoulder turned out fairly high, and the hips were wide, Winkler says, and it had reached a more advanced stage of evolution than Late Jurassic sauropods.
Paluxysaurus’ massive pelvis and its sacrum have never before been viewed by the public, he says. Its ilium, the largest bone in the pelvis, is similar to that of titanosaurids of the Late Cretaceous, mainly found in South America. However, one titanosaurid, called Alamosaurus, entered North America and is known from Big Bend National Park in southwest Texas.
The bones assembled for Fort Worth’s Paluxysaurus mount were recovered by students, faculty, staff and hundreds of volunteers over the past 16 years.
DFW’s ancient Cretaceous past included dinosaurs along a shallow sea
Most bones were found in masses of hardened sandstone dug from a Hood County quarry on the private ranch of Bill and Decie Jones.
It took more than a decade to remove the specimens because they were embedded in a hard sandstone matrix, said Louis L. Jacobs, a world-renowned paleontologist, dinosaur fossil hunter and a professor in the Earth Sciences department at SMU. Jacobs helped unearth and prepare the bones.
The end result is a skeleton that is “absolutely awe-inspiring,” Jacobs says. “Paluxysaurus and the plants and animals it lived among show us the truly unique position Texas held in the Cretaceous world. The exhibits at the Fort Worth museum tell that story to the people who now live where the giants used to walk.”
Sauropods weren’t common during the Early Cretaceous. The Fort Worth specimen is morphologically distinct from all other sauropods described and named in North America at that time, according to the research of Rose, who is now a doctoral student at the University of Minnesota. Rose identified the type specimen and named the animal while a graduate student in geology at SMU.
The Paluxysaurus dinosaurs lived near the shore of the rising Cretaceous seas that eventually covered Texas, amid large-trunked conifer trees that are now extinct. The semi-arid environment nurtured relatives of sago palms but few flowering plants, which were just beginning to spread out across the Earth, Winkler says.
The scientists say the Jones Ranch bone bed is one of the richest accumulations of sauropod bones in North America.
A group apparently died together there in a common death, perhaps a forest fire, according to earlier research of Winkler and Rose.
The quarry has produced hundreds of bones, all within an area of 400 square meters. Fossil hunters found 60 to 70 percent of the bones needed to reconstruct a single Paluxysaurus skeleton, says Aaron Pan, curator of the Fort Worth museum. Most of the bones, however, are too fragile or deformed to be mounted 15 feet in the air, Pan says.
“We were happy to have as much of it as we do,” Pan says, noting that the museum welcomes fossil researchers. “Most of our material is available. So if a researcher did want to see any of it, we’d be happy to have them come.”
Huge, multi-year project recreated skeleton with bones and casts
Paleontologists from both the museum and SMU helped exhibit fabricator and model-maker Robert Reid Studios, located near Fort Worth, mount the bones. About 15 percent to 20 percent of the skeleton is actual fossil bone, while the remaining bones are casts, says Pan.
Preparing the fossils for mounting and modeling was a huge, multi-year project. The cast bones were computer modeled using laser scanning, says Michael J. Polcyn, director of the Earth Sciences department’s image analysis lab at SMU.
“I was able to scan available bones in 3D and manipulate them in the computer to remove distortion, create mirrored pieces — for example right or left — and model missing portions,” Polcyn says. “I was then able to use the computer models to produce life-sized physical models of the bones using computer-controlled machining techniques.”
Many of the very large bones remain all or partially embedded in blocks of quarry rock, due primarily to the logistical challenge of removing them. For example, the 11-ton block containing the pelvis and sacrum required hoisting with an industrial crane. For some large blocks, tons of rock were painstakingly cut with diamond-blade saws from around the various bones to make them manageable in the SMU labs, Winkler says.
Rock was partially removed from the pelvis and sacrum so that Polcyn could scan them. The scientists then constructed a model using dense foam that was cut to form the basic shape. Crews from Robert Reid Studios coated them with epoxy resin to give them hardness, then added a layer of bone texture and painted them to match.
