Categories
Culture, Society & Family Mind & Brain Researcher news SMU In The News

Psychology Today: Empathic People Use Social Brain Circuitry to Process Music

High-empathy people process music using their social cognitive circuitry.

Christopher Bergland for Psychology Today covered the research of Zachary Wallmark, an assistant professor in the SMU Meadows School of the Arts. Wallmark’s study with researchers at UCLA found that people with higher empathy differ from others in the way their brains process music.

The SMU-UCLA study is the first to find evidence supporting a neural account of the music-empathy connection. Also, it is among the first to use functional magnetic resonance imaging (fMRI) to explore how empathy affects the way we perceive music.

The researchers found that compared to low empathy people, those with higher empathy process familiar music with greater involvement of the reward system of the brain, as well as in areas responsible for processing social information.

“This may indicate that music is being perceived weakly as a kind of social entity, as an imagined or virtual human presence,” Wallmark has said. He is director of the MuSci Lab at SMU, an interdisciplinary research collective that studies — among other things — how music affects the brain.

The Psychology Today article published June 18, 2018.

Read the full article.

EXCERPT:

By Christopher Bergland
Psychology Today

Those who deeply grasp the pain or joy of other people and display “higher empathic concern” process music differently in their brains, according to a new study by researchers at Southern Methodist University and UCLA. Their paper, “Neurophysiological Effects of Trait Empathy in Music Listening,” was recently published in the journal Frontiers in Behavioral Neuroscience.

As you can see by looking at the images at the top of the page and to the left, the SMU-UCLA researchers used fMRI neuroimaging to pinpoint specific brain areas that light up when people with varying degrees of trait empathy listen to music. Notably, the researchers found that higher empathy people process music as if it’s a pleasurable proxy for real-world human encounters and show greater involvement of brain regions associated with reward systems and social cognitive circuitry.

In the field of music psychology, there is a growing body of evidence suggesting that varying degrees of trait empathy are linked to how intensely someone responds emotionally to music, his or her listening style, and overall musical preferences.

For example, recent studies have found that high-empathy people are more likely to enjoy “beautiful but sad” music. Additionally, high empathizers seem to get more intense pleasure from listening to music in general, as indicated by robust activation of their reward system in the fMRI.

The latest research on the empathy-music connection was conceived, designed, and led by Zachary Wallmark, who is a musicologist and assistant professor in the SMU Meadows School of the Arts. In 2014, Wallmark received his PhD from UCLA. He currently serves as director of the MuSci Lab, which is an interdisciplinary research collective and lab facility dedicated to the empirical study of music. Below is a YouTube clip of Wallmark describing his latest research:

Read the full article.

Categories
Culture, Society & Family Mind & Brain Researcher news SMU In The News

KERA: Empathetic People Experience Music Differently, SMU Study Finds

“This study contributes to a growing body of evidence that music processing may piggyback upon cognitive mechanisms that originally evolved to facilitate social interaction.” — Zachary Wallmark, SMU

KERA journalist Justin Martin covered the research of Zachary Wallmark, an assistant professor in the SMU Meadows School of the Arts. Wallmark’s study with researchers at UCLA found that people with higher empathy differ from others in the way their brains process music.

The SMU-UCLA study is the first to find evidence supporting a neural account of the music-empathy connection. Also, it is among the first to use functional magnetic resonance imaging (fMRI) to explore how empathy affects the way we perceive music.

The researchers found that compared to low empathy people, those with higher empathy process familiar music with greater involvement of the reward system of the brain, as well as in areas responsible for processing social information.

“This may indicate that music is being perceived weakly as a kind of social entity, as an imagined or virtual human presence,” Wallmark has said. He is director of the MuSci Lab at SMU, an interdisciplinary research collective that studies — among other things — how music affects the brain.

Listen to the KERA interview, which aired June 20, 2018.

EXCERPT:

By Justin Martin
KERA News

A new study from Southern Methodist University shows that empathetic people — those who are generally more sensitive to the feelings of others — receive more pleasure from listening to music, and their brains show increased activity in areas associated with social interactions.

Researchers interviewed participants about their taste in music — songs they loved and others they hated. Then, participants were put into an MRI scanner and played different selections, including unfamiliar tunes, and researchers studied how their brain reacted to them.

All participants experienced positive activity in the brain when listening to music they loved, says Zachary Wallmark, an assistant professor of musicology at SMU, who led the study. This activity increased for empathetic people.

When played unfamiliar music they didn’t like, empathetic participants still showed activity in the dorsolateral prefrontal cortex of the brain, an area associated with executive control and regulation of emotional reactions, Wallmark says.

“What this suggested to us is that these empathic people are hearing new music…and they tell us they dislike it after the fact…but they might be deliberately trying to ratchet down their negative reaction, maybe give more of the benefit of the doubt to this new music, even though they find it highly aversive,” Wallmark said.

Listen to the KERA interview.

Categories
Feature Health & Medicine Mind & Brain Researcher news Videos

Mild problem-solving task improves brain function after a concussion, new study suggests

A simple cognitive task as early as four days after a brain injury activates the region that improves memory function, and may guard against developing depression or anxiety

Concern is growing about the danger of sports-related concussions and their long-term impact on athletes. But physicians and healthcare providers acknowledge that the science is evolving, leaving questions about rehabilitation and treatment options.

Currently, guidelines recommend that traumatic brain injury patients get plenty of rest and avoid physical and cognitive activity until symptoms subside.

But a new pilot study looking at athletes with concussions suggests total inactivity may not be the best way to recover after all, say scientists at Southern Methodist University, Dallas, where the research was conducted.

The study found that a simple cognitive task as early as four days after a brain injury activated the region that improves memory function and can guard against two hallmarks of concussion — depression and anxiety.

“Right now, if you have a concussion the directive is to have complete physical and cognitive rest, no activities, no social interaction, to let your brain rest and recover from the energy crisis as a result of the injury,” said SMU physiologist Sushmita Purkayastha, who led the research, which was funded by the Texas Institute for Brain Injury and Repair at UT Southwestern Medical Center, Dallas.

“But what we saw, the student athletes came in on approximately the third day of their concussion and the test was not stressful for them. None of the patients complained about any symptom aggravation as a result of the task. Their parasympathetic nervous system — which regulates automatic responses such as heart rate when the body is at rest — was activated, which is a good sign,” said Purkayastha, an assistant professor in the Department of Applied Physiology and Wellness.

The parasympathetic nervous system is associated with better memory function and implicated in better cardiovascular function. It also helps to regulates stress, depression and anxiety — and those are very common symptoms after a concussion.

“People in the absolute rest phase after concussion often experience depression,” Purkayastha added. “In the case of concussion, cutting people off from their social circle when we say ‘no screen time’ — particularly the young generation with their cell phones and iPads — they will just get more depressed and anxious. So maybe we need to rethink current rehabilitation strategy.”

The new study addresses the lack of research upon which to develop science- and data-based treatment for concussion. The findings emerged when the research team measured variations in heart rate variability among athletes with concussions while responding to simple problem-solving and decision-making tasks.

While we normally think of our heart rate as a steady phenomenon, in actuality the interval varies and is somewhat irregular — and that is desirable and healthy. High heart rate variability is an indicator of sound cardiovascular health. Higher levels of variability indicate that physiological processes are better controlled and functioning as they should, such as during stressful (both physical and challenging mental tasks) or emotional situations.

Concussed athletes normally have lowered heart rate variability.

For the new study, Purkayastha and her team administered a fairly simple cognitive task to athletes with concussions. During the task, the athletes recorded a significant increase in heart rate variability.

The study is the first of its kind to examine heart rate variability in college athletes with concussions during a cognitive task.

The findings suggest that a small measure of brain work could be beneficial, said co-investigator and neuro-rehabilitation specialist Kathleen R. Bell, a physician at UT Southwestern.

“This type of research will change fundamentally the way that patients with sports and other concussions are treated,” said Bell, who works with brain injury patients and is Chair of Physical Medicine and Rehabilitation at UT Southwestern. “Understanding the basic physiology of brain injury and repair is the key to enhancing recovery for our young people after concussion.”

The researchers reported their findings in the peer-reviewed Journal of Head Trauma Rehabilitation, in the article “Reduced resting and increased elevation of heart rate variability with cognitive task performance in concussed athletes.”

Co-authors from SMU Simmons School include Mu Huang and Justin Frantz; Peter F. Davis and Scott L. Davis, from SMU’s Department of Applied Physiology and Wellness; Gilbert Moralez, Texas Health Presbyterian Hospital, Dallas; and Tonia Sabo, UT Southwestern.

Concussion symptom improved with simple brain activity
Volunteer subjects for the study were 46 NCAA Division I and recreational athletes who participate in contact-collision sports. Of those, 23 had a physician-diagnosed sports-related concussion in accordance with NCAA diagnostic criteria. Each of them underwent the research testing within approximately three to four days after their injury.

Not surprisingly, compared to the athletes in the control group who didn’t have concussions, the athletes with concussions entered answers that were largely incorrect.

More importantly, though, the researchers observed a positive physiological response to the task in the form of increased heart rate variability, said Purkayastha.

“It’s true that the concussed group gave wrong answers for the most part. More important, however, is the fact that during the task their heart rate variability improved,” she said. “That was most likely due to the enhancement of their brain activity, which led to better regulation. It seems that engaging in a cognitive task is crucial for recovery.”

Heart rate variability is a normal physiological process of the heart. It makes possible a testing method as noninvasive as taking a patient’s blood pressure, pulse or temperature. In the clinical field, measuring heart rate variability is an increasingly common screening tool to see if involuntary responses in the body are functioning and being regulated properly by the autonomic nervous system.

The parasympathetic is blunted or dampened by concussion
Abnormal fluctuations in heart rate variability are associated with certain conditions before symptoms are otherwise noticeable.

Monitoring heart rate variability measures the normal synchronized contractions of the heart’s atriums and ventricles in response to natural electrical impulses that rhythmically move across the muscles of the heart.

After a concussion, an abnormal and unhealthy decline in heart rate variability is observed in the parasympathetic nervous system, a branch of the autonomic nervous system. The parasympathetic is in effect blunted or dampened after a concussion, said Purkayastha.

As expected, in the current study, heart rate variability was lower among the athletes with concussions than those without.

New findings add evidence suggesting experts rethink rehab
But that changed during the simple cognitive task. For the athletes with concussions, their heart rate variability increased, indicating the parasympathetic nervous system was activated by the task.

Heart rate variability between the concussed and the controls was comparable during the cognitive task, the researchers said in their study.

“This suggests that maybe we need to rethink rehabilitation after someone has a concussion,” Purkayastha said. — Margaret Allen, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Videos

People who deeply grasp the pain or happiness of others also process music differently in the brain

Higher empathy people appear to process music like a pleasurable proxy for a human encounter — in the brain regions for reward, social awareness and regulation of social emotions.

People with higher empathy differ from others in the way their brains process music, according to a study by researchers at Southern Methodist University, Dallas and UCLA.

The researchers found that compared to low empathy people, those with higher empathy process familiar music with greater involvement of the reward system of the brain, as well as in areas responsible for processing social information.

“High-empathy and low-empathy people share a lot in common when listening to music, including roughly equivalent involvement in the regions of the brain related to auditory, emotion, and sensory-motor processing,” said lead author Zachary Wallmark, an assistant professor in the SMU Meadows School of the Arts.

But there is at least one significant difference.

Highly empathic people process familiar music with greater involvement of the brain’s social circuitry, such as the areas activated when feeling empathy for others. They also seem to experience a greater degree of pleasure in listening, as indicated by increased activation of the reward system.

“This may indicate that music is being perceived weakly as a kind of social entity, as an imagined or virtual human presence,” Wallmark said.

Researchers in 2014 reported that about 20 percent of the population is highly empathic. These are people who are especially sensitive and respond strongly to social and emotional stimuli.

The SMU-UCLA study is the first to find evidence supporting a neural account of the music-empathy connection. Also, it is among the first to use functional magnetic resonance imaging (fMRI) to explore how empathy affects the way we perceive music.

The new study indicates that among higher-empathy people, at least, music is not solely a form of artistic expression.

“If music was not related to how we process the social world, then we likely would have seen no significant difference in the brain activation between high-empathy and low-empathy people,” said Wallmark, who is director of the MuSci Lab at SMU, an interdisciplinary research collective that studies — among other things — how music affects the brain.

“This tells us that over and above appreciating music as high art, music is about humans interacting with other humans and trying to understand and communicate with each other,” he said.

This may seem obvious.

“But in our culture we have a whole elaborate system of music education and music thinking that treats music as a sort of disembodied object of aesthetic contemplation,” Wallmark said. “In contrast, the results of our study help explain how music connects us to others. This could have implications for how we understand the function of music in our world, and possibly in our evolutionary past.”

The researchers reported their findings in the peer-reviewed journal Frontiers in Behavioral Neuroscience, in the article “Neurophysiological effects of trait empathy in music listening.”

The co-authors are Choi Deblieck, with the University of Leuven, Belgium, and Marco Iacoboni, UCLA. The research was carried out at the Ahmanson-Lovelace Brain Mapping Center at UCLA.

“The study shows on one hand the power of empathy in modulating music perception, a phenomenon that reminds us of the original roots of the concept of empathy — ‘feeling into’ a piece of art,” said senior author Marco Iacoboni, a neuroscientist at the UCLA Semel Institute for Neuroscience and Human Behavior.

“On the other hand,” Iacoboni said, “the study shows the power of music in triggering the same complex social processes at work in the brain that are at play during human social interactions.”

Comparison of brain scans showed distinctive differences based on empathy
Participants were 20 UCLA undergraduate students. They were each scanned in an MRI machine while listening to excerpts of music that were either familiar or unfamiliar to them, and that they either liked or disliked. The familiar music was selected by participants prior to the scan.

Afterward each person completed a standard questionnaire to assess individual differences in empathy — for example, frequently feeling sympathy for others in distress, or imagining oneself in another’s shoes.

The researchers then did controlled comparisons to see which areas of the brain during music listening are correlated with empathy.

Analysis of the brain scans showed that high empathizers experienced more activity in the dorsal striatum, part of the brain’s reward system, when listening to familiar music, whether they liked the music or not.

The reward system is related to pleasure and other positive emotions. Malfunction of the area can lead to addictive behaviors.

Empathic people process music with involvement of social cognitive circuitry
In addition, the brain scans of higher empathy people in the study also recorded greater activation in medial and lateral areas of the prefrontal cortex that are responsible for processing the social world, and in the temporoparietal junction, which is critical to analyzing and understanding others’ behaviors and intentions.

Typically, those areas of the brain are activated when people are interacting with, or thinking about, other people. Observing their correlation with empathy during music listening might indicate that music to these listeners functions as a proxy for a human encounter.

Beyond analysis of the brain scans, the researchers also looked at purely behavioral data — answers to a survey asking the listeners to rate the music afterward.

Those data also indicated that higher empathy people were more passionate in their musical likes and dislikes, such as showing a stronger preference for unfamiliar music.

Precise neurophysiological relationship between empathy and music is largely unexplored
A large body of research has focused on the cognitive neuroscience of empathy — how we understand and experience the thoughts and emotions of other people. Studies point to a number of areas of the prefrontal, insular, and cingulate cortices as being relevant to what brain scientists refer to as social cognition.

Studies have shown that activation of the social circuitry in the brain varies from individual to individual. People with more empathic personalities show increased activity in those areas when performing socially relevant tasks, including watching a needle penetrating skin, listening to non-verbal vocal sounds, observing emotional facial expressions, or seeing a loved one in pain.

In the field of music psychology, a number of recent studies have suggested that empathy is related to intensity of emotional responses to music, listening style, and musical preferences — for example, empathic people are more likely to enjoy sad music.

“This study contributes to a growing body of evidence,” Wallmark said, “that music processing may piggyback upon cognitive mechanisms that originally evolved to facilitate social interaction.” — Margaret Allen, SMU

Categories
Earth & Climate Events Feature Fossils & Ruins Learning & Education Plants & Animals Researcher news Student researchers

Ancient “Sea Monsters” Reveal How the Ever-Changing Planet Shapes Life, Past and Present

Never-Before-Seen Fossils From Angola Bring a Strange Yet Familiar Ocean Into View

The Smithsonian’s National Museum of Natural History will open a new exhibition Nov. 9, 2018 revealing how millions of years ago, large-scale natural forces created the conditions for real-life sea monsters to thrive in the South Atlantic Ocean basin shortly after it formed. “Sea Monsters Unearthed: Life in Angola’s Ancient Seas” will offer visitors the opportunity to dive into Cretaceous Angola’s cool coastal waters, examine the fossils of striking marine reptiles that once lived there and learn about the forces that continue to mold life in the ocean and on land.

Over 134 million years ago, the South Atlantic Ocean basin did not yet exist. Africa and South America were one contiguous landmass on the verge of separating. As the two continents drifted apart, an entirely new marine environment — the South Atlantic — emerged in the vast space created between them. This newly formed ocean basin would soon be colonized by a dizzying array of ferocious predators and an abundance of other lifeforms seizing the opportunity presented by a new ocean habitat.

“Because of our planet’s ever-shifting geology, Angola’s coastal cliffs contain the fossil remains of marine creatures from the prehistoric South Atlantic,” said Kirk Johnson, the Sant Director of the museum. “We are honored by the generosity of the Angolan people for sharing a window into this part of the Earth’s unfolding story with our visitors.”

For the first time, Angolan fossils of colossal Cretaceous marine reptiles will be on public display. Through Projecto PaleoAngola — a collaboration between Angolan, American, Portuguese and Dutch researchers focused on Angola’s rich fossil history — paleontologists excavated and studied these fossils, which were then prepared for the exhibition by a team of scientists and students at Southern Methodist University (SMU) in Dallas. The exhibition was made possible by the Sant Ocean Hall Endowment Fund.

“Fossils tell us about the life that once lived on Earth, and how the environments that came before us evolve over time,” said Louis Jacobs, professor emeritus of paleontology at SMU and collaborating curator for the exhibition. “Our planet has been running natural experiments on what shapes environments, and thereby life, for millions of years. If it weren’t for the fossil record, we wouldn’t understand what drives the story of life on our planet.”

The exhibition will immerse visitors in this Cretaceous environment with lively animations and vivid paleoart murals of life beneath the waves — courtesy of natural history artist Karen Carr — that bring to life 11 authentic fossils from Angola’s ancient seas, full-size fossil reconstructions of a mosasaur and an ancient sea turtle, as well as 3-D scanned replicas of mosasaur skulls. Photomurals and video vignettes will transport visitors to field sites along Angola’s modern rugged coast, where Projecto PaleoAngola scientists unearth the fossil remains from this lost world.

A Strange but Familiar Ocean
“Sea Monsters Unearthed” paints the picture of a flourishing ocean environment that in some ways will look strange to modern eyes, yet still bears striking similarities to today’s marine ecosystems.

Peculiar plesiosaurs — massive reptiles with long necks, stout bodies and four large flippers — swam alongside 27-foot-long toothy marine lizards called mosasaurs and more familiar creatures like sea turtles. From surprising mosasaur stomach contents to the one of the oldest known sea turtles found in Africa, fossils and reconstructions of these species will offer visitors a fuller picture of their remarkable life histories and the ecosystems they were a part of.

The exhibition will also explore deeper similarities across the ecology and anatomy of ocean animals then and now. After the marine reptiles that dominated these waters went extinct 66 million years ago, modern marine mammals would not only later replace them as top predators in the world’s ocean, but also converge on many of the same body shapes and survival strategies.

The Forces That Shape Life, Then and Now
This unique period in Earth’s history reveals how key geologic and environmental forces contributed to the early establishment and evolution of life in the South Atlantic. As Africa and South America drifted apart and a new ocean basin formed, trade winds blowing along the new Angolan coastline created the conditions for upwelling, an ocean process that drives the circulation of nutrients from the deep ocean to its surface. These nutrients in turn jump-started the food web that attracted the ferocious marine reptile predators featured throughout the exhibition.

Just as tectonic forces helped create this Cretaceous marine environment, they also shaped the arid coastal cliffs where the fossils are found today. Starting 45,000 years ago, a geologic process called uplift caused Earth’s crust to bulge along Angola’s coast, lifting part of the seafloor out of the water — and along with it, the layers upon layers of fossil-filled rocks where Projecto PaleoAngola scientists work.

Though humans do not operate on a tectonic scale, their actions also have major impacts on ocean life. Humans are now the ocean’s top predators, with one-fifth of the world’s population relying on food from upwelling-based ecosystems. Scientists caution that with such great pressure on modern upwelling-based fisheries, overfishing could change the future of life in the ocean by threatening fish populations, marine ecosystems and even human health. — National Museum of Natural History

About the National Museum of Natural History
The National Museum of Natural History is connecting people everywhere with Earth’s unfolding story. The museum is one of the most visited natural history museums in the world with approximately 7 million annual visitors from the U.S. and around the world. Opened in 1910, the museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It is open daily from 10 a.m. to 5:30 p.m. (closed Dec. 25). Admission is free. For more information, visit the museum on its website and on Facebook and Twitter.

Categories
Culture, Society & Family Feature Health & Medicine Researcher news SMU In The News Student researchers

SAPIENS: Why Aid Remains Out of Reach for Some Rohingya Refugees

Even with the right to health care secured, medical assistance is elusive for urban refugees in India.

The anthropology publication SAPIENS has published an article by SMU doctoral candidate Ashvina Patel.

SAPIENS is an editorially independent publication of the Wenner-Gren Foundation for Anthropological Research Inc., which is dedicated to popularizing anthropology to a broad audience.

The article, “Why Aid Remains Out of Reach for Some Rohingya Refugees,” published May 17, 2018.

The article resulted from Patel’s 11-month stay in New Delhi, India, in which she interviewed residents of three urban refugee settlements. The purpose was to understand how issues of geopolitics and domestic policy inform various types of human insecurity for refugees.

Patel is currently a visiting student fellow at Oxford University’s Refugee Studies Centre, where she is developing further publications on Rohingya refugee displacement.

She is a doctoral candidate in SMU’s Department of Anthropology. Patel holds an M.A. degree in Cultural Anthropology from SMU and an M.A. in Religion from University of Hawaii, Manoa. As a doctoral student, her research focuses on issues of human insecurity among Rohingya refugees in the context of American resettlement as well as within New Delhi, India as urban refugees. Her research work focuses specifically on defining the subjective experience of human insecurity and how various forms of insecurity are informed by statelessness.

Patel is a student of SMU anthropology professor Caroline Brettell, an internationally recognized immigration expert and Ruth Collins Altshuler Professor and Director of the Interdisciplinary Institute. Brettell is a member of the American Academy of Arts and Sciences.

A private operating foundation, Wenner-Gren is dedicated to the advancement of anthropology throughout the world. Located in New York City, it is one of the major funding sources for international anthropological research and is actively engaged with the anthropological community through its varied grant, fellowship, networking, conference and symposia programs.

It founded and continues to publish the international journal Current Anthropology, and disseminates the results of its symposia through open-access supplementary issues of this journal. The Foundation works to support all branches of anthropology and closely related disciplines concerned with human biological and cultural origins, development, and variation.

Read the full article.

EXCERPT:

From the field notes
of SMU PhD candidate Ashvina Patel

Ameena (a pseudonym) is a 25-year-old Rohingya refugee in New Delhi, India, who is seven months pregnant with twins. Her face is gaunt. Often there isn’t enough food at home for her family of five. Nestled among other shanty houses, her home is made of bamboo with scrap boards as paneling; a tattered piece of cloth serves as the front door. Recently, the monsoon rains caused her to slip and fall. Now one of the babies in her womb is not moving. She knows she needs to see a doctor, but she cannot afford one.

When Ameena fled acts of genocide perpetrated by her own government of Myanmar in 2012, she and her husband came to New Delhi. They both suffer from debilitating deformities due to polio, and they heard that the United Nations High Commissioner for Refugees (UNHCR) office in New Delhi was helping Rohingya refugees. The UNHCR partners with the Indian government to provide free aid to help people obtain an education, a livelihood, and health care.

But as Ameena and others would learn, being offered access to aid isn’t always enough. Barriers to procuring those free resources often leave urban refugees to fend for themselves; many find they have to negotiate a system that inadvertently creates obstacles to reaching that aid.

Having spent 11 months with the Rohingya community in India from 2015 to 2017, I repeatedly saw how aid missed its intended target. As the UNHCR creates solutions to challenges that refugees face, these solutions can also serve as a catalyst for new obstacles or deepen already existing insecurities by creating additional barriers that are financial, linguistic, cultural, or exploitative. The UNHCR does a lot of good, but the organization could do a better job addressing challenges refugees face in accessing the services to which they are permitted.

Read the full article.

Categories
Earth & Climate Energy & Matter Feature Researcher news Student researchers Videos

SMU physicist and her students join national laboratories, other universities in high-stakes hunt for elusive dark matter

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors.” — Jodi Cooley

SMU physicist Jodi Cooley is a member of the international scientific team that will use a powerful new tool to understand one of the biggest mysteries of modern physics.

The U.S. Department of Energy has approved funding and start of construction for SuperCDMS SNOLAB, a $34 million experiment designed to detect dark matter.

SuperCDMS will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs.

“Understanding the nature of dark matter is one of the most important scientific puzzles in particle astrophysics today,” said Cooley, an associate professor of experimental particle physics. “The experiment will have unprecedented sensitivity to dark matter particles that are hypothesized to have very low mass and interact very rarely. So they are extremely challenging to detect. This challenge has required us to develop cutting edge detectors.”

Cooley is one of 111 scientists from 26 institutions in the SuperCDMS collaboration. SMU graduate students on the experiment include Matt Stein (Ph.D. ’18) and Dan Jardin; and also previously Hang Qiu (Ph.D. ’17).

Physicists are searching for dark matter because although it makes up the bulk of the universe it remains a mystery. They theorize that dark matter could be composed of dark matter particles, with WIMPs a top contender for the title.

If dark matter WIMP particles exist, they would barely interact with their environment and fly right through regular matter. However, every so often, they could collide with an atom of our visible world, and dark matter researchers are looking for these rare interactions.

The SuperCDMS experiment will be the world’s most sensitive for detecting the relatively light WIMPs.

Cooley and her students in the SMU Department of Physics have been working with Washington-based Pacific Northwest National Laboratory on the challenge of background control and material selection for the experiment’s WIMP detectors.

Understanding background signals in the experiment is a major challenge for the detection of the faint WIMP signals.

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors,” Cooley said. “As such, the experiment is constructed from radiopure materials that are carefully characterized through a screening and assay before they are selected.”

The SMU research team also has performed simulations of background particles in the detectors.

“Doing this helps inform the design of the experiment shield,” Cooley said. “We want to select the right materials to use in construction of the experiment. For example, materials that are too high in radioactivity will produce background particles that might produce fake dark matter signals in our detectors. We are extremely careful to use materials that block background particles. We also take great care that the material we use to hold the detectors in place — copper — is very radiopure.”

The experiment will be assembled and operated within the existing Canadian laboratory SNOLAB – 6,800 feet underground inside a nickel mine near the city of Sudbury. That’s the deepest underground laboratory in North America.

The experiment’s detectors will be protected from high-energy particles, called cosmic radiation, which can create the unwanted background signals that Cooley’s team wants to prevent.

SuperCDMS SNOLAB will be 50 times more sensitive than predecessor
Scientists know that visible matter in the universe accounts for only 15 percent of all matter. The rest is the mysterious substance called dark matter.

Due to its gravitational pull on regular matter, dark matter is a key driver for the evolution of the universe, affecting the formation of galaxies like our Milky Way. It therefore is fundamental to our very own existence.

The SuperCDMS SNOLAB experiment will be at least 50 times more sensitive than its predecessor, exploring WIMP properties that can’t be probed by other experiments.

The search will be done using silicon and germanium crystals, in which the collisions would trigger tiny vibrations. However, to measure the atomic jiggles, the crystals need to be cooled to less than minus 459.6 degrees Fahrenheit — a fraction of a degree above absolute zero temperature.

The ultra-cold conditions give the experiment its name: Cryogenic Dark Matter Search, or CDMS. The prefix “Super” indicates an increased sensitivity compared to previous versions of the experiment.

Experiment will measure “fingerprints” left by dark matter
The collisions would also produce pairs of electrons and electron deficiencies that move through the crystals, triggering additional atomic vibrations that amplify the signal from the dark matter collision. The experiment will be able to measure these “fingerprints” left by dark matter with sophisticated superconducting electronics.

Besides Pacific Northwest National Laboratory, two other Department of Energy national labs are involved in the project.

SLAC National Accelerator Laboratory in California is managing the construction project. SLAC will provide the experiment’s centerpiece of initially four detector towers, each containing six crystals in the shape of oversized hockey pucks. SLAC built and tested a detector prototype. The first tower could be sent to SNOLAB by the end of 2018.

Fermi National Accelerator Laboratory is working on the experiment’s intricate shielding and cryogenics infrastructure.

“Our experiment will be the world’s most sensitive for relatively light WIMPs,” said Richard Partridge, head of the SuperCDMS group at the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of SLAC and Stanford University. “This unparalleled sensitivity will create exciting opportunities to explore new territory in dark matter research.”

Close-knit network of strong partners is crucial to success
Besides SMU, a number of U.S. and Canadian universities also play key roles in the experiment, working on tasks ranging from detector fabrication and testing to data analysis and simulation. The largest international contribution comes from Canada and includes the research infrastructure at SNOLAB.

“We’re fortunate to have a close-knit network of strong collaboration partners, which is crucial for our success,” said Project Director Blas Cabrera from KIPAC. “The same is true for the outstanding support we’re receiving from the funding agencies in the U.S. and Canada.”

Funding is from the DOE Office of Science, $19 million, the National Science Foundation, $12 million, and the Canada Foundation for Innovation, $3 million.

SuperCDMS to search for dark matter in entirely new region
“Together we’re now ready to build an experiment that will search for dark matter particles that interact with normal matter in an entirely new region,” said SuperCDMS spokesperson Dan Bauer, Fermilab.

SuperCDMS SNOLAB will be the latest in a series of increasingly sensitive dark matter experiments. The most recent version, located at the Soudan Mine in Minnesota, completed operations in 2015.

”The project has incorporated lessons learned from previous CDMS experiments to significantly improve the experimental infrastructure and detector designs for the experiment,” said SLAC’s Ken Fouts, project manager for SuperCDMS SNOLAB. “The combination of design improvements, the deep location and the infrastructure support provided by SNOLAB will allow the experiment to reach its full potential in the search for low-mass dark matter.” — SLAC National Laboratory; and Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Student researchers Videos

WFAA Verify: Is West Texas sinking?

A new research report, from Southern Methodist University and funded by NASA, found a “…large swath of West Texas oil patch is heaving and sinking at alarming rates.”

WFAA-TV Channel 8’s Verify journalist David Schechter covered the phenomenon of the ground sinking at alarming rates in West Texas, according to the research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences.

The Dedman College researchers are co-authors of a new analysis using satellite radar images that discovered decades of oil production activity in West Texas have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks.

Schechter’s WFAA ABC report, “Verify: Is West Texas sinking?” aired April 18, 2018.

Lu and Kim reported their findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

The researchers analyzed satellite radar images that were made public by the European Space Agency, and supplemented that with oil activity data from the Railroad Commission of Texas.

The study is among the first of its kind to identify small-scale deformation signals over a vast region by drawing from big data sets spanning a number of years and then adding supplementary information.

The research is supported by the NASA Earth Surface and Interior Program, and the Shuler-Foscue Endowment at SMU.

An earlier study by the researchers revealed significant ground movement of two giant sinkholes near Wink, Texas. The SMU geophysicists found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

Watch the WFAA Verify news segment.

EXCERPT:

By David Schechter
WFAA-TV Verify

A new research report, from Southern Methodist University and funded by NASA, found a “…large swath of West Texas oil patch is heaving and sinking at alarming rates.”

To find out if West Texas is sinking, first I’m going to the guy who wrote the report, Dr. Zhong Lu. He’s a geophysicist who studies the earth using satellites.

By shooting a radar beam from space — like a measuring stick — a satellite can calculate elevation changes down to the centimeter. Lu did that over a 4000 square mile area.

“This area is sinking at half meter per year,” Dr. Lu says.

That’s more than a foot-and-a-half. Lu says, that’s alarming because that much change to the earth’s surface might normally take millions of years.

One of the images in his reports shows an area of sinking earth, near Wink, TX from 2011. Five years later, the satellite shows the sunken area had spread almost 240%.

“In this area that you are studying, is oil and gas the cause of the sinking?” I ask.

“Related to the oil and gas activities,” he says.

“Oil and gas activity is causing the sinking in West Texas?” I clarify.

“Yes,” he says.

Watch the WFAA Verify news segment.

Categories
Events Feature Learning & Education Researcher news Slideshows Student researchers Videos

SMU students share their research at SMU Research Day 2018

SMU Research Day 2018 featured posters and abstracts from 160 student entrants who have participated this academic year in faculty-led research, pursued student-led projects, or collaborated on team projects with graduate students and faculty scientists.

SMU strongly encourages undergraduate students to pursue research projects as an important component of their academic careers, while mentored or working alongside SMU graduate students and faculty.

Students attack challenging real-world problems, from understanding the world’s newest particle, the Higgs Boson, or preparing mosasaur fossil bones discovered in Angola, to hunting for new chemical compounds that can fight cancer using SMU’s high performance ManeFrame supercomputer.

A highlight for student researchers is SMU Research Day, organized and sponsored by the Office of Research and Graduate Studies and which was held this year on March 28-29 in the Hughes-Trigg Student Center.

The event gives students the opportunity to foster communication between students in different disciplines, present their work in a professional setting, and share the outstanding research conducted at SMU.

Find out the winners of the poster session from the SMU Office of Graduate Studies.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Student researchers

The Guardian: Texas sinkholes — oil and gas drilling increases threat, scientists warn

Ground rising and falling in region that has been ‘punctured like a pin cushion’ since the 1940s, new study finds.

The Guardian and other news outlets covered the West Texas sinkhole and ground movement research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences at SMU.

The Dedman College researchers are co-authors of a new analysis using satellite radar images that shows decades of oil production activity in West Texas have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks.

An earlier study by the researchers revealed significant ground movement of two giant sinkholes near Wink, Texas. The SMU geophysicists found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

The Guardian article by journalist Tom Dart was published March 27, 2018, “Texas sinkholes: oil and gas drilling increases threat, scientists warn.”

Other coverage includes articles by Forbes, Tech Times, Phys.org, Ecowatch, Fox San Antonio, The Dallas Morning News and the Texas Tribune.

Others include EarthSky.org, Live Science, KERA News, San Antonio Express, Houston Chronicle, Science Daily, The Energy Mix, Digital Journal, Homeland Security News Wire and the Science Bulletin.

Lu is world-renowned for leading scientists in InSAR applications, short for a technique called interferometric synthetic aperture radar, to detect surface changes that aren’t visible to the naked eye. Lu is a member of the Science Definition Team for the dedicated U.S. and Indian NASA-ISRO InSAR mission, set for launch in 2020 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A. Sentinel-1A was launched in April 2014 as part of the European Union’s Copernicus program.

Lu and Kim reported their latest findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

Lu and Kim reported the earlier findings in the scientific journal Remote Sensing, in the article “Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR Interferometry.”

The research is supported by the U.S. Geological Survey Land Remote Sensing Program, the NASA Earth Surface & Interior Program, and the Shuler-Foscue Endowment at Southern Methodist University.

Read the full story.

EXCERPT:

By Tom Dart
The Guardian

Oil and gas activity is contributing to alarming land movements and a rising threat of sinkholes across a huge swath of west Texas, a new study suggests.

According to geophysicists from Southern Methodist University, the ground is rising and falling in a region that has been “punctured like a pin cushion with oil wells and injection wells since the 1940s”.

There were nearly 297,000 oil wells in Texas as of last month, according to the state regulator. Many are in the Permian Basin, described in a Bloomberg article last September as the “world’s hottest oil patch”.

But the Southern Methodist report warns of unstable land and the threat of sinkholes.

“These hazards represent a danger to residents, roads, railroads, levees, dams, and oil and gas pipelines, as well as potential pollution of ground water,” Zhong Lu, a professor, said in a statement.

Wink – a tiny town 400 miles west of Dallas best known as the childhood home of the singer Roy Orbison – attracted national headlines in 2016 when the same scientists warned that the land between two expanding sinkholes a mile apart was deteriorating, risking the formation of more sinkholes or even the creation of a colossal single hole.

Injection of wastewater and carbon dioxide increases pore pressure in rocks, a likely cause of uplift. Lu told the Guardian that cracks and corrosion from ageing wells may help explain the sinking.

A “subsidence bowl” near one of the Wink sinkholes has sunk at a rate of more than 15.5in a year, probably as a result of water leaks through abandoned wells causing salt layers to dissolve, the report found. Elsewhere, a lake formed after 2003 as a result of sinking ground and rising water.