In the case of the long neck, much was preserved, but many of the bones were distorted by sediment load, which essentially crushed the bone, Polcyn says. He studied the neck vertebrae and made a model. Only two of the skull bones were recovered: the left maxilla and a nasal bone, which defined the top front of the face. Polcyn worked closely with a sculptor to reconstruct the skull by studying related groups of dinosaurs.
Preparation of the skeletal mount was funded by the Fort Worth Museum of Science and History. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
The Congo Basin — with its massive, lush tropical rain forest — was far different 150 million to 200 million years ago.
At that time Africa and South America were part of the single continent Gondwana. The Congo Basin was arid, with a small amount of seasonal rainfall, and few bushes or trees populated the landscape, according to a new geochemical analysis of rare ancient soils.
“There aren’t a whole lot of terrestrial deposits from that time period preserved in Central Africa,” Myers says. “Scientists have been looking at Africa’s paleoclimate for some time, but data from this time period is unique.”
There are several reasons for the scarcity of deposits: Ongoing armed conflict makes it difficult and challenging to retrieve them; and the thick vegetation, a humid climate and continual erosion prevent the preservation of ancient deposits, which would safeguard clues to Africa’s paleoclimate.
Myers’ research is based on a core sample drilled by a syndicate interested in the oil and mineral deposits in the Congo Basin. Myers accessed the sample — drilled from a depth of more than 2 kilometers — from the Royal Museum for Central Africa in Tervuren, Belgium, where it is housed. With the permission of the museum, he analyzed pieces of the core at the SMU Huffington Department of Earth Science’s Isotope Laboratory.
“I would love to look at an outcrop in the Congo,” Myers says, “but I was happy to be able to do this.”
The Samba borehole, as it’s known, was drilled near the center of the Congo Basin. The Congo Basin today is a closed canopy tropical forest — the world’s second largest after the Amazon. It’s home to elephants, great apes, many species of birds and mammals, as well as the Congo River.
Myers’ results are consistent with data from other low paleolatitude, continental, Upper Jurassic deposits in Africa, and with regional projections of paleoclimate generated by general circulation models, he says.
“It provides a good context for the vertebrate fossils found in Central Africa,” Myers says. “At times, any indications of the paleoclimate are listed as an afterthought, because climate is more abstract. But it’s important because it yields data about the ecological conditions. Climate determines the plant communities, and not just how many, but also the diversity of plants.”
While there was no evidence of terrestrial vertebrates in the deposits Myers studied, dinosaurs were present in Africa at the same time. Their fossils appear in places that were once closer to the coast and probably wetter and more hospitable, he says.
The Belgium samples yielded good evidence of the paleoclimate. Myers found minerals indicative of an extremely arid climate typical of a marshy, saline environment. With the Congo Basin at the center of Gondwana, humid marine air from the coasts would have lost much of its moisture content by the time it reached the interior of the massive continent.
“There probably wouldn’t have been a whole lot of trees; more scrubby kinds of plants,” Myers says.
The clay minerals that form in soils have an isotopic composition related to that of the local rainfall and shallow groundwater. The difference in isotopic composition between these waters and the clay minerals is a function of surface temperature, he says. By measuring the oxygen and hydrogen isotopic values of the clays in the soils, researchers can estimate the temperature at which the clays formed.
Using portable 3D laser technology, scientists have preserved electronically a rare 110 million-year-old fossilized dinosaur footprint that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.
The laser image preserves what is called a “type specimen” footprint — an original track used many years ago to describe a new species of dinosaur, says paleontologist Thomas L. Adams at SMU.
Portable 3D laser scanners capture original fossil morphology and texture, making it possible to use the data for rapid 3D prototyping in foam or resin, Adams says.
The footprint embedded in the bandstand has been exposed to the elements for nearly 75 years, causing portions of it to erode, Adams says. Erosional loss has affected the outer edge of the toes and heel, altering the initial shape of the track impression.
The track of the ichnospecies Eubrontes glenrosensis was excavated in 1933 from a main track layer in a riverbed in what is now 1,500-acre Dinosaur Valley State Park in Somervell County near Glen Rose. Not long after the track was excavated, the citizens of Glen Rose built a stone bandstand and embedded the track within one of its walls.