Read the full story.

Categories
Earth & Climate Feature Researcher news Technology

Radar images show large swath of West Texas oil patch is heaving and sinking at alarming rates

Analysis indicates decades of oil production activity have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks

Two giant sinkholes near Wink, Texas, may just be the tip of the iceberg, according to a new study that found alarming rates of new ground movement extending far beyond the infamous sinkholes.

That’s the finding of a geophysical team from Southern Methodist University, Dallas that previously reported the rapid rate at which the sinkholes are expanding and new ones forming.

Now the team has discovered that various locations in large portions of four Texas counties are also sinking and uplifting.

Radar satellite images show significant movement of the ground across localities in a 4000-square-mile area — in one place as much as 40 inches over the past two-and-a-half years, say the geophysicists.

“The ground movement we’re seeing is not normal. The ground doesn’t typically do this without some cause,” said geophysicist Zhong Lu, a professor in the Roy M. Huffington Department of Earth Sciences at SMU and a global expert in satellite radar imagery analysis.

“These hazards represent a danger to residents, roads, railroads, levees, dams, and oil and gas pipelines, as well as potential pollution of ground water,” Lu said. “Proactive, continuous detailed monitoring from space is critical to secure the safety of people and property.”

The scientists made the discovery with analysis of medium-resolution (15 feet to 65 feet) radar imagery taken between November 2014 and April 2017. The images cover portions of four oil-patch counties where there’s heavy production of hydrocarbons from the oil-rich West Texas Permian Basin.

The imagery, coupled with oil-well production data from the Railroad Commission of Texas, suggests the area’s unstable ground is associated with decades of oil activity and its effect on rocks below the surface of the earth.

The SMU researchers caution that ground movement may extend beyond what radar observed in the four-county area. The entire region is highly vulnerable to human activity due to its geology — water-soluble salt and limestone formations, and shale formations.

“Our analysis looked at just this 4000-square-mile area,” said study co-author and research scientist Jin-Woo Kim, a research scientist in the SMU Department of Earth Sciences.

“We’re fairly certain that when we look further, and we are, that we’ll find there’s ground movement even beyond that,” Kim said. “This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement.”

Lu, Shuler-Foscue Chair at SMU, and Kim reported their findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

The researchers analyzed satellite radar images that were made public by the European Space Agency, and supplemented that with oil activity data from the Railroad Commission of Texas.

The study is among the first of its kind to identify small-scale deformation signals over a vast region by drawing from big data sets spanning a number of years and then adding supplementary information.

The research is supported by the NASA Earth Surface and Interior Program, and the Shuler-Foscue Endowment at SMU.

Imagery captures changes that might otherwise go undetected
The SMU geophysicists focused their analysis on small, localized, rapidly developing hazardous ground movements in portions of Winkler, Ward, Reeves and Pecos counties, an area nearly the size of Connecticut. The study area includes the towns of Pecos, Monahans, Fort Stockton, Imperial, Wink and Kermit.

The images from the European Space Agency are the result of satellite radar interferometry from recently launched open-source orbiting satellites that make radar images freely available to the public.

With interferometric synthetic aperture radar, or InSAR for short, the satellites allow scientists to detect changes that aren’t visible to the naked eye and that might otherwise go undetected.

The satellite technology can capture ground deformation with an accuracy of sub-inches or better, at a spatial resolution of a few yards or better over thousands of miles, say the researchers.

Ground movement associated with oil activity
The SMU researchers found a significant relationship between ground movement and oil activities that include pressurized fluid injection into the region’s geologically unstable rock formations.

Fluid injection includes waste saltwater injection into nearby wells, and carbon dioxide flooding of depleting reservoirs to stimulate oil recovery.

Injected fluids increase the pore pressure in the rocks, and the release of the stress is followed by ground uplift. The researchers found that ground movement coincided with nearby sequences of wastewater injection rates and volume and CO2 injection in nearby wells.

Also related to the ground’s sinking and upheaval are dissolving salt formations due to freshwater leaking into abandoned underground oil facilities, as well as the extraction of oil.

Sinking and uplift detected from Wink to Fort Stockton
As might be expected, the most significant subsidence is about a half-mile east of the huge Wink No. 2 sinkhole, where there are two subsidence bowls, one of which has sunk more than 15.5 inches a year. The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.

At two wastewater injection wells 9.3 miles west of Wink and Kermit, the radar detected upheaval of about 2.1 inches that coincided with increases in injection volume. The injection wells extend about 4,921 feet to 5,577 feet deep into a sandstone formation.

In the vicinity of 11 CO2 injection wells nearly seven miles southwest of Monahans, the radar analysis detected surface uplift of more than 1 inch. The wells are about 2,460 feet to 2,657 feet deep. As with wastewater injection, CO2 injection increased pore pressure in the rocks, so when stress was relieved it was followed by uplift of about 1 inch at the surface.

The researchers also looked at an area 4.3 miles southwest of Imperial, where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.

Water there has leaked into the easily dissolved Salado formation, created voids, and caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.

Radar analysis by the SMU team detected rapid subsidence ranging from three-fourths of an inch to nearly 4 inches around active wells, abandoned wells and orphaned wells.

“Movements around the roads and oil facilities to the southwest of Imperial, Texas, should be thoroughly monitored to mitigate potential catastrophes,” the researchers write in the study.

About 5.5 miles south of Pecos, their radar analysis detected more than 1 inch of subsidence near new wells drilled via hydraulic fracturing and in production since early 2015. There have also been six small earthquakes recorded there in recent years, suggesting the deformation of the ground generated accumulated stress and caused existing faults to slip.

“We have seen a surge of seismic activity around Pecos in the last five to six years. Before 2012, earthquakes had not been recorded there. At the same time, our results clearly indicate that ground deformation near Pecos is occurring,” Kim said. “Although earthquakes and surface subsidence could be coincidence, we cannot exclude the possibility that these earthquakes were induced by hydrocarbon production activities.”

Scientists: Boost the network of seismic stations to better detect activity
Kim stated the need for improved earthquake location and detection threshold through an expanded network of seismic stations, along with continuous surface monitoring with the demonstrated radar remote sensing methods.

“This is necessary to learn the cause of recent increased seismic activity,” Kim said. “Our efforts to continuously monitor West Texas with this advanced satellite technique can help sustain safe, ongoing oil production.”

Near real-time monitoring of ground deformation possible in a few years
The satellite radar datasets allowed the SMU geophysicists to detect both two-dimension east-west deformation of the ground, as well as vertical deformation.

Lu, a leading scientist in InSAR applications, is a member of the Science Team for the dedicated U.S. and Indian NASA-ISRO (called NISAR) InSAR mission, set for launch in 2021 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A/B. The satellites orbit 435 miles above the Earth’s surface. Sentinel-1A was launched in 2014 and Sentinel-1B in 2016 as part of the European Union’s Copernicus program.

The Sentinel-1A/B constellation bounces a radar signal off the earth, then records the signal as it bounces back, delivering measurements. The measurements allow geophysicists to determine the distance from the satellite to the ground, revealing how features on the Earth’s surface change over time.

“Near real-time monitoring of ground deformation at high spatial and temporal resolutions is possible in a few years, using multiple satellites such as Sentinel-1A/B, NISAR and others,” said Lu. “This will revolutionize our capability to characterize human-induced and natural hazards, and reduce their damage to humanity, infrastructure and the energy industry.” — Margaret Allen, SMU

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News Videos

Fox4WARD: Knowing how our partner is feeling

Fox 4 journalist Dan Godwin interviewed family psychologist Chrystyna D. Kouros, an associate professor in the SMU Department of Psychology, about her latest research on couples.

Lead author on the new study, Kouros and her co-author, relationship psychologist Lauren M. Papp at the University of Wisconsin-Madison, found that couples do poorly when it comes to knowing their partner is sad, lonely or feeling down.

Kouros and Papp reported their findings in the peer-reviewed journal Family Process, in the article “Couples’ Perceptions of Each Other’s Daily Affect: Empathic Accuracy, Assumed Similarity, and Indirect Accuracy.”

Godwin’s segment, “Knowing how our partner is feeling,” aired March 11 on Fox 4’s 10 p.m. Sunday news segment Fox4WARD.

Watch the full segment on Fox 4.

Categories
Culture, Society & Family Feature Learning & Education Mind & Brain Student researchers Technology

SMU student to share innovative texting app at SXSW Red Bull Launch Institute

Users earn rewards with the “Just Drive” app designed to prevent distracted driving.

Neha Husein gripped her steering wheel as her car jolted forward, hit from behind on one of Dallas’ busiest and most dangerous freeways. Shaken, but not injured, the high school senior surveyed the significant damage to her car. The cause of the crash? The driver behind her was texting while driving.

The 2014 collision was the SMU junior’s inspiration to develop a solution to stop drivers from texting while driving, a practice that killed 455 Texans and played a role in 109,660 crashes in Texas in 2016. Her smart-phone app, “Just Drive,” awards points to drivers who lock their phones while driving. Those points can then be redeemed for coupons or free food, drinks or merchandise.

Husein is one of six college entrepreneurs selected to participate March 10 in the Red Bull Launch Institute at Austin’s South by Southwest Interactive Festival. She will meet with industry leaders and other entrepreneurs to further develop and amplify her project. The institute is scheduled from 3 to 6:30 p.m. at Palazzo Lavaca, 1614 Lavaca St., Austin.

She’s not being judgmental. Everyone has texted while driving, Husein says.

“We are used to multitasking, and sitting in traffic gets boring,” she says.

But the marketing and human rights major believes positive reinforcement can change behavior. Rewards are motivating to millennials like Husein. According to the Texas Department of Transportation, drivers age 16 to 34 are most likely to text while driving, but Husein is betting the app will appeal to all ages.

“Expecting incentives is a generational thing, but it’s a human thing too,” she says. “People enjoy rewards.”

Husein first presented “Just Drive” at SMU’s October 2017 Big Ideas pitch contest. She won $1,000 for her 90-second pitch and used it to create a wireframe app mock-up. The Big Ideas pitch contest is part of SMU’s Engaged Learning program, a campus wide initiative designed to enhance student learning by connecting a personal passion to academic learning and turning it into a personal project. Faculty mentorship is a key part of the Engaged Learning program.

Husein’s mentor, SMU law professor Keith Robinson, is a specialist in patent, intellectual property and technology law and co-directs the Tsai Center for Law, Science and Innovation in SMU’s Dedman School of Law. He also teaches a class to law students on designing legal apps.

“I like people who show initiative and are willing to bet on themselves,” says Robinson, who meets weekly with Husein to discuss intellectual property issues and trademark application. “Neha has developed an app for a relatable problem, one that can save lives.”

Husein is a Carrollton, Texas, native who grew up with an entrepreneur mindset. She remembers manning a toy cash register alongside her father at his convenience store. He was on hand in February 2018 to see his daughter present her business plan at the second stage of SMU’s Big Ideas competition – and win $5,000 in start-up funds.

“Just Drive is a perfect combination of my interests in human rights and marketing,” Husein says. “It combines business with a philanthropic cause.”

She plans to launch the “Just Drive” app in September, 2018. — Nancy George, SMU

Categories
Culture, Society & Family Economics & Statistics Feature Researcher news

DACA led to improved educational outcomes, lower teenage birthrate for young immigrant community

SMU professor available to discuss working paper’s analysis of controversial ‘dreamer’ population.

The Deferred Action for Childhood Arrivals program (DACA) increased high school graduation rates by 15 percent, reduced teenage birth rates by 45 percent, and led to a 25 percent increase in college enrollment among Hispanic women, according to a working paper co-authored by SMU economist Elira Kuka for the National Bureau of Economic Research.

The results have significant bearing for the direction of future immigration policy, the paper concludes.

“Our research shows that when we give undocumented youth a large incentive to invest in education, such as participation in DACA and access to the labor opportunities it opens if they stay in school, they respond to these opportunities,” says Kuka, an assistant professor in the SMU Department of Economics. “Giving immigrants a work permit and relief from deportation makes them more likely to invest in education, work more, and have less (teenage) fertility.”

The study also found that individuals who acquire more schooling work more at the same time, countering the typically held belief that work and school are mutually exclusive, and indicating DACA generated a large boost in productivity.

“You can think about our research in two ways: If you just care about immigration policy, it’s important because we show that DACA really improves these peoples’ lives and the type of immigrant workforce we have in the U.S., which is currently missing from the policy debate about the costs and benefits of the program,” Kuka says. “More generally, our research tells us something about the education choices of low-income Americans. Why don’t they invest in education despite its large wage premium? Do they not respond to incentives or do they lack the right incentives to go to school? Our results suggest the second.”

Co-authors are Na’ama Shenhav, an economics professor at Dartmouth College, and Kevin Shih, an economics professor at the Rensselaer Polytechnic Institute. The working paper, “Do Human Capital Decisions Respond to the Returns to Education? Evidence from DACA,” was released in February by the National Bureau of Economic Research.

“To complete this research, we used data from the American Community Surveys, which is a yearly survey that collects demographic, educational, and employment information for a 1 percent representative sample of the U.S. population,” Kuka explains. “We then identified who in the survey was likely to be a DACA recipient based on nation of origin, when they arrived in the country, and other factors, identified control groups that resembled the likely DACA recipients, then charted outcomes for both groups before and after DACA went into effect. We saw a divergence in trajectories where people eligible for DACA got this big bump in educational attainment, a big drop in fertility, and so on.” — Kenny Ryan, SMU

Categories
Culture, Society & Family Researcher news SMU In The News Technology

KERA: 8 Questions For The Government To Consider Before Investigating Encrypted Data

“This debate is quite polarizing; it’s been in the media for a couple of years now. It was quite an accomplishment on our part to agree on a set of facts, to agree on a vocabulary and to agree on the framework.” — Fred Chang, SMU

Journalist Justin Martin with KERA public radio covered the new government guidelines for investigating encrypted data from the National Academies of Sciences, Engineering and Medicine. Frederick Chang, director of SMU’s Darwin Deason Institute for Cyber Security and former director of research for the National Security Agency, participated in developing the guidelines.

KERA’s interview, “8 Questions For The Government To Consider Before Investigating Encrypted Data,” aired March 7, 2018.

Chang, a member of the prestigious National Academy of Engineering, joined SMU in September 2013 as Bobby B. Lyle Endowed Centennial Distinguished Chair in Cyber Security, computer science and engineering professor and Senior Fellow in the John Goodwin Tower Center for Political Studies in Dedman College. The Darwin Deason Institute for Cyber Security was launched in SMU’s Lyle School of Engineering in January 2014, with Chang named as its director.

In addition to his positions at SMU, Chang is a distinguished scholar in the Robert S. Strauss Center for International Security and Law at the University of Texas at Austin. Chang has been professor and AT&T Distinguished Chair in Infrastructure Assurance and Security at the University of Texas at San Antonio and he was at the University of Texas at Austin as an associate dean in the College of Natural Sciences and director of the Center for Information Assurance and Security. Additionally, Chang’s career spans service in the private sector and in government including as the former Director of Research at the National Security Agency.

Chang has been awarded the National Security Agency Director’s Distinguished Service Medal and was the 2014 Information Security Magazine ‘Security 7’ award winner for Education. He has served as a member of the Commission on Cyber Security for the 44th Presidency and as a member of the Computer Science and Telecommunications Board of the National Academies. He has also served as a member of the National Academies Committee on Responding to Section 5(d) of Presidential Policy Directive 28: The Feasibility of Software to Provide Alternatives to Bulk Signals Intelligence Collection.

He is the lead inventor on two U.S. patents, and he appeared in the televised National Geographic documentary, Inside the NSA: America’s Cyber Secrets. He has twice served as a cyber security expert witness at hearings convened by the U.S. House of Representatives Committee on Science, Space and Technology.

Chang received his B.A. degree from the University of California, San Diego and his M.A. and Ph.D. degrees from the University of Oregon. He has also completed the Program for Senior Executives at the Sloan School of Management at the Massachusetts Institute of Technology.

Listen to the KERA radio interview with Justin Martin.

EXCERPT From KERA News:

The debate over government access to personal and private information dates back decades. But it took center stage after the 2015 mass shooting in San Bernardino, California, when Apple refused to open a backdoor into an assailant’s encrypted cell phone for FBI investigators.

The agency ultimately paid a hacker to unlock the phone instead.

Now, the National Academies of Sciences, Engineering, and Medicine has produced a set of guidelines for government agencies to consider before approaching or investigating encrypted data.

To learn more about them, I talked with Frederick Chang, the executive director of Southern Methodist University’s Darwin Deason Institute for Cyber Security.

He’s also a member of the National Academy of Engineering and former director of research for the National Security Agency.

Listen to the KERA radio interview with Justin Martin.

Categories
Culture, Society & Family Feature Health & Medicine

New study finds couples do poorly at knowing when their partner is sad or feeling down

Spouses are the primary source of social support to one another, so it’s important to their relationship they stay attuned to each other’s emotions.

How well do couples pick up on one another’s feelings? Pretty well, when the emotion is happiness, says a psychologist at Southern Methodist University, Dallas.

But a new study finds that couples do poorly when it comes to knowing their partner is sad, lonely or feeling down.

“We found that when it comes to the normal ebb and flow of daily emotions, couples aren’t picking up on those occasional changes in ‘soft negative’ emotions like sadness or feeling down,” said family psychologist Chrystyna D. Kouros, lead author on the study. “They might be missing important emotional clues.”

Even when a negative mood isn’t related to the relationship, it ultimately can be harmful to a couple, said Kouros, an associate professor in the SMU Department of Psychology. A spouse is usually the primary social supporter for a person.

“Failing to pick up on negative feelings one or two days is not a big deal,” she said. “But if this accumulates, then down the road it could become a problem for the relationship. It’s these missed opportunities to be offering support or talking it out that can compound over time to negatively affect a relationship.”

The finding is consistent with other research that has shown that couples tend to assume their partner feels the same way they are feeling, or thinks the same way they do, Kouros said.

But when it comes to sadness and loneliness, couples need to be on the look-out for tell-tale signs. Some people are better at this process of “empathic accuracy” — picking up on a partner’s emotions — than others.

“With empathic accuracy you’re relying on clues from your partner to figure out their mood,” Kouros said. “Assumed similarity, on the other hand, is when you just assume your partner feels the same way you do. Sometimes you might be right, because the two of you actually do feel the same, but not because you were really in tune with your partner.”

Co-author on the study is relationship psychologist Lauren M. Papp at the University of Wisconsin-Madison.

Kouros and Papp reported their findings in the peer-reviewed journal Family Process, in the article “Couples’ Perceptions of Each Other’s Daily Affect: Empathic Accuracy, Assumed Similarity, and Indirect Accuracy.”

Couples should assume less about one another, observe more
The problem isn’t one for which couples need to seek therapy, Kouros said. Instead, she advises couples to stop assuming they know what their partner is feeling. Also, pay more attention to your partner, and communicate more.

“I suggest couples put a little more effort into paying attention to their partner — be more mindful and in the moment when you are with your partner,” she said.

She cautions, however, against becoming annoying by constantly asking how the other is feeling, or if something is wrong.

“Obviously you could take it too far,” Kouros said. “If you sense that your partner’s mood is a little different than usual, you can just simply ask how their day was, or maybe you don’t even bring it up, you just say instead ‘Let me pick up dinner tonight’ or ‘I’ll put the kids to bed tonight.’”

Even so, partners shouldn’t assume their spouse is a mind-reader, expecting them to pick up on their emotions. “If there’s something you want to talk about, then communicate that. It’s a two-way street,” she said. “It’s not just your partner’s responsibility.”

Participants were 51 couples who completed daily diaries about their mood and the mood of their partner for seven consecutive nights. The study veers from conventional approaches to the topic, which have relied on interviewing couples in a lab setting about feelings related to conflicts in their relationship.

Kouros and Papp will also present the research findings March 23 at the 2018 biennial meeting of the Society for Research in Human Development. — Margaret Allen, SMU

Categories
Researcher news

Ronald A. Rohrer, Cecil & Ida Green Chair and professor of engineering at SMU Lyle, honored with TAMEST membership

“I’ve stayed close to industry to be a practicing engineer and close to academia to conduct deeper research on hard problems.” — Ronald A. Rohrer.

Legendary inventor and scholar Ronald A. Rohrer, Cecil & Ida Green Chair and Professor of Engineering in SMU’s Lyle School of Engineering, has been named to The Academy of Medicine, Engineering, and Science of Texas (TAMEST).

The nonprofit organization, founded in 2004, brings together the state’s top scientific, academic and corporate minds to support research in Texas.

The organization builds a stronger identity for Texas as an important destination and hub of achievement in these fields. Members of The National Academies of Sciences, Engineering and Medicine and the state’s nine Nobel Laureates comprise the 270 members of TAMEST. The group has 18 member institutions, including SMU, across Texas.

Rohrer joins three other distinguished SMU faculty members in TAMEST — Fred Chang, executive director of the Lyle School’s Darwin Deason Institute for Cyber Security; Delores Etter, founding director of the Lyle School’s Caruth Institute for Engineering Education and electrical engineering professor emeritus; and David Meltzer, Henderson-Morrison Chair and professor of prehistory in anthropology in Dedman College.

Considered one of the preeminent researchers in electronic design automation, Rohrer’s contributions to improving integrated circuit (IC) production have spanned over 50 years. Rohrer realized early on that circuit simulation was crucial to IC design for progress in size reduction and complexity. Among his achievements was introducing a sequence of circuit simulation courses at the University of California, Berkeley, that evolved into the SPICE (Simulation Program with Integrated Circuit Emphasis) tool, now considered the industry standard for IC design simulation. At Carnegie Mellon University, Rohrer introduced the Asymptotic Waveform Evaluation (AWE) algorithm, which enabled highly efficient timing simulations of ICs containing large numbers of parasitic elements.

“The appointment of Ron Rohrer into TAMEST will increase the visibility of Lyle’s outstanding faculty members,” said Marc P. Christensen, dean of the Lyle School of Engineering.

“Through TAMEST, Rohrer will share his vast knowledge and inspire additional collaborative research relationships with other outstanding Texas professors and universities. This will elevate SMU and the state as a leading center of scholarship and innovation,” Christensen said.

Once an SMU electrical engineering professor back in the late 70’s, Rohrer rejoined the Lyle School as a faculty member in 2017. He is professor emeritus of electrical and computer engineering at Carnegie Mellon and Rohrer’s career has included roles in academia, industrial management, venture capital, and start-up companies.

“I’ve stayed close to industry to be a practicing engineer and close to academia to conduct deeper research on hard problems,” said Rohrer.

According to Rohrer, one pressing problem is analog integrated circuit design automation, also the name of the project-based research course he’s currently teaching.

“In the analog domain, it’s hard to design a 20-transistor circuit. My goal is to make analog integrated circuit design more accessible to students and industry, especially for our local corporate partners,” he said. “I want to get the ball rolling so younger engineers can keep it moving toward a complete solution.”

Along with his membership in TAMEST and the National Academy of Engineering, Rohrer is an IEEE Life Fellow. His professional service includes several other prominent positions with IEEE, AIEE and U.S. government committees. He is the author and co-author of five textbooks and more than 100 technical papers as well as the holder of six patents. Rohrer has received 11 major awards, including the IEEE Education Medal and the NEC C&C Prize.

Categories
Earth & Climate Energy & Matter Fossils & Ruins Researcher news SMU In The News

The Dallas Morning News: Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut

“Faults are not like a light switch – you don’t turn off a well and automatically stop triggering earthquakes.” — Heather DeShon, SMU seismologist.

Science journalist Anna Kuchment covered the earthquake research of a team of SMU seismologists led by SMU Associate Professor Heather DeShon and SMU Post-doctoral Researcher Paul Ogwari, who developed a unique method of data analysis that yielded the study results.

Kuchment wrote Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut for The Dallas Morning News.

The results of the analysis showed that efforts to stop human-caused earthquakes by shutting down wastewater injection wells that serve adjacent oil and gas fields may oversimplify the challenge. The seismologists analyzed a sequence of earthquakes at DFW Airport and found that even though wastewater injection was halted after a year, the earthquakes continued.

The sequence of quakes began in 2008, and wastewater injection was halted in 2009. But earthquakes continued for at least seven more years.

“This tells us that high-volume injection, even if it’s just for a short time, when it’s near a critically stressed fault, can induce long-lasting seismicity,” said Ogwari. The earthquakes may be continuing even now, he said.

The article by Kuchment, “Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut,” published Feb. 21, 2018.

Read the full story.

EXCERPT:

By Anna Kuchment
The Dallas Morning News

Earthquakes beneath DFW International Airport continued for seven years after an oil and gas company shut a nearby wastewater injection well that had been linked to the quakes, according to a new study by scientists at Southern Methodist University.

A wastewater well that continues to operate at the northern end of the airport – and which some area residents have said should be closed — was probably not involved in the events and poses little earthquake hazard, the researchers concluded.

“Faults are not like a light switch – you don’t turn off a well and automatically stop triggering earthquakes,” said Heather DeShon, a seismologist at Southern Methodist University and co-author of the paper, in an email.

The earthquakes at DFW Airport started on Halloween 2008, seven weeks after Chesapeake Energy began injecting wastewater into a well at the southern end of the airport. Scientists at SMU and the University of Texas at Austin investigated the quakes at the time and concluded they were most likely associated with the well.

Though Chesapeake shut its well in August 2009, earthquakes continued through at least the end of 2015. The largest, a 3.4-magnitude event, struck three years after the well was closed.

“It’s very surprising that one year of injection could produce earthquakes running for more than seven years,” said Paul Ogwari, the study’s lead author and a post-doctoral researcher at SMU. The paper was published in the Journal of Geophysical Research.

While earthquake magnitudes did not decline, Ogwari said, earthquake rates did: More than 80 percent of quakes in the sequence occurred during the first seven months of seismicity.

The DFW quakes are significant, because they mark the start of an unprecedented surge of earthquakes in North Texas and across the middle of the country.

Read the full story.

Categories
Culture, Society & Family Economics & Statistics Learning & Education Researcher news SMU In The News

Inside Higher Ed: Study Finds Deferred Action for Childhood Arrivals Increased Educational Attainment

It also cut teen pregnancy.

Journalist Elizabeth Redden with the website Inside Higher Ed covered the research of SMU government policy expert Elira Kuka. Her working paper, “Do Human Capital Decisions Respond to the Returns to Education? Evidence from DACA,” was released in February by the National Bureau of Economic Research.

Kuka, an assistant professor in the SMU Department of Economics, and her colleagues found that the Deferred Action for Childhood Arrivals program under fire by the Trump Administration has significantly changed the lives of young people who came to the United States illegally as children.

Kuka’s research focus is on understanding how government policy effects individual behavior and well-being, the extent to which it provides social insurance during times of need, and its effectiveness in alleviation of poverty and inequality.

Her current research topics include the potential benefits of the Unemployment Insurance (UI) program, the protective power of the U.S. safety net during recessions and various issues in academic achievement.

Read the full story.

EXCERPT:

By Elizabeth Redden
Inside Higher Ed

A new working paper released by the National Bureau of Economic Research argues that the Deferred Action for Childhood Arrivals program had a “significant impact” on the educational and life decisions of undocumented immigrant youth, resulting in a 45 percent decrease in teen birth rates, a 15 percent increase in high school graduation rates and a 20 percent increase in college enrollment rates. The researchers found differential effects by gender, with most of the gains in college enrollment concentrated among women. For men alone, the effect of DACA on college enrollment was not statistically significant.

DACA, which was established by former president Obama in 2012, gave certain undocumented immigrant students who were brought to the U.S. illegally as children temporary protection from deportation and authorization to work in the U.S. DACA recipients have faced uncertainty over their future since September, when President Trump announced plans to end the program after six months.

“Our main conclusion from this paper is that future labor market opportunities or just opportunities in general really matter,” said Elira Kuka, one of the authors of the paper, titled “Do Human Capital Decisions Respond to the Returns to Education? Evidence From DACA,” and an assistant professor of economics at Southern Methodist University.

“People are worried, ‘Why are there some populations that are not going to high school and not investing in education?’” Kuka said. “Maybe the reason is they don’t see improved opportunities — but if they see improved labor outcomes they will actually invest in their education.”

Read the full story.

Categories
Culture, Society & Family Economics & Statistics Learning & Education Researcher news SMU In The News

Market Watch: Why ‘Dreamers’ are less likely to drop out of high school

New study suggests DACA pushed students to stay in school.

Journalist Jillian Berman with the website Market Watch covered the research of SMU government policy expert Elira Kuka. Kuka’s working paper, “Do Human Capital Decisions Respond to the Returns to Education? Evidence from DACA,” was released in February by the National Bureau of Economic Research.

An assistant professor in the SMU Department of Economics, Kuka and her colleagues found that the Deferred Action for Childhood Arrivals program under fire by the Trump Administration has significantly changed the lives of young people who came to the United States illegally as children.

Kuka’s research focus is on understanding how government policy effects individual behavior and well-being, the extent to which it provides social insurance during times of need, and its effectiveness in alleviation of poverty and inequality.

Her current research topics include the potential benefits of the Unemployment Insurance (UI) program, the protective power of the U.S. safety net during recessions and various issues in academic achievement.

Read the full story.

EXCERPT:

By Jillian Berman
Market Watch

If students believe they’re education will pay off, they may be more likely to continue with it.

Enacting Deferred Action for Childhood Arrivals, or DACA, increased high school graduation rates among undocumented immigrants by 15% and college enrollment rates by 20%. That’s according to a study by economists at Dartmouth College, Southern Methodist University and Rensselaer Polytechnic Institute distributed by the National Bureau of Economic Research on Monday.

DACA provides work authorization and deferral of deportation for undocumented immigrants brought to the U.S. as children. In addition to eligibility requirements surrounding the age at which undocumented immigrants came to the U.S., DACA also has an education requirement — that immigrants be in school, completed high school or a GED program (unless they’re a veteran).

“You’ve given them a huge carrot to stay in school,” said Na’ama Shenhav, an economics professor at Dartmouth and one of the authors of the study. The opportunity for protection from deportation allows students to envision a possible return on their education that wasn’t available before. “For a population that previously was experiencing very low incentives to stay in school, this could have substantially re-oriented their perception of opportunities,” Shenhav said.

Read the full story.

Categories
Culture, Society & Family Economics & Statistics Learning & Education Researcher news SMU In The News

Vox: DACA boosted immigrants’ education, labor force participation, productivity

It also cut teen pregnancy.

Journalist Matthew Yglesias with the website Vox covered the research of SMU government policy expert Elira Kuka. Her working paper, “Do Human Capital Decisions Respond to the Returns to Education? Evidence from DACA,” was released in February by the National Bureau of Economic Research.

Kuka, an assistant professor in the SMU Department of Economics, and her colleagues found that the Deferred Action for Childhood Arrivals program under fire by the Trump Administration has significantly changed the lives of young people who came to the United States illegally as children.

Kuka’s research focus is on understanding how government policy effects individual behavior and well-being, the extent to which it provides social insurance during times of need, and its effectiveness in alleviation of poverty and inequality.

Her current research topics include the potential benefits of the Unemployment Insurance (UI) program, the protective power of the U.S. safety net during recessions and various issues in academic achievement.

Read the full story.

EXCERPT:

By Matthew Yglesias
Vox

The Deferred Action for Childhood Arrivals program changed the lives of young people who came to the United States illegally as children in incredible ways — boosting high school graduation rates and college enrollment, while slashing teen births by a staggering 45 percent.

That’s according to timely new research from Elira Kuka, Na’ama Shenhav, and Kevin Shih that uses the program to study a larger question that’s of interest to economists — when education becomes more available, do people go get more of it? The DACA results suggest that the answer is yes, at least when there’s a clear upside. The program itself, in other words, was a smashing success in terms of bringing people out of the shadows and letting them contribute more to American society.

Oscar Hernandez, a DACA recipient, explained to Vox’s Dara Lind how things changed.

”The discussion in my house was, ‘You don’t get noticed. Because if you do something awesome and great, you might get noticed, and if you do get noticed, they might find out that we’re here undocumented, and if they find we out we could get separated.’ It was never a discussion we had, but that was the unwritten rule for our house. You don’t do bad things, but you also don’t do good things. You stay under the radar, you work, and that’s it.”

DACA changed that. Suddenly, recipients got to experience what US citizens take for granted — that to excel is good.

Canceling DACA almost certainly won’t reduce the overall size of the unauthorized population living in the United States, but it will meaningfully reduce the educational attainment and economic productivity of the undocumented population. That’s bad for the DREAMers, but also America as a whole.

DACA eligibility led to a lot more schooling
One of DACA’s provisions was that to qualify, you had to get a high school degree if you were old enough. That’s an unusual incentive to stay in school, and using a difference-in-differences design to compare the eligible to non-eligible population over time (you can do this because you had to have arrived within a specific time and age window to qualify) they show that DACA-eligibility increased high school graduation rates by 15 percent and brought teen births down by 45 percent.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news Slideshows Student researchers

Solving the dark energy mystery: A new sky survey assignment for a 45-year-old telescope

SMU and other members of a scientific consortium prepare for installation of the Dark Energy Spectroscopic Instrument to survey the night sky from a mile-high mountain peak in Arizona

As part of a large scientific consortium studying dark energy, SMU physicists are on course to help create the largest 3-D map of the universe ever made.

The map will emerge from data gathered by the Dark Energy Spectroscopic Instrument (DESI) being installed on the Nicholas U. Mayall Telescope atop a mountain in Arizona.

The map could help solve the mystery of dark energy, which is driving the accelerating expansion of the universe.

DESI will capture about 10 times more data than a predecessor survey of space using an array of 5,000 swiveling robots. Each robot will be carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.

“DESI will provide the first precise measures of the expansion history of the universe covering approximately the last 10 billion years,” said SMU physicist Robert Kehoe, a professor in the SMU Department of Physics. “This is most of the 13 billion year age of the universe, and it encompasses a critical period in which the universe went from being matter-dominated to dark-energy dominated.”

The universe was expanding, but at a slowing pace, until a few billion years ago, Kehoe said.

“Then the expansion started accelerating,” he said. “The unknown ‘dark energy’ driving that acceleration is now dominating the universe. Seeing this transition clearly will provide a critical test of ideas of what this dark energy is, and how it may tie into theories of gravitation and other fundamental forces.”

The Mayall telescope was originally commissioned 45 years ago to survey the night sky and record observations on glass photographic plates. The telescope is tucked inside a 14-story, 500-ton dome atop a mile-high peak at the National Science Foundation’s Kitt Peak National Observatory – part of the National Optical Astronomy Observatory.

SMU researchers have conducted observing with the Mayall. Decommissioning of that telescope allows for building DESI in it’s place, as well as reusing some parts of the telescope and adding major new sytems. As part of DESI, SMU is involved in development of software for operation of the experiment, as well as for data simulation to aid data anlysis.

“We are also involved in studying the ways in which observational effects impact the cosmology measurements DESI is pursuing,” Kehoe said. SMU graduate students Govinda Dhungana and Ryan Staten also work on DESI. A new addition to the SMU DESI team, post-doctoral researcher Sarah Eftekharzadeh, is working on the SMU software and has studied the same kinds of galaxies
DESI will be measuring.

Now the dome is closing on the previous science chapters of the 4-meter Mayall Telescope so that it can prepare for its new role in creating the 3-D map.

The temporary closure sets in motion the largest overhaul in the telescope’s history and sets the stage for the installation of the Dark Energy Spectroscopic Instrument, which will begin a five-year observing run next year.

“This day marks an enormous milestone for us,” said DESI Director Michael Levi of the Department of Energy’s Lawrence Berkeley National Laboratory , which leads the project’s international collaboration. “Now we remove the old equipment and start the yearlong process of putting the new stuff on.”

More than 465 researchers from about 71 institutions are participating in the DESI collaboration.

The entire top end of the telescope, which weighs as much as a school bus and houses the telescope’s secondary mirror and a large digital camera, will be removed and replaced with DESI instruments. A large crane will lift the telescope’s top end through the observing slit in its dome.

Besides providing new insights about the universe’s expansion and large-scale structure, DESI will also help to set limits on theories related to gravity and the formative stages of the universe, and could even provide new mass measurements for a variety of elusive yet abundant subatomic particles called neutrinos.

“One of the primary ways that we learn about the unseen universe is by its subtle effects on the clustering of galaxies,” said DESI collaboration co-spokesperson Daniel Eisenstein of Harvard University. “The new maps from DESI will provide an exquisite new level of sensitivity in our study of cosmology.”

Mayall’s sturdy construction is perfect platform for new 9-ton instrument
The Mayall Telescope has played an important role in many astronomical discoveries, including measurements supporting the discovery of dark energy and establishing the role of dark matter in the universe from measurements of galaxy rotation. Its observations have also been used in determining the scale and structure of the universe. Dark matter and dark energy together are believed to make up about 95 percent of all of the universe’s mass and energy.