The track was described in 1935 by Ellis W. Shuler, SMU’s first geology professor.
Adams says the footprint is that of a three-toed, bipedal, meat-eating dinosaur, with the most likely candidate being the theropod named Acrocanthosaurus, found mostly in Texas, North Carolina and Oklahoma.
“The track is scientifically very important,” says Adams, who is earning his doctoral degree in paleontology at SMU. “But it’s also a historical and cultural icon for Texas.”
Dinosaur Valley State Park boasts the ancient shoreline of a 113 million-year-old sea and is renowned for some of the best preserved dinosaur footprints in the world. The bandstand track is a popular draw for tourists passing through Glen Rose, which is one hour southwest of Dallas.
In an effort to preserve the specimen, as well as to compare its present state with the original description, Adams used a portable 3D laser scanner to perform in situ digitization of the track.
The scans were post-processed to generate high-resolution 3D digital models of the track. Finally the models were rendered in various media formats such as Quicktime VR Virtual Reality and Tagged Image File Format for viewing, publication and archival purposes.
Adams will make the raw scan data and industry-standard 3D object files format available for download.
The research demonstrates the advantages of using portable laser scanners to capture field data and create high-resolution, interactive models that can be digitally archived and made accessible to others via the Internet for further research and education.
“It’s a nice way to share scientific data,” Adams says.
Fossil land snail shells found in ancient soils on the subtropical eastern Canary Islands show that the Spanish archipelago off the northwest coast of Africa has become progressively drier over the past 50,000 years.
Isotopic measurements performed on fossil land snail shells resulted in oxygen isotope ratios that suggest the relative humidity on the islands was higher 50,000 years ago, then experienced a long-term decrease to the time of maximum global cooling and glaciation about 15,000 to 20,000 years ago, according to new research by Yurena Yanes, a post-doctoral researcher, and Crayton J. Yapp, a geochemistry professor, both in the Roy M. Huffington Department of Earth Sciences at SMU.
With subsequent post-glacial climatic fluctuations, relative humidity seems to have oscillated somewhat, but finally decreased even further to modern values.
Consequently the eastern Canary Islands experienced an overall increase in dryness during the last 50,000 years, eventually yielding the current semiarid conditions. Today the low-altitude eastern islands are characterized by low annual rainfall and a landscape of short grasses and shrubs, Yanes says.
The research advances understanding of the global paleoclimate during an important time in human evolution, when the transition from gathering and hunting to agriculture first occurred in the fertile Middle East and subsequently spread to Asia, North Africa and Europe.
“In the Canary Archipelago, land snails are one of the rare ‘continuous’ records of paleoclimatic conditions over the last 50,000 years,” Yanes says. “The results of this study are of great relevance to biologists and paleontologists investigating the evolution of plants and animals linked to climatic fluctuation in the Islands.”
The researchers’ isotopic evidence reflects changing atmospheric and oceanic circulation associated with the waxing, waning and subsequent disappearance over the past 50,000 years of vast ice sheets at mid- to high latitudes on the continents of the Northern Hemisphere.
The research also is consistent with the observed decline in diversity of the highly moisture-sensitive land snails.
Land snail shells are abundant and sensitive to environmental change and as fossils they are well-preserved. Measurement of variations in oxygen isotope ratios of fossil shells can yield information about changes in ancient climatic conditions.
The shells are composed of the elements calcium, oxygen and carbon, which are combined to form a mineral known as aragonite. Oxygen atoms in aragonite are not all exactly alike. A small proportion of those atoms is slightly heavier than the majority, and these heavier and lighter forms of oxygen are called isotopes of oxygen.
Small changes in the ratio of heavy to light isotopes can be measured with a high degree of accuracy and precision. Variations in these ratios are related to climatic variables, including relative humidity, temperature and the oxygen isotope ratios of rainwater and water vapor in the environments in which land snails live.
Yanes presented the research at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21.
The research was funded by the government of Spain’s Ministry of Science and Innovation and the National Science Foundation.