It was one of the world’s largest optical telescopes at the time it was built, and because of its sturdy construction it is perfectly suited to carry the new 9-ton instrument.

“We started this project by surveying large telescopes to find one that had a suitable mirror and wouldn’t collapse under the weight of such a massive instrument,” said Berkeley Lab’s David Schlegel, a DESI project scientist.

Arjun Dey, the NOAO project scientist for DESI, explained, “The Mayall was precociously engineered like a battleship and designed with a wide field of view.”

The expansion of the telescope’s field-of-view will allow DESI to map out about one-third of the sky.

DESI will transform the speed of science with automated preprogrammed robots
Brenna Flaugher, a DESI project scientist who leads the astrophysics department at Fermi National Accelerator Laboratory, said DESI will transform the speed of science at the Mayall Telescope.

“The telescope was designed to carry a person at the top who aimed and steered it, but with DESI it’s all automated,” she said. “Instead of one at a time we can measure the velocities of 5,000 galaxies at a time – we will measure more than 30 million of them in our five-year survey.”

DESI will use an array of 5,000 swiveling robots, each carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.

The fiber-optic cables will carry the light from these objects to 10 spectrographs, which are tools that will measure the properties of this light and help to pinpoint the objects’ distance and the rate at which they are moving away from us. DESI’s observations will provide a deep look into the early universe, up to about 11 billion years ago.

DESI will capture about 10 times more data than a predecessor survey
The cylindrical, fiber-toting robots, which will be embedded in a rounded metal unit called a focal plate, will reposition to capture a new exposure of the sky roughly every 20 minutes. The focal plane assembly, which is now being assembled at Berkeley Lab, is expected to be completed and delivered to Kitt Peak this year.

DESI will scan one-third of the sky and will capture about 10 times more data than a predecessor survey, the Baryon Oscillation Spectroscopic Survey (BOSS). That project relied on a manually rotated sequence of metal plates – with fibers plugged by hand into pre-drilled holes – to target objects.

All of DESI’s six lenses, each about a meter in diameter, are complete. They will be carefully stacked and aligned in a steel support structure and will ultimately ride with the focal plane atop the telescope.

Each of these lenses took shape from large blocks of glass. They have criss-crossed the globe to receive various treatments, including grinding, polishing, and coatings. It took about 3.5 years to produce each of the lenses, which now reside at University College London in the U.K. and will be shipped to the DESI site this spring.

Precise measurements of millions of galaxies will reveal effects of dark energy
The Mayall Telescope has most recently been enlisted in a DESI-supporting sky survey known as the Mayall z-Band Legacy Survey, which is one of four sky surveys that DESI will use to preselect its targeted sky objects. SMU astrophysicists carried out observing duties on that survey, which wrapped up just days ago on Feb. 11, to support the coming DESI scientific results.

Data from these surveys are analyzed at Berkeley Lab’s National Energy Research Scientific Computing Center, a DOE Office of Science User Facility. Data from these surveys have been released to the public at http://legacysurvey.org.

“We can see about a billion galaxies in the survey images, which is quite a bit of fun to explore,” Schlegel said. “The DESI instrument will precisely measure millions of those galaxies to see the effects of dark energy.”


Levi noted that there is already a lot of computing work underway at the Berkeley computing center to prepare for the stream of data that will pour out of DESI once it starts up.

“This project is all about generating huge quantities of data,” Levi said. “The data will go directly from the telescope to the Berkeley computing center for processing. We will create hundreds of universes in these computers and see which universe best fits our data.”

Installation of DESI’s components is expected to begin soon and to wrap up in April 2019, with first science observations planned in September 2019.

“Installing DESI on the Mayall will put the telescope at the heart of the next decade of discoveries in cosmology,” said Risa Wechsler, DESI collaboration co-spokesperson and associate professor of physics and astrophysics at SLAC National Accelerator Laboratory and Stanford University. “The amazing 3-D map it will measure may solve some of the biggest outstanding questions in cosmology, or surprise us and bring up new ones.” — Berkeley Lab and SMU

Categories
Earth & Climate Energy & Matter Feature Fossils & Ruins Researcher news

SMU study finds earthquakes continue for years after gas field wastewater injection stops

High rates of injection and large volumes can perturb critically stressed faults, triggering earthquakes years after wastewater wells are shut in.

Efforts to stop human-caused earthquakes by shutting down wastewater injection wells that serve adjacent oil and gas fields may oversimplify the challenge, according to a new study from seismologists at Southern Methodist University, Dallas.

The seismologists analyzed a sequence of earthquakes at DFW Airport and found that even though wastewater injection was halted after a year, the earthquakes continued.

The sequence of quakes began in 2008, and wastewater injection was halted in 2009. But earthquakes continued for at least seven more years.

“This tells us that high-volume injection, even if it’s just for a short time, when it’s near a critically stressed fault, can induce long-lasting seismicity,” said SMU seismologist Paul O. Ogwari, who developed a unique method of data analysis that yielded the study results.

The earthquakes may be continuing even now, said Ogwari, whose analysis extended through 2015.

The study’s findings indicate that shutting down injection wells in reaction to earthquakes, as some states such as Oklahoma and Arkansas are doing, may not have the desired effect of immediately stopping further earthquakes, said seismologist Heather DeShon, a co-author on the study and an associate professor in the SMU Earth Sciences Department.

“The DFW earthquake sequence began on Halloween in 2008 — before Oklahoma seismicity rates had notably increased,” said DeShon. “This study revisits what was technically the very first modern induced earthquake sequence in this region and shows that even though the wastewater injector in this case had been shut off very quickly, the injection activity still perturbed the fault, so that generated earthquakes even seven years later.”

That phenomenon is not unheard of. Seismologists saw that type of earthquake response from a rash of human-induced earthquakes in Colorado after wastewater injection during the 1960s at the Rocky Mountain Arsenal near Denver. Similarly in that case, injection was started and stopped, but earthquakes continued.

Such a possibility has not been well understood outside scientific circles, said DeShon. She is a member of the SMU seismology team that has studied and published extensively on their scientific findings related to the unusual spate of human-induced earthquakes in North Texas.

“The perception is that if the oil and gas wastewater injectors are leading to this, then you should just shut the injection wells down,” DeShon said. “But Paul’s study shows that there’s a lot to be learned about the physics of the process, and by monitoring continuously for years.”

Ogwari, DeShon and fellow SMU seismologist Matthew J. Hornbach reported the findings in the peer-reviewed Journal of Geophysical Research in the article “The Dallas-Fort Worth Airport Earthquake Sequence: Seismicity Beyond Injection Period.”

Known DFW Airport quakes number more than 400
The DFW Airport’s unprecedented earthquake clusters were the first ever documented in the history of the North Texas region’s oil-rich geological system known as the Fort Worth Basin. The quakes are also the first of multiple sequences in the basin tied to large-scale subsurface disposal of waste fluids from oil and gas operations.

The DFW Airport earthquakes began in 2008, as did high-volume wastewater injection of brine. Most of the seismic activity occurred in the first two months after injection began, primarily within .62 miles, or 1 kilometer, from the well. Other clusters then migrated further to the northeast of the well over the next seven years. The quakes were triggered on a pre-existing regional fault that trends 3.7 miles, or 6 kilometers, northeast to southwest.

Ogwari, a post-doctoral researcher in the SMU Roy M. Huffington Earth Sciences Department in Dedman College, analyzed years of existing seismic data from the region to take a deeper look at the DFW Airport sequence, which totaled 412 earthquakes through 2015.

Looking at the data for those quakes, Ogwari discovered that they had continued for at least seven years into 2015 along 80% of the fault, even though injection was stopped after only 11 months in August of 2009.

Rate of quakes declined, but magnitude has never lessened
In another important finding from the study, Ogwari found that the magnitude of the DFW Airport earthquakes didn’t lessen over time, but instead held steady. Magnitude ranged from 0.5 to 3.4, with the largest one occurring three years after injection at the well was stopped.

“What we’ve seen here is that the magnitude is consistent over time within the fault,” Ogwari said. “We expect to see the bigger events during injection or immediately after injection, followed by abrupt decay. But instead we’re seeing the fault continue to produce earthquakes with similar magnitudes that we saw during injection.”

While the rate of earthquakes declined — there were 23 events a month from 2008 to 2009, but only 1 event a month after May 2010 — the magnitude stayed the same. That indicates the fault doesn’t heal completely.

“We don’t know why that is,” Ogwari said. “I think that’s a question that is out there and may need more research.”

More monitoring needed for human-induced quakes
Answering that question, and others, about the complex characteristics and behavior of faults and earthquakes, requires more extensive monitoring than is currently possible given the funding allotted to monitor quakes.

Monitoring the faults involves strategically placed stations that “listen” and record waves of intense energy echoing through the ground, DeShon said.

The Fort Worth Basin includes the Barnett shale, a major gas producing geological formation, atop the deep Ellenberger formation used for wastewater storage, which overlays a granite basement layer. The ancient Airport fault system extends through all units.

Friction prevented the fault from slipping for millions of years, but in 2008 high volumes of injected wastewater disturbed the Airport fault. That caused the fault to slip, releasing stored-up energy in waves. The most powerful waves were “felt” as the earth shaking.

“The detailed physical equations relating wastewater processes to fault processes is still a bit of a question,” DeShon said. “But generally the favored hypothesis is that the injected fluid changes the pressure enough to change the ratio of the downward stress to the horizontal stresses, which allows the fault to slip.”

Earthquakes in North Texas were unheard of until 2008, so when they began to be felt, seismologists scrambled to install monitors. When the quakes died down, the monitoring stations were removed.

“As it stands now, we miss the beginning of the quakes. The monitors are removed when the earthquakes stop being felt,” DeShon said. “But this study tells us that there’s more to it than the ‘felt’ earthquakes. We need to know how the sequences start, and also how they end. If we’re ever going to understand what’s happening, we need the beginning, the middle — and the end. Not just the middle, after they are felt.”

Innovative method tapped for studying earthquake activity
Monitors the SMU team installed at the DFW Airport were removed when seismic activity appeared to have died down in 2009.

Ogwari hypothesized he could look at historical data from distant monitoring stations still in place to extract information and document the history of the DFW Airport earthquakes.

The distant stations are a part of the U.S. permanent network monitored and maintained by the U.S. Geological Survey. The nearest one is 152 miles, 245 kilometers, away.

Earthquake waveforms, like human fingerprints, are unique. Ogwari used the local station monitoring data to train software to identify DFW earthquakes on the distant stations. Ogwari took each earthquake’s digital fingerprint and searched through years of data, cross-correlating waveforms from both the near and regional stations and identified the 412 DFW Airport events.

“The earthquakes are small, less than magnitude three,” DeShon said. “So on the really distant stations it’s like searching for a needle in a haystack, sifting them from all the other tiny earthquakes happening all across the United States.”

Each path is unique for every earthquake, and seismologists record each wave’s movement up and down, north to south, and east to west. From that Ogwari analyzed the evolution of seismicity on the DFW airport fault over space and time. He was able to look at data from the distant monitors and find seismic activity at the airport as recent as 2015.

“Earthquakes occurring close in space usually have a higher degree of similarity,” Ogwari said. “As the separation distance increases the similarity decreases.”

To understand the stress on the fault, the researchers also modeled the location and timing of the pressure in the pores of the rock as the injected water infiltrated.

For the various earthquake clusters, the researchers found that pore pressure increased along the fault at varying rates, depending on how far the clusters were from the injection well, the rate and timing of injection, and hydraulic permeability of the fault.

The analysis showed pore-pressure changes to the fault from the injection well where the earthquakes started in 2008; at the location of the May 2010 quakes along the fault; and at the northern edge of the seismicity.

Will the DFW Airport fault continue to slip and trigger earthquakes?

“We don’t know,” Ogwari said. “We can’t tell how long it will continue. SMU and TexNet, the Texas Seismic Network, continue to monitor both the DFW Airport faults and other faults in the Basin.” — Margaret Allen, SMU

Categories
Feature Health & Medicine Plants & Animals Researcher news

Study: Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure

Wet-lab experiments confirm the accuracy of an earlier computational discovery that three drug-like compounds successfully penetrate micro-tumors of advanced cancers to aid chemo in destroying the cancer.

Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers — ovarian, prostate and breast.

The molecules were first discovered computationally via high-performance supercomputing. Now their effectiveness against specific cancers has been confirmed via wet-lab experiments, said biochemistry professors Pia Vogel and John G. Wise, who led the study.

Wise and Vogel report the advancement in the Nature journal Scientific Reports.

The computational discovery was confirmed in the Wise-Vogel labs at SMU after aggressive micro-tumors cultured in the labs were treated with a solution carrying the molecules in combination with a classic chemotherapy drug. The chemotherapy drug by itself was not effective in treating the drug-resistant cancer.

“Nature designs all cells with survival mechanisms, and cancer cells are no exception,” said Vogel, a professor in the SMU Department of Biological Sciences and director of SMU’s Center for Drug Discovery, Design and Delivery. “So it was incredibly gratifying that we were able to identify molecules that can inhibit that mechanism in the cancer cells, thereby bolstering the effectiveness of chemotherapeutic drugs. We saw the drugs penetrate these resistant cancer cells and allow chemotherapy to destroy them. While this is far from being a developed drug that will be available on the market anytime soon, this success in the lab gives us hope for developing new drugs to fight cancer.”

The current battle to defeat cancer is thwarted by chemotherapy failure in advanced cancers. Cancer cells initially treated with chemotherapy drugs ultimately evolve to resist the drugs. That renders chemotherapy ineffective, allowing cancers to grow and spread.

Key to cancer cell resistance are often certain proteins typically found in all cells — cancerous or otherwise — that are outfitted with beneficial mechanisms that pump away toxins to ensure a cell’s continued survival. Nature has set it up that these pumps are prevalent throughout the body, with some areas naturally having more of the pumps than others.

“The cancer cell itself can use all these built-in defenses to protect it from the kinds of things we’re using to try to kill it with,” Wise said.

The most common of these beneficial defense mechanisms is a pump protein, P-glycoprotein or P-gp, as it’s called. Another is one seen in breast and many other cancers, called breast cancer resistance protein, BCRP. In the case of cancer cells on the first round of treatment, these pumps are typically not produced in high levels in the cells, which allows chemotherapy to enter most of the cells in the tumor. This often gives what looks like a good result.

Unfortunately, in the cancer cells that don’t die, the chemotherapeutic often changes the cell, which then adapts to protect itself by aggressively multiplying the production of its defensive pumps.

Upon subsequent rounds of chemo, the P-gp and BCRP pumping mechanisms have proliferated. They effectively resist the chemotherapy, which now is much less successful, or not successful at all.

“if enough of the pumps are present, the cancer isn’t treatable anymore,” said Wise, associate professor in the SMU Department of Biological Sciences. Researchers in the field have searched unsuccessfully for compounds to inhibit the pumps that could be used in the clinic as well.

The molecules that Wise and Vogel discovered stopped the pumps.

“They effectively bring the cancer cells back to a sensitivity as if they’d never seen chemotherapy before,” said Vogel. “And our data indicated the molecules aren’t cancer specific. They can be used to treat all kinds of cancers because they inhibit not just the P-gp pump, but also the breast cancer protein pump.”

To test the compounds, the researchers used amounts of chemotherapeutic that would not kill these multi-drug resistant cancers if the pumps were not blocked.

“We wanted to make sure when using these really aggressive cancers that if we do knock out the pump, that the chemotherapy goes in there and causes the cell to die, so it doesn’t just stop it temporarily,” Wise said. “We spent a fair amount of time proving that point. It turns out that when a cell dies it goes through very predictable morphological changes. The DNA gets chopped up into small pieces, and we can see that, and so the nucleus becomes fragmented, and we can see that. Under the microscope, with proper staining, you can actually see that these highly drug-resistant prostate cancer cells, for example, are dead.”

The Scientific Reports article, “Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells,” is available open access at this link.

Other co-authors are SMU Ph.D. doctoral candidate Amila K. Nanayakkara, and Courtney A. Follit and Gang Chen, all in the SMU Department of Biological Sciences; and Noelle S. Williams, Department of Biochemistry, UT Southwestern Medical Center, Dallas.

Getting at the heart of the problem
Unique to the experiment is that the molecules were also tested on three-dimensional micro-tumors. That is a departure from the usual cell-culture experiments, which are a two-dimensional film.

In two-dimensional experiments, every cell is exposed to the chemotherapeutic because the film is just one layer of cells thick. That method ignores one of the key challenges to reversing tumors — how to get drugs into the middle of a tumor, not just on its surface.

“We show that with the help of our inhibitor compounds, we actually make the tumor penetrable to chemotherapeutic,” Vogel said. “We can kill the cells in the middle of the tumor.”

A pathway to personalized medical treatments
Chemotherapy’s harmful side effects on non-cancerous organs is well-known. The discovery of molecules that target a specific pump may mitigate that problem.

A patient’s tumor can be sampled to see which pump is causing the drug resistance. Then the molecule that knocks out that specific pump can be added to the chemotherapy.

“That means you don’t open the door wide to toxins in the central nervous system,” Wise said. “That has some real implications for the future and for personalized medicine. In most of the previous clinical trials, inhibitors have opened the brain up to toxins. From what we can tell so far, our inhibitors do not increase the toxicity of chemotherapeutics in normal cells.”

An audacious discovery
P-gp is present in one form or another in everything that lives.

“It’s in your dog, it’s in your cat, it’s in yeast cells, it’s in bacteria, it’s everywhere,” Wise said. “Why is it everywhere? Because it’s a really wonderful solution to the problem of getting toxins out of a cell. P-gp is a tremendously sophisticated evolutionary solution to that problem. And as with most things in biology that work well, everybody gets it, because if you don’t have it, you didn’t survive.”

Biologists say that P-gp can pump out 95 of 100 chemotherapeutics, indicating it can grab almost any drug and throw it out of a cell.

“So there’s a certain audacity to say that we can use a computer and target one part of this protein — the motor — and totally avoid the part of the protein that has evolved to pump almost anything that looks like a drug out of the cell,” Wise said. “That’s an audacious claim and the findings surprised us.”

In their computational and wet-lab experiments, Wise and Vogel searched for molecules that inhibit ATP hydrolysis — the chemical energy reaction that powers the P-gp pump.

“We targeted the motor of the pump instead of the pump part of the pump because almost all the clinical trial failures in other studies were actually compounds that targeted the pump part of the pump — and they would just slow down the pumping of the chemotherapeutic,” Vogel said. “The time was ripe to do these structural models. We hypothesized that we could completely avoid the pumping mechanism and just target the motor.”

Computational method highly predictive
The wet-lab experiments confirmed the accuracy of the computational findings, Vogel said.

“The predictiveness of the computational methods was really high,” she said. “It completely exceeded my expectations. We had selected certain molecules that were predicted in those computational experiments to interact with the pump in certain ways and not in others, and we could show in our wet-lab experiments that the predictions were spot on.”

Fascinated by the novel approach to the research, the National Institute of General Medical Sciences funded much of the research.

Wise and Vogel tapped the high-performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. Wise sorted through 15 million commercially available drug-like compounds made publically available in digital form from the pharmacology database Zinc at the University of California, San Francisco.

Then, again using ManeFrame, Wise ran the compounds through a computer-generated model of P-gp. The virtual model, designed and built by Wise, is the first computational microscope of its kind to simulate the actual behavior of P-gp in the human body, including interactions with drug-like compounds while taking on different shapes. He reported the dynamic functioning of the model in 2015 in the journal Biochemistry in “Multiple drug transport pathways through human P-glycoprotein.”

Process of elimination finds needle in the haystack
Out of 15 million drug-like compounds that were virtually screened, the researchers found 180,000 that in the computer were predicted to interact strongly with the ATP harvesting power plant part of the pump motor. From those, Wise and Vogel eliminated the ones that interact well with the pump part. Roughly 0.15 percent survived — several hundred.

“So that tells you how promiscuous that binding site is for compounds,” Wise said.

From there, they bought and tested in the lab a number of the remaining molecules.

“It was a process of elimination,” Vogel said. “Of the first 38 we tested, we found four. And because of the computational approach we took, it made failure relatively cheap. This is proof of principle that at least in those cases the compounds behave exactly in the lab as predicted in the computer. Which thrills the heck out of me — I never, ever would have thought that.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. — Margaret Allen, SMU

Categories
Culture, Society & Family Economics & Statistics Feature Learning & Education Student researchers Videos

Female students exposed briefly to charismatic career women are inspired to pursue male-dominated field

Easy, inexpensive experiment briefly sent inspiring female role models into intro to econ classes and sharply increased college female interest in the male-dominated, well-paying field of economics.

A low-budget field experiment to tackle the lack of women in the male-dominated field of economics has been surprisingly effective, says the study’s author, an economist at Southern Methodist University, Dallas.

Top female college students were inspired to pursue a major in economics when exposed very briefly to charismatic, successful women in the field, according to SMU economist Danila Serra.

The results suggest that exposing young women to an inspiring female role model succeeds due to the mix of both information and pure inspiration, Serra said.

“The specific women who came and talked to the students were key to the success of the intervention,” she said. “It was a factor of how charismatic and enthusiastic they were about their careers and of how interesting their jobs looked to young women.”

Given the simplicity and low-cost of the intervention, similar experiments could be easily conducted in other male-dominated or female-dominated fields of study to enhance gender diversity.

Serra’s results showed that among female students exposed to the enthusiastic mentors there was a 12-percentage point increase in the percentage of female students enrolling in the upper-level Intermediate Microeconomics course the following year — a 100% increase, or doubling, for that demographic.

Not surprisingly, given that the intervention was targeted to female students, Serra found that the role model visits had no impact on male students.

But astonishingly it had the greatest impact on high-achieving female students.

“If we restrict the analysis to the top female students, the students with a GPA of 3.7 or higher, the impact is remarkable — it is a 26 percentage points increase,” Serra said. “So this intervention was especially impactful on the top female students who perhaps were not thinking about majoring in economics.”

The results were very surprising to Serra, an assistant professor in the SMU Department of Economics in Dedman College who teaches the upper-level class Behavioral and Experimental Economics. Serra’s research relies on laboratory and field experiments, a relatively new methodology in the field of economics. She launched and is co-leader of the Laboratory for Research in Experimental Economics at SMU.

“I didn’t think such limited exposure would have such a large impact,” Serra said. “So this is telling me that one of the reasons we see so few women in certain fields is that these fields have been male-dominated for so long. This implies that it is very difficult for a young woman to come into contact with a woman in the field who has an interesting job in the eyes of young women and is enthusiastic about her major and her work. Young men, on the other hand, have these interactions all the time because there are so many male economics majors out there.”

Co-author on the research is Catherine Porter, associate professor of economics at Heriot-Watt University, Edinburgh, Scotland, and Serra’s former Ph.D. classmate at the University of Oxford.

“The gender imbalance in economics has been in the news a lot lately, and much of the discussion has been very negative,” said Porter. “This study offers something positive: a cheap way of improving the gender balance. The results can hopefully be used by other schools in order to redress the low numbers of women that major in economics – women have a lot to offer and should consider economics as a subject that is interesting and varied for a career.”

Serra reported the findings, “Gender differences in the choice of major: The importance of female role models,” on Jan. 6 in Philadelphia at the 2018 annual meeting of the Allied Social Sciences Association. Hers is one of many findings on gender and gender differences in economics presented at a session organized by the Committee for the Status of Women in the Economics Profession.

Inspiring the individual is the best tool to recruit and retain
Serra launched the study after SMU was one of 20 U.S. universities randomly chosen by Harvard economics professor Claudia Goldin for the Undergraduate Women in Economics Challenge. The project awarded each university a $12,500 grant to develop a program freely chosen by the universities to test the effectiveness of a deliberate intervention strategy to recruit and retain female majors.

Nationally, there’s only about one woman for every three men majoring in economics. SMU has a large number of economics majors for a school of its size, with 160 a year. The gender imbalance, however, is greater at SMU than the national average, with only one woman to every four men.

Serra developed her intervention based on her own experience as a Ph.D. student at the University of Oxford several years ago.

“I started thinking about role models from my personal experience,” Serra said. “As a student, I had met many female professors in the past, but my own experience taught me that inspiration is not about meeting any female professor — it’s about meeting that one person that has a huge charisma and who is highly inspiring and speaks to you specifically.”

Serra said that’s what she experienced as a graduate researcher when she first met Professor Abigail Barr, who later became her Ph.D. advisor.

“I know for a fact that that is why I decided to do a Ph.D. in economics, because I was greatly inspired by this person, her experiences and her research,” she said. “So I thought it would be interesting to see whether the same could work for a general student population.”

Two inspiring women role models, 15 minutes, four classrooms
Serra asked two of her department’s top undergraduate female economics students to take the lead in choosing the role models.

The students, Tracy Nelson and Emily Towler, sorted through rosters of SMU economics alums and shortlisted 18 men and women that they thought were working in interesting fields – which purposely excluded stereotypical jobs in banking and finance – and then carried out scripted interviews with a subset of who agreed to be interviewed via Skype to get additional information about their career path and to assess their charisma.

The students ultimately found two alumnae, Julie Lutz and Courtney Thompson, to be the most inspiring. Lutz, a 2008 graduate, started her career in management consulting but, shortly after, decided to completely change her career path by going to work for an international NGO in Nicaragua, and then as a director of operations at a toy company based in Honduras. Lutz now works in Operations at a fast-growing candy retail company. Courtney Thompson, class of 1991, has had a stellar career in marketing, becoming the senior director of North American Marketing and Information Technology at a large international communications company, with the unique claim of being not only a female econ major at a time when that was exceedingly rare, but also African American in a white dominated field.

Serra invited each woman to speak during the Spring 2016 semester for 10 to 15 minutes to four Principals of Economics classes that she had randomly selected from a set of 10. The Principles classes are very popular, with about 700 students total from a variety of desired majors, and are typically gender balanced. The imbalance, said Serra, starts the following year with Intermediate Microeconomics, which is a requirement for upper-level economics courses and so is a good indicator of a desire to major in economics.

Serra offered each role model an honorarium for speaking, but each woman declined and indicated they were happy to be back on campus sharing with students. Serra told the speakers nothing of the purpose of the research project, but encouraged each one to explain to the class why they majored in economics and to be very engaging. She directed them to approach the students with the following question in mind: “If you had to convince a student to major in economics, what would you say?”

Thompson, Serra said, during her college days played SMU’s costumed Peruna mascot, and today retains a “bubbly, big personality, that makes her extremely engaging.” In her classroom visits, Thompson described her experience working and being extremely successful in marketing with an economics degree, while being surrounded by business majors. Lutz, being still in her 20s, was very easy for the young women in the classrooms to identify with, and her experience working in the non-profit and in developing countries may have been especially appealing to them.

Young women judge best who will inspire them
Serra believes that a key to the success of the intervention was the fact her two female economics students actively participated in the selection of the role models.

“The most important thing about the project was that I realized I needed current female students to choose the role models,” Serra said. “I’m not that young anymore, so I’m probably not the best person to recognize what is inspiring to young women. I think young female students are in the best position to tell us what is most inspiring to them.”

In November the directors and officers of the International Foundation for Research in Experimental Economics honored Serra as the inaugural recipient of the $50,000 Vernon L. Smith Ascending Scholar Prize. The Smith Prize is described by the foundation as a “budding genius” award.

For her highly cited corruption research, Serra uses lab experiments to study bribery, governance and accountability, questioning long-standing assumptions. Some of her findings are that corruption declines as perpetrators take into account social costs of their illegal activities, and as victims share information about specific bribery exchanges through online reporting. Serra’s current research agenda also includes experimental work on gender differences in preferences, behaviors and outcomes. — Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Feature Learning & Education Researcher news

Exploring the mysteries of the universe: Reality in the Shadows

New knowledge has caused us to reconsider many previous conclusions about what the universe is and how it works.

Despite centuries of scientific advancements, there is much about the universe that remains unknown. New knowledge and discoveries in the last 20 years have challenged previously accepted ideas and theories that were once regarded as scientific truth and have subjected them to increasing scrutiny.

These additions to our knowledge have caused scientists to reconsider many previous conclusions about what the universe is and how it works.

“Reality in the Shadows”” or “What the Heck’s the Higgs?” is a new book that explores the concepts that shape our current understanding of the universe and the frontiers of our knowledge of the cosmos.

The authors — two physicists and an engineer — tell us in a manner that non-scientists can readily follow, why studies have moved to superstring theory/M-theory, ideas about extra dimensions of space, and ideas about new particles in nature to find answers. It also explores why these ideas are far from established as accurate descriptions of reality.

“Our book explains how we know what we know about the universe, what we don’t know, and what we wish we did know,” said co-author Stephen Sekula, an associate professor of Physics at SMU. A physicist, Sekula conducts research into the Higgs Boson at the energy frontier on CERN’s ATLAS Experiment.

The book was initiated by Frank Blitzer, an engineer who participated on national space programs like Apollo and Patriot, several years ago, Sekula said. He was joined by co-author S. James Gates Jr., well known for his work on supersymmetry, supergravity and superstring theory, a few years ago.

“Frank and Jim sought additional input to help complete the book, and serendipitously Frank’s grandson, Ryan, was an SMU undergraduate and Hunt Scholar who helped connect them to me,” Sekula said. “After over an additional year of work, the book was completed.”

The foundations of modern physics rest on ideas that are over 100 years old and battle-tested, Sekula said.

“But nature has offered us new puzzles that have not yet been successfully explained by those ideas,” he added. “Perhaps we don’t yet have the right idea, or perhaps we haven’t searched deep enough into the cosmos. These are exciting times, with opportunities for a new generation of physicists who might crack these puzzles. Our book will help a curious reader to see the way in which knowledge was established, and encourage them to be engaged in solving the new mysteries.”

“Reality in the Shadows,” available through YBK Publishers, describes how humanity came to learn the workings of the universe as groundwork for the science that found the Higgs particle. Now scientists are hunting for the explanations for dark matter and the accelerated expansion of the cosmos, as well as for the many new questions the Higgs Boson itself has raised.

Scientists have recently discovered colliding black holes and neutron stars, that there is more non-luminous matter (dark matter) in the universe than the ordinary stuff of everyday life, and that the universe seems to grow larger each second at a faster and faster rate. Readers will learn how scientists discern such features of the universe and begin to see how to think beyond what is known to what is not yet known.

Throughout the book are descriptions of important developments in theoretical physics that lead the reader to a step-by-step understanding.

Sekula teaches physics and conducts research at ATLAS. He contributed to the measurement of decay modes of the Higgs boson and to the measurement of its spin-parity quantum numbers. Complementary to these efforts, he has worked with colleagues on the ATLAS Experiment to search for additional Higgs bosons in nature, providing intellectual leadership and direct involvement in several searches.

Gates was named 2014 “Scientist of the Year” by the Harvard Foundation. He was elected to the prestigious National Academy of Sciences in 2013 and received the 2013 National Medal of Science, the highest recognition given to scientists by the United States.

Gates has been featured on many TV documentary programs on physics, including “The Elegant Universe,” “Einstein’s Big Idea,” “Fabric of the Cosmos” and “The Hunt for the Higgs.” His DVD series, “Superstring Theory: The DNA of Reality,” makes the complexities of unification theory comprehensible.

Blitzer has more than 50 years of experience in engineering, program management, and business development and participated on national space programs, and The Strategic Defense Initiative (SDI), holding several patents in guidance and control. He has spent more than 20 years in independent research of the subject of the book.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Videos

Daily Planet: Star Wars come to life in SMU chemist’s invention

Long ago, sort of, scenes from Star Wars triggered a child’s imagination, so that today it’s informed one of his research goals as a chemist.

Discover Canada’s science magazine show Daily Planet reported on the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. An economical method for shaping light into an infinite number of volumetric objects, the technology will be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

The Daily Planet segment aired Dec. 12, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Watch the full Dec. 12 show.

Categories
Culture, Society & Family Feature Learning & Education Researcher news Student researchers Technology

Cyber grad and U.S. Marine Corps vet Michael Taylor proved his mettle as an outstanding student researcher

‘Outstanding student in computer science & engineering’ graduates Dec. 16 with master’s degree and Raytheon ticket to a Ph.D.

Michael Taylor will be the first to tell you that he was not ready for college when he graduated from Plano East High School in 2006. And he’ll also tell you that nobody was more surprised than he was when SMU admitted him in 2014, a little later than the average undergrad.

But Taylor’s disciplined approach to life, honed through five years in the Marine Corps, combined with the intelligence he learned to tap, has earned him a master’s degree from SMU’s Lyle School of Engineering that will be awarded Dec. 16. And after proving his mettle as a student researcher in Lyle’s Darwin Deason Institute for Cyber Security, Taylor has been awarded the first Raytheon IIS Cyber Elite Graduate Fellowship, which will fund his Ph.D. in quantum computing at SMU and then put him to work as an employee at Raytheon.

“Michael Taylor stood out to me when I first had him in an undergraduate class,” said Mitch Thornton, research director for the Deason Institute and Cecil H. Green Chair of Engineering at SMU. “I could sense there was something special about him and that he had a lot of talent. I actively encouraged Michael to do research with me and he has excelled in everything I have asked him to work on. He is a credit to the student body of SMU’s Lyle School, and a credit to the nation.”

Taylor learned to focus on the details in the Marine Corps. He had sampled community college very briefly after high school, but it didn’t stick. He knew he didn’t have skills to trade for a decent job, so joining the Marine Corps made sense to him.

“Honestly? In retrospect, I wasn’t ready for school,” Taylor acknowledged.

After the Marines, finally ready for college
Taylor’s dad was an SMU engineering alumnus, and this was not the career path he’d envisioned for his son. But it’s funny how things work themselves out. Taylor completed Marine basic training, and took an aptitude test to determine where his skills might fit the Marine Corp mission. He did very, very well.

“My score on that test – I qualified for every enlisted job in the Marine Corps,” Taylor said. “I got to pick what job I wanted.” Working as a calibration technician sounded interesting – a job that would require him to conduct testing for proper operation of a wide range of mechanical and electronic devices and tools. But before working in calibration, he’d have to go school for a year.

“Ironic, I know,” Taylor said, smiling. “I had to sign up for an extra year, so I ended up doing a five-year tour in the Marines.”

He spent most of that time working out of Camp Pendleton in California, but was deployed to Helmand Province, Afghanistan, from March through September 2010, at the height of the surge of U.S. troops. “I wasn’t a combat guy,” Taylor said. “But even on base, sometimes, the rockets would come in the middle of the night.”

Nearing the end of his enlistment in 2012, Taylor was getting the hard sell to stay in and make the Marines a career. By now, he had decided he was ready for college, but the career planner he met with tried hard to talk him out of it, predicting that Taylor would “fail again.”

“He actually told me if I got out of the Marine Corps and went back to college, I’d end up living under a bridge,” Taylor said, shaking his head. It just made him more determined to succeed.

He started back at community college, and this experience was very different. “It seemed like it was so hard the first time,” Taylor said. “What then seemed like a monumental task, now seemed like nothing. I started thinking, I might be able to do school, now.”

And he started thinking about SMU. Taylor’s grades at Collin County Community College were good – good enough to get him into his father’s alma mater.

SMU Prof’s mentoring made all the difference
Taylor never dared to think he could live up to what his Dad had accomplished, starting with the scholarship to attend SMU that Jim Taylor ’89 had received from Texas Instruments. “He was a technician there,” Taylor recalled, “and they paid for him to come here. As a kid, if you’d told me I could do something like that, too, I’d never have believed you. For me there was Albert Einstein, and Jim Taylor.”

Michael Taylor came to the Hilltop on the GI Bill, and SMU’s Yellow Ribbon program for military veterans covered what the GI Bill didn’t. Then, the Darwin Deason Institute for Cyber Security picked up the cost of his master’s degree.

Taylor’s first semester at SMU’s Lyle School was a tough adjustment after his relatively easy path at community college, but that class with professor Thornton his second semester changed everything. “Dr. Thornton offered me a position working in the Deason Institute for Cyber Security,” Taylor said. “It’s been going great since then.”

Thornton’s influence and mentoring made all the difference for Taylor.

“If I had not met Dr. Thornton, there were times I wondered if I would have gotten my bachelor’s degree. I definitely wouldn’t be getting the master’s degree. And a Ph.D. wouldn’t have been something I ever considered.”

Compelled to dive into quantum computing and cyber security
Taylor was interested in computer hardware when he arrived at SMU, but the Deason Institute opened the door to the contributions he could make in cyber security. He received the Lyle School’s 2017 Rick A. Barrett Memorial Award for outstanding work in computer science and engineering. And as he neared the completion of his master’s degree, he was tapped for the Raytheon Cyber Elite Graduate Fellowship and is looking forward to pursuing his Ph.D. in quantum computing.

“Quantum computers solve problems that are too difficult for classical computers to solve,” Taylor said. “Certain problems in classical computation are intractable, there’s no way you can solve them in this lifetime. It’s only a matter of time before quantum computers render all encryption obsolete.”

For Fred Chang, executive director of SMU’s Deason Institute and former research director for the National Security Agency (NSA), finding talented students like Taylor to fill the gaps in the cyber security workforce is “job one.” Chang testified before a congressional subcommittee in September that we are likely facing a worldwide shortage of cyber security workers five years from now.

“Today’s students will be responsible for designing, creating, operating, maintaining and defending tomorrow’s cyber infrastructure,” Chang explained. “We need a large and capable pool of folks to staff these positions for the future.”

For Taylor, cyber security is just plain compelling.

“I just like the challenge. There’s somebody out there that’s trying to crack what you have, to break you down. You have to be smarter than them. It’s a game!” — Kim Cobb, SMU

Categories
Learning & Education Researcher news SMU In The News Technology Uncategorized

Dallas Innovates: SMU, UTA Profs Named National Academy of Inventors Fellows

Election as a National Academy of Inventors fellow is the highest professional honor given to academic inventors.

Dallas Innovates covered the naming of Bobby B. Lyle School of Engineering Professor Bruce Gnade as a Fellow to the National Academy of Inventors.

Journalist Lance Murray noted that SMU’s Gnade holds 77 U.S. patents and 55 foreign patents, and is the author or co-author of more than 195 refereed journal articles. Currently, his research focuses on flexible electronics with applications ranging from radiation sensors to microelectronic arrays for cellular recording.

The Dallas Innovates article, “SMU, UTA Profs Named National Academy of Inventors Fellows,” published Dec. 12, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Bruce Gnade, executive director of the Hart Center for Engineering Leadership and clinical professor within Southern Methodist University’s Bobby B. Lyle School of Engineering, and Dereje Agonafer, Jenkins Garrett professor in mechanical and aerospace engineering at the University of Texas at Arlington received the honors.

The professors were included in a group of 155 fellows nationwide named Tuesday by the academy.

Election as NAI Fellow is given to academic inventors who have shown a spirit of innovation in creating or facilitating inventions that have made a tangible impact on quality of life, economic development, and welfare of society.

NAI fellows are named as inventors on U.S. patents, and are nominated by their peers based on their contributions to innovation in areas such as patents and licensing, innovative discovery and technology, significant impact on society, and support and enhancement of innovation.

PROFS’ WORK COVERS FLEXIBLE ELECTRONICS, SEMICONDUCTOR RESEARCH
SMU’s Gnade holds 77 U.S. patents and 55 foreign patents, and is the author or co-author of more than 195 refereed journal articles. Currently, his research focuses on flexible electronics with applications ranging from radiation sensors to microelectronic arrays for cellular recording, according to SMU.

Prior to joining SMU, Gnade held leadership positions at Texas Instruments and the Defense Advanced Research Projects Agency, where he served as a program manager overseeing influential technology research projects for the Department of Defense. He is currently serving on the Board of Directors of Oak Ridge Associated Universities.

His academic career includes faculty appointments at the University of Maryland, the University of North Texas, and the University of Texas at Dallas.

Gnade is a member of the Materials Research Society and the Society for Information Display, a senior member of the Institute of Electrical and Electronics Engineers, and a fellow of the American Physical Society.

Read the full story.

Categories
Culture, Society & Family Economics & Statistics Feature Researcher news

SMU economist wins $50,000 “budding genius” prize with highly cited corruption research

Serra questioned long-standing assumptions; found corruption declines as perpetrators take into account social costs of their illegal activities, and as victims share information about specific bribery exchanges through online reporting systems.

Guilt and shame play a role in reducing bribery, according to research by economist Danila Serra, Southern Methodist University, Dallas.

As an economist who has studied bribery behavior extensively, Serra has discovered that bribery declines if potentially corrupt agents are made aware of the negative effects of corruption, and when victims can share specific information about bribe demands through online reporting systems.

An assistant professor in the SMU Department of Economics, Serra’s research methodology is unique — relying on lab experiments in which players gain and lose real money. Her work is frequently cited by other researchers studying the field of bribery.

In November the directors and officers of the International Foundation for Research in Experimental Economics honored Serra as the inaugural recipient of the $50,000 Vernon L. Smith Ascending Scholar Prize. The Smith Prize is described by the foundation as a “budding genius” award.

“Dr. Serra’s accomplishments have marked her as an ascending scholar, teacher, mentor and colleague of exceptional promise,” said a statement from the foundation.

The prize is named for Nobel Laureate Vernon L. Smith, considered the father of experimental economics. It aims to build on his legacy and inspire recipients, early on in their careers, to set the loftiest possible goals for themselves as social-science theorists, practitioners, colleagues, mentors and truth seekers, the foundation said.

Serra’s interest in understanding bribery transformed in 2005 when she became frustrated by measurement problems and the difficulty of finding good data. Her goal was to identify and understand the causes of corruption, and in particular whether non-monetary motivations, social norms and culture play any role in corruption decision-making. During her Ph.D. work at the University of Oxford, economist Abigail Barr exposed Serra to lab experiments, a relatively new methodology for the field of economics.

“I was always interested in corruption. As soon as I discovered the field of experimental economics I decided to design and implement bribery experiments,” Serra said. “I recreate the situation I want to study in a laboratory setting, employing real monetary incentives, which we provide, and with scenarios where the subjects can make corruption decisions that increase their money at the expense of other players. The play is anonymous and they get to bring home the money they earn in the experimental setting.”

Corruption isn’t purely about money
The focus of Serra’s research sharpened further when she began to question the root assumption that guilt and shame don’t play a role in bribery. She found in laboratory experiments that the intrinsic costs of guilt and shame do matter, and that corruption isn’t purely a matter of money.

She found that corruption declines when potentially corrupt agents are made aware of the negative impact of their actions, and when bottom-up anti-corruption mechanisms are in place, such as victims sharing specific information about bribe demands. Serra also found evidence of a significant relationship between corruption and culture.

“In one of my early studies, I employed a sample of international students at the University of Oxford and found among undergraduate students that the level of corruption in their home country predicts their propensity to engage in corruption in my bribery experiment,” she said.

“This is what we’d expect, they have internalized corrupt norms,” Serra said. “But the surprising result is that this wasn’t true for graduate students. We concluded that graduate students do not conform to the prevailing social norms of their home countries and, possibly, they want to distance themselves from such norms.”

Serra’s research has produced 12 papers on bribery and she has edited a book about experimental research on corruption. Her work on corruption has been cited hundreds of times by other researchers in the field. She has also investigated issues related to governance, public service provision and bottom-up accountability in developing countries. More recently, she has embarked on new research exploring gender differences in behaviors and outcomes in a variety of contexts, including students’ choices of major.

Serra launched and is co-leader of the Laboratory for Research in Experimental Economics at SMU’s Economics Department in the Dedman College of Humanities & Sciences.

The Vernon L. Smith Ascending Prize for Serra is a major professional recognition of the profound impact of her pioneering research in the area of experimental public economics and in particular on the understanding of corruption and other forms of rule breaking, said SMU economist Santanu Roy, chair of the SMU Department of Economics and University Distinguished Professor.

“She is one of the most cited economists of her generation,” Roy said. “The prize comes with a $50,000 award which, as far as I know, is the largest amount awarded as a prize for young economists. The fact that Dr. Serra was chosen to receive the inaugural prize named for the father of experimental economics tells us about the high expectations that her peers have about her future research productivity.”

Economics as an empirical discipline
The Smith Prize seeks to inspire early-career scholars to emulate Smith’s joyous zeal for scientific discovery. It may be used flexibly to advance social science in whatever manner a recipient chooses, the foundation said.

The prize is made possible through the Rasmuson Foundation and other contributors.

As a social scientist, Smith was committed to exploring theoretical foundations in economics, social science, and science generally; achievement in the form of quantifiable impacts in transforming economics into an experimental and more empirical discipline; collegiality in funding, mentoring, and collaborating with fellow scholars; and curiosity in looking beyond traditional disciplinary boundaries in search of truth.

“The International Foundation for Research in Experimental Economics heartily congratulates Dr. Serra and looks forward to following her career in the years to come,” the statement said. — Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Scientific American: Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes

For 300 million years faults showed no activity, and then wastewater injections from oil and gas wells came along. Study authors took a different approach in the new work — they hunted for deformed faults below Texas.

Science journalist Anna Kuchment covered the landmark earthquake research of a team of SMU geophysicists led by SMU Associate Professor Beatrice Magnani in the SMU Department of Earth Sciences. Kuchment wrote Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes for Scientific American.

The SMU researchers tapped seismic data to analyze earthquakes in Texas over the past decade.

The results of the analysis showed that human activity is causing the earthquakes as a result of movement in faults that have been silent for at least 300 million years, until recent injection of oil and gas wastewater.

The article by Kuchment, “Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes,” published Nov. 24, 2017.

Read the full story.

EXCERPT:

By Anna Kuchment
Scientific American

Since 2008, Texas, Oklahoma, Kansas and a handful of other states have experienced unprecedented surges of earthquakes. Oklahoma’s rate increased from one or two per year to more than 800. Texas has seen a sixfold spike. Most have been small, but Oklahoma has seen several damaging quakes stronger than magnitude 5. While most scientists agree that the surge has been triggered by the injection of wastewater from oil and gas production into deep wells, some have suggested these quakes are natural, arising from faults in the crust that move on their own every so often. Now researchers have traced 450 million years of fault history in the Dallas-Fort Worth area and learned these faults almost never move. “There hasn’t been activity along these faults for 300 million years,” says Beatrice Magnani, a seismologist at Southern Methodist University in Dallas and lead author of a paper describing the research, published today in Science Advances. “Geologically, we usually define these faults as dead.”

Magnani and her colleagues argue that these faults would not have produced the recent earthquakes if not for wastewater injection. Pressure from these injections propagates underground and can disturb weak faults. The work is another piece of evidence implicating drilling in the quakes, yet the Texas government has not officially accepted the link to one of its most lucrative industries.

Magnani and her colleagues studied the Texas faults using images of the subsurface similar to ultrasound scans. Known as seismic reflection data, the images are created by equipment that generates sound waves and records the speeds at which the waves bounce off faults and different rock layers deep within the ground. Faults that have produced earthquakes look like vertical cracks in a brick wall, where one side of the wall has sunk down a few inches so the rows of bricks no longer line up. Scientists know the age of each rock layer—each row of bricks–based on previous studies that have used a variety of dating techniques.

Read the full story.

Categories
Culture, Society & Family Learning & Education Researcher news SMU In The News

The Chronicle of Higher Education: Is Protesting a Privilege?

The results could suggest that a certain type of environment allows a student more freedom to protest, Baker says. “Certain people have the time and resources to be able to protest in certain ways.”

The Chronicle of Higher Education covered the research of SMU education policy expert Dominique Baker, an assistant professor in the Department of Education Policy and Leadership of Simmons School of Education and Human Development.

Baker’s research published recently in The Journal of Higher Education. She and her co-author on the study, “Beyond the Incident: Institutional Predictors of Student Collective Action,” reported that racial or gender diversity alone doesn’t make a college campus feel inclusive. Students are more likely to initiate social justice campaigns at large, selective, public universities.

Some universities are more likely than others to experience student activism like the “I, Too, Am Harvard” campaign in 2014, the study found.

The Chronicle article by journalist Liam Adams, “Is Protesting a Privilege,” published Dec. 6, 2017.

Read the full story.

EXCERPT:

By Liam Adams
The Chronicle of Higher Education

Campus protests advocating for diversity occur more frequently at elite colleges, a study suggests.

Since her days as a Ph.D. student at Vanderbilt University, Dominique J. Baker says, she had wondered, “Why do certain universities have protests and others don’t?”

That curiosity led Ms. Baker and a colleague to study differences in protests among higher-education institutions.

Their recent report, published in The Journal of Higher Education, is titled “Beyond the Incident: Institutional Predictors of Student Collective Action.”

The more selective a college and the fewer of its students receiving Pell Grants, they found, the more likely those colleges are experiencing protests against racial microaggressions.

It’s not a new notion that protests occur more commonly at elite institutions. A previous study, by the Brookings Institution, found that more-affluent colleges are likelier venues for protests against controversial speakers, although the report was criticized for being incomplete.

The study by Ms. Baker, an assistant professor of education policy and leadership at Southern Methodist University,and Richard S.L. Blissett, an assistant professor in the department of quantitative methods and education policy at Seton Hall University, focused on the “I, Too, Am” movement, which started at Harvard University to protest microaggressions against students of color.

Racial microaggressions usually involve unequal treatment of people of color, or racial slurs or jokes, notes the report. Some students at Harvard were so fed up with microaggressions on the campus that they started a photography project in which students of color held signs containing offensive statements that had been made to them.

Read the full story.

Categories
Culture, Society & Family Feature Learning & Education Researcher news Videos

Student-led protests seeking inclusive campuses are more likely to occur at selective universities

A new study found that racial or gender diversity alone doesn’t make a college campus feel inclusive. Students are more likely to initiate social justice campaigns at large, selective, public universities.

Some universities are more likely than others to experience student activism like the “I, Too, Am Harvard” campaign in 2014, a new study finds.

That student-led campaign at Harvard publicized the hurtful experiences routinely faced on campus by students from marginalized populations, meaning gender and ethnic minorities.

A new study led by a researcher from Southern Methodist University, Dallas, found that students are more likely to initiate social justice campaigns like the one at Harvard at large, selective, public universities where there are fewer students receiving financial aid.

The study is one of the first to take an empirical look at the institutional characteristics of universities in an effort to understand the current spike in student-led activism.

“Interestingly, our quantitative analysis found that numerical student diversity — in terms of gender and race — was not sufficient to make students feel they attend school on an inclusive campus,” said Dominique Baker, lead author on the research and assistant professor of higher education at SMU’s Simmons School of Education and Human Development.

“Our study found that more selective institutions, larger institutions, and institutions with fewer students receiving the Federal Pell Grant had greater odds of students adopting social justice campaigns to heighten awareness of their plight,” Baker said.

The federal government awards Pell grants to undergraduate students who need financial assistance for college.

Eradicating student protests isn’t the goal of the new research study, Baker said. Universities are seeing one of the largest jumps in student activism since the 1960s, so the goal is to provide data-based empirical research to help universities improve the campus environment for minority students.

“We are more concerned with what leads to protest and collective action — and which environments are conducive to it,” Baker said. “This research project helps us understand the kinds of contexts in which students may feel compelled and able to act. That may help us think about the ways in which we can best support our students and create more inclusive spaces.”

Co-author of the study is Richard Blissett, an assistant professor in Seton Hall University’s department of education. The researchers reported their findings in The Journal of Higher Education in the article “Beyond the Incident: Institutional Predictors of Student Collective Action.

Students across the country are fighting for inclusion and justice
The issue is a growing one. Recently, more than 70 U.S. universities have faced questions about how to address student protest demands regarding a variety of social injustices, such as police brutality, racism, and gender disparity, among others, the authors say.

At least 40 U.S. universities have had some sort of “I, Too, Am” campaign.

Studies from decades past that looked at student activism found that social movements and student protests during the 1960s and 1970s took place at more cosmopolitan and prestigious universities on both coasts, as well as some major public universities in between and some progressive liberal arts colleges.

With their new study, Baker and Blissett wanted to see if that holds true now. They looked at whether certain types of U.S. institutions were more likely to see student activism than others.

Numerical diversity is not enough for students to feel a campus is inclusive
The “I, Too, Am Harvard” movement began as a student play and evolved into a photo campaign. For the play and photos, 63 Harvard students held up dry-erase boards on which they wrote examples of racist things that had been said to them, as well as things they would like to say to their peers in response. The photos were published on Tumblr, then went viral on the social news website BuzzFeed. Ultimately that sparked many similarly named movements on other U.S. campuses.

For their study, Baker and Blissett analyzed 1,845 institutions, including those with publicized “I, Too, Am” campaigns. They linked the information with five-years of institution-level data from the U.S. Department of Education on all four-year public and not-for-profit universities.

The researchers also collected various measures of student diversity at each university, including gender and undergraduate racial identity, as well as Pell Grant recipients to capture low-income backgrounds.

They investigated whether the current state of diversity, or recent changes to it, could predict where an “I, Too, Am” campaign would appear. They found no consistent evidence that racial diversity was predictive of a campaign, suggesting diversity alone may not be enough to address student dissatisfaction, the authors said.

“Colleges focusing solely on the number of marginalized students may miss other characteristics of the institutions that could be associated with student mobilization or discontent,” Baker said.

Institutions without campaigns may also have inclusion issues
The researchers found that the 40 institutions with social movements were generally more selective in their admission policies, more socially prestigious, and primarily in the Mideast.

This prompted the researchers to pose the question, “What social resources are required for people to be able to protest in the first place?” Baker said. “This could explain why some institutions have campaigns and some do not. We are continuing in our work to investigate some of these types of questions.”

The results have important implications, said co-author Blissett, suggesting that student expressions of dissatisfaction with institutional racism may not be, as some theories describe, “idiosyncratic overflows of emotion,” but instead a function of the institutional environment.

“We are adding to a growing base of literature that suggests that thinking beyond diversity as reflected in enrollment numbers may be important for institutions that want to ensure that their minority students can thrive, and feel safe and at home on campus,” he said.

That said, just because an institution hasn’t had a student-led campaign does not necessarily mean that the institution doesn’t have social justice problems related to gender and race.

The research findings can help campus leadership see student protests as a key source of political information. The findings suggest that the higher education community can seek ways to create supportive spaces that make campuses feel more inclusive so students are less likely to feel compelled to protest the environment, Baker said.

“We’re not saying that the presence of racial and ethnic minorities or women is not important,” she said. “Our main conclusion from this research is that a focus on forms of diversity and inclusion beyond only enrollment numbers may also be important. Institutions may want to think more holistically about the challenges that these students are facing on their campuses.” — Margaret Allen

Categories
Earth & Climate Energy & Matter Fossils & Ruins Researcher news SMU In The News

The Washington Post: Oil and gas industry is causing Texas earthquakes, a ‘landmark’ study suggests

The study authors took a different approach in the new work — they hunted for deformed faults below Texas.

The Washington Post covered the landmark earthquake research of a team of SMU geophysicists led by SMU Associate Professor Beatrice Magnani in the SMU Department of Earth Sciences.

The researchers tapped seismic data to analyze earthquakes in Texas over the past decade.

The results of the analysis showed that human activity is causing the earthquakes as a result of movement in faults that have been silent for at least 300 million years, until recent injection of oil and gas wastewater.

The article by journalist Ben Guarino, “Oil and gas industry is causing Texas earthquakes, a ‘landmark’ study suggests,” published Nov. 24, 2017.

Read the full story.

EXCERPT:

By Ben Guarino
The Washington Post

An unnatural number of earthquakes hit Texas in the past decade, and the region’s seismic activity is increasing. In 2008, two earthquakes stronger than magnitude 3 struck the state. Eight years later, 12 did.

Natural forces trigger most earthquakes. But humans are causing earthquakes, too, with mining and dam construction the most frequent suspects. There has been a recent increase in natural gas extraction — including fracking, or hydraulic fracturing, but other techniques as well — which produces a lot of wastewater. To get rid of it, the water is injected deep into the ground. When wastewater works its way into dormant faults, the thinking goes, the water’s pressure nudges the ancient cracks. Pent-up tectonic stress releases and the ground shakes.

But for any given earthquake, it is virtually impossible to tell whether humans or nature triggered the quake. There are no known characteristics of a quake, not in magnitude nor in the shape of its seismic waves, that provide hints to its origins.

“It’s been a head-scratching period for scientists,” said Maria Beatrice Magnani, who studies earthquakes at Southern Methodist University in Dallas. Along with a team of researchers at the U.S. Geological Survey, Magnani, an author of a new report published Friday in the journal Science Advances, attempted to better identify what has been causing the rash of Texas quakes.

A cluster of earthquakes around a drilling project can, at best, suggest a relationship. “The main approach has been to correlate the location to where there has been human activity,” said Michael Blanpied, a USGS geophysicist and co-author of the new study.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news

SMU seismology research shows North Texas earthquakes occurring on “dead” faults

Study by Beatrice Magnani, USGS and other SMU scientists shows recent seismicity in Fort Worth Basin occurred on faults not active for 300 million years

Recent earthquakes in the Fort Worth Basin — in the rural community of Venus and the Dallas suburb of Irving – occurred on faults that had not been active for at least 300 million years, according to research led by SMU seismologist Beatrice Magnani.

The research supports the assertion that recent North Texas earthquakes were induced, rather than natural – a conclusion entirely independent of previous analyses correlating seismicity to the timing of wastewater injection practices, but that corroborates those earlier findings.

The full study, “Discriminating between natural vs induced seismicity from long-term deformation history of intraplate faults,” was published online Nov. 24, 2017 by the journal Science Advances.

“To our knowledge this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques,” said Magnani, associate professor of geophysics in SMU’s Huffington Department of Earth Sciences. Co-authors for the study include Michael L. Blanpied, associate coordinator of the USGS Earthquake Hazard program, and SMU seismologists Heather DeShon and Matthew Hornbach.

The results were drawn from analyzing the history of fault slip (displacement) over the lifetime of the faults. The authors analyzed seismic reflection data, which allow “mapping” of the Earth’s subsurface from reflected, artificially generated seismic waves. Magnani’s team compared data from the North Texas area, where several swarms of felt earthquakes have been occurring since 2008, to data from the Midwestern U.S. region that experienced major earthquakes in 1811 and 1812 in the New Madrid seismic zone.

Frequent small earthquakes are still recorded in the New Madrid seismic zone, which is believed to hold the potential for larger earthquakes in the future.

“These North Texas faults are nothing like the ones in the New Madrid Zone – the faults in the Fort Worth Basin are dead,” Magnani said. “The most likely explanation for them to be active today is because they are being anthropogenically induced to move.”

In the New Madrid seismic zone, the team found that motion along the faults that are currently active has been occurring over many millions of years. This has resulted in fault displacements that grow with increasing age of sedimentary formations.

In the Fort Worth Basin, along faults that are currently seismically active, there is no evidence of prior motion over the past 300 million years.

“The study’s findings suggest that the recent Fort Worth Basin earthquakes, which involve swarms of activity on several faults in the region, have been induced by human activity,” said USGS scientist Blanpied.

The findings further suggest that these North Texas earthquakes are not simply happening somewhat sooner than they would have otherwise on faults continually active over long time periods. Instead, Blanpied said, the study indicates reactivation of long-dormant faults as a consequence of waste fluid injection.

Seismic reflection profiles in the Venus region used for this study were provided by the U.S. Geological Survey Earthquake Hazards Program.

Seismic reflection profiles for the Irving area are proprietary. Magnani and another team of scientists collected seismic reflection data used for this research during a 2008-2011 project in the northern Mississippi embayment, home to the New Madrid seismic zone. — Kim Cobb, SMU

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Feature Plants & Animals Researcher news

Commerce Department selects scientific team to conduct independent abundance estimate of red snapper in Gulf of Mexico

The initiative addresses one of the most pressing issues currently facing U.S. Gulf of Mexico fisheries management, as the iconic red snapper supports one of the most economically valuable finfish fisheries in the Gulf.

An expert team of university and government scientists will determine the abundance of red snapper in the U.S. waters of the Gulf of Mexico, as availability of the fish is vital to the region’s economy.

“Red snapper have great economic value to all the gulf states,” said SMU statistician Lynne Stokes, a member of the team. “Maintaining the health of the species is vitally important, so it’s necessary to ensure species are fished at the right level.”

As an expert in surveys, polls and sampling, Stokes’ role in the project is to help design ways to sample the vast expanse of the gulf efficiently so that good estimates of abundance can be produced.

“The gulf is very diverse, and different sampling methods are needed for different habitats, which makes the sample design problem interesting,” said Stokes, a professor in the SMU Department of Statistical Science. “The cheapest way to collect data about the health of a marine fish species is by asking a sample of anglers about their catch. However, if fish are present in places where anglers are not, other methods are needed. There is some uncertainty about all the places red snapper exist in the gulf, so it is not known if catch-based methods provide accurate estimates of abundance.”

The project will obtain angler-independent data about red snapper abundance by sampling their potential habitat, Stokes said. The team will collect data on red snapper numbers by direct observation of a sample of transects on the sea bottom and structures on the sea floor, using remotely controlled video cameras. Stokes will help determine how extensive the observation must be.

The team of scientists was selected by an expert review panel convened by the Mississippi-Alabama Sea Grant Consortium to conduct the independent study.

“American communities across the Gulf of Mexico depend on their access to, as well as the long term sustainability of, red snapper,” said U.S. Secretary of Commerce Wilbur Ross. “I look forward to the insights this project will provide as we study and manage this valuable resource.”

Recreational anglers and commercial fishers will play a key role
The research team, made up of 21 scientists from 12 institutions of higher learning, a state agency and a federal agency, was awarded $9.5 million in federal funds for the project through a competitive research grant process. With matching funds from the universities, the project will total $12 million.

“We’ve assembled some of the best red snapper scientists around for this study,” said Greg Stunz, the project leader and a professor at the Harte Research Institute for Gulf of Mexico Studies at Texas A&M University – Corpus Christi. “The team members assembled through this process are ready to address this challenging research question. There are lots of constituents who want an independent abundance estimate that will be anxiously awaiting our findings.”

Recreational anglers and commercial fishers will be invited to play a key role in collecting data by tagging fish, reporting tags and working directly with scientists onboard their vessels.

“The local knowledge fishermen bring to this process is very valuable and meaningfully informs our study,” Stunz said.

Some stakeholder groups have expressed concerns that there are more red snapper in the Gulf than currently accounted for in the stock assessment. The team of scientists on this project will spend two years studying the issue.

In 2016, Congress directed the National Sea Grant College Program and NOAA Fisheries to fund independent red snapper data collections, surveys and assessments, including the use of tagging and advanced sampling technologies. Sea Grant and NOAA Fisheries worked collaboratively to transfer federal funds to Mississippi-Alabama Sea Grant to administer the competitive research grant process and manage this independent abundance estimate.

“Today’s announcement is welcome news for all red snapper anglers in the Gulf of Mexico,” said Sen. Richard Shelby of Alabama. “As Chairman of the U.S. Senate Appropriations Subcommittee on Commerce, Justice, Science and Related Agencies, I was proud to author and secure federal funding to address the need for better data, which is a fundamental issue plaguing the fishery. The management of red snapper must be grounded in sound science if we want to provide fair access and more days on the water for our anglers. It is my hope that these independent scientists will be able to accurately determine the abundance of red snapper in the Gulf of Mexico once and for all.”

Project team will determine abundance and distribution of red snapper
The research will be driven largely by university-based scientists with partners from state and federal agencies, Stunz said.

The funding will allow the scientists to carry out an abundance estimate using multiple sampling methods with a focus on advanced technologies and tagging for various habitat types, he said.

“I’m pleased to see that the independent estimate is moving forward and including the expertise of recreational fishermen,” said Rep. John Culberson of Texas. “I will continue to work with Texas fishermen and NOAA to address the inadequate access to red snapper.”

The project team will determine abundance and distribution of red snapper on artificial, natural and unknown bottom habitat across the northern Gulf of Mexico.

As a statistician chosen for the team, SMU’s Stokes is also an expert in non-sampling survey errors, such as errors by interviewers and respondents. She recently conducted research on evaluating the accuracy of contest judges and on improving estimates of marine fishery yields by the National Oceanic and Atmospheric Administration.

Stokes also contributes to the National Assessment of Educational Progress, or “Nation’s Report Card,” examining the way schools and students are selected for the large study.

Besides SMU, others on the team include Texas A&M University, University of Florida, University of South Alabama, Louisiana State University, Florida International University, NOAA Fisheries, Auburn University, Mississippi State University, Louisiana Department of Wildlife and Fisheries, College of William and Mary, University of Southern Mississippi, and the University of South Florida. — Mississippi-Alabama Sea Grant and Southern Methodist University

Categories
Earth & Climate Fossils & Ruins Plants & Animals Student researchers Subfeature

Prehistoric puzzle settled: carbon dioxide link to global warming 22 million years ago

The modern link between high carbon dioxide levels and climate change didn’t appear to hold true for a time interval about 22 million years ago; but now a new study has found the link does indeed exist.

Fossil leaves from Africa have resolved a prehistoric climate puzzle — and also confirm the link between carbon dioxide in the atmosphere and global warming.

Research until now has produced a variety of results and conflicting data that have cast doubt on the link between high carbon dioxide levels and climate change for a time interval about 22 million years ago.

But a new study has found the link does indeed exist for that prehistoric time period, say researchers at Southern Methodist University, Dallas.

The finding will help scientists understand how recent and future increases in the concentration of atmospheric carbon dioxide may impact the future of our planet, say the SMU researchers.

The discovery comes from new biochemical analyses of fossil leaves from plants that grew on Earth 27 million years ago and 22 million years ago, said geologist Tekie Tesfamichael, lead scientist on the research.

The new analyses confirm research about modern climate — that global temperatures rise and fall with increases and decreases in carbon dioxide in our atmosphere — but in this case even in prehistoric times, according to the SMU-led international research team.

Carbon dioxide is a gas that is normally present in the Earth’s atmosphere, even millions of years ago. It’s dubbed a greenhouse gas because greater concentrations cause the overall temperature of Earth’s atmosphere to rise, as happens in a greenhouse with lots of sunlight.

Recently greenhouse gas increases have caused global warming, which is melting glaciers, sparking extreme weather variability and causing sea levels to rise.

The new SMU discovery that carbon dioxide behaved in the same manner millions of years ago that it does today has significant implications for the future. The finding suggests the pairing of carbon dioxide and global warming that is seen today also holds true for the future if carbon dioxide levels continue to rise as they have been, said Tesfamichael.

“The more we understand about the relationship between atmospheric carbon dioxide concentrations and global temperature in the past, the more we can plan for changes ahead,” said Tesfamichael, an SMU postdoctoral fellow in Earth Sciences.

“Previous work reported a variety of results and conflicting data about carbon dioxide concentrations at the two intervals of time that we studied,” he said. “But tighter control on the age of our fossils helped us to address whether or not atmospheric carbon dioxide concentration corresponded to warming — which itself is independently well-documented in geochemical studies of marine fossils in ocean sediments.”

The researchers reported their findings in Geology, the scientific journal of the Geological Society of America. The article is “Settling the issue of ‘decoupling’ between atmospheric carbon dioxide and global temperature: [CO2]atm reconstructions across the warming Paleogene-Neogene divide.”

Co-authors from the Roy M. Huffington Department of Earth Sciences in Dedman College are professors Bonnie Jacobs, an expert in paleobotany and paleoclimate, and Neil J. Tabor, an expert in sedimentology and sedimentary geochemistry.

Other co-authors are Lauren Michel, Tennessee Technological University; Ellen Currano, University of Wyoming; Mulugeta Feseha, Addis Ababa University; Richard Barclay, Smithsonian Institution; John Kappelman, University of Texas; and Mark Schmitz, Boise State University.

Discovery of rare, well-preserved fossil leaves enables finding
The findings were possible thanks to the rare discovery of two sites with extraordinarily well-preserved fossil leaves of flowering plants from the Ethiopian Highlands of eastern Africa.

Such well-preserved fossil leaves are a rarity, Tesfamichael said.

“Finding two sites with great preservation in the same geographic region from two important time intervals was very fortunate, as this enabled us to address the question we had about the relationship between atmospheric carbon dioxide concentration and global temperatures,” he said.

Scientists know that variations in the concentration of atmospheric carbon dioxide affect carbon fixation in leaves during photosynthesis. This causes leaves to develop anatomical and physiological changes such as the frequency and size of stomata — the pores on the surface of a leaf through which carbon passes.

Scientists can measure those attributes, among others, in fossil leaves, so that leaf fossils can be used as proxies for Earth’s atmospheric carbon dioxide history.

The sites producing the leaves for the SMU study were discovered separately in years past, but major fossil collections were produced through field work coordinated by the SMU research team and their co-authors, who have been collaborating on this project for several years.

The work has had funding from the National Science Foundation, The National Geographic Committee for Research and Exploration, the SMU Ford Fellowship Program, SMU Research Council, the Institute for the Study of Earth and Man, and the Dallas Paleontological Society Frank Crane Scholarship.

The fossils are housed permanently in the collections at the National Museum of Ethiopia in Addis Ababa. Institutional and governmental support came from the National Museum of Ethiopia, the Authority for Research and Conservation of Cultural Heritage, and Addis Ababa University.

Previous studies firmly established a temperature difference
One of the sites dates to the late Oligocene Epoch, and the other to the early Miocene.

Previous studies that measured ocean temperatures from around the world for the two intervals have firmly established a temperature difference on Earth between the two times, with one much warmer than the other. So the SMU study sought to measure the levels of carbon dioxide for the two time periods.

For the SMU analyses, fossil leaves of a single species were collected from the 27 million-year-old late Oligocene site. The leaves had been deposited during prehistoric times in the area of Chilga in northwest Ethiopia most likely at a river bank. The Earth’s climate during the late Oligocene may have been somewhat warmer than today, although glaciers were forming on Antarctica. The SMU study found carbon dioxide levels, on average, around 390 parts per million, about what it is on Earth today.

Fossil leaves of the 22 million-year-old species from the early Miocene were collected from ancient lake deposits, now a rock called shale, from the modern-day Mush Valley in central Ethiopia. The early Miocene climate at that time was warmer than the late Oligocene and likewise the SMU study found higher carbon dioxide levels. Atmospheric carbon dioxide was about 870 parts per million, double what it is on Earth today.

The SMU study confirmed a relationship between carbon dioxide and temperature during the late Oligocene and early Miocene.

Paleoclimate data can help predict our planet’s future climate
While carbon dioxide isn’t the only factor affecting Earth’s climate or global mean temperature, it is widely considered by scientists among the most significant. Much is known about climate change and global warming, but questions still remain.

“One of those is ‘What’s the sensitivity of the Earth’s temperature to carbon dioxide concentration? Is it very sensitive? Is it not so sensitive?’ Estimating temperature and carbon dioxide concentrations for times in the past can help find the answer to that question,” Jacobs said. “There’s a lot of work on paleoclimate in general, but not as much on the relationship between carbon dioxide and temperature.”

The finding is an important one.

“The amount of temperature change during this interval is approximately within the range of the temperature change that is estimated from climate models for our next century given a doubling of carbon dioxide concentration since the industrial revolution,” Jacobs said.

With the new model reaffirming the prehistoric relationship, scientists can look now at related questions, said climate change scientist Lauren Michel, who worked on the study as a post-doctoral researcher at SMU.

“Answering questions about the rate of change and which factors changed first, for example, will ultimately give a clearer picture of the Earth’s climate change patterns,” Michel said. “I think it is valuable to understand the relationship of greenhouse gases and climate factors represented in the rock record so we can have a better idea of what we can expect in the future and how we can prepare for that.”

SMU study confirms relationship that previous methods overlooked
Previous studies found little to no correlation between temperature and carbon dioxide for the late Oligocene and early Miocene. That has puzzled paleoclimate researchers for at least a decade.

“We have a good test-case scenario with these well-preserved plants from both time slices, where we know one time slice, with higher levels of carbon dioxide, was a warmer climate globally than the other,” Tesfamichael said.

“It’s been a puzzle as to why the previous methods found no relationship, or an inverse correlation,” he said. “We think it’s for lack of the well-dated proxy — such as our fossil leaves from two precise times in the same region — which deliver a reliable answer. Or, perhaps the models themselves needed improvement.”

Previous studies used methodologies that differed from the SMU study, although all methods (proxies) incorporate some aspects of what is known about living organisms and how they interact with atmospheric carbon dioxide.

Some studies rely on biochemical modeling of the relationship between single-celled marine fossils and atmospheric carbon dioxide, and others rely on the relationship between stomata and atmospheric carbon dioxide concentration observed in the living relatives of particular fossil plant species.

“Each method has its assumptions,” said Tesfamichael. “We will see if our results hold up with further studies of this time interval using the same methodology we used.” — Margaret Allen, SMU

Categories
Health & Medicine Researcher news SMU In The News Videos

GAINcast Episode 89: How Speed Happens (with Peter Weyand)

“People recognize the power of science, in terms of testing and numbers. But unless you’re involved in it it’s hard to appreciate the creativity that is also part of the process.” — Peter Weyand

The founder of modern sports performance training, Vern Gambetta, interviewed SMU locomotion researcher Peter Weyand about human speed and performance for his GAINcast show.

The GAINcast name is an acronym for the internationally recognized Gambetta’s self-made sports performance education, outreach and training efforts, Gambetta Athletic Improvement Network.

Gambetta’s 60-minute interview with Weyand posted Nov. 2, 2017, “Gaincast Episode 89: How Speed Happens (with Peter Weyand).”

In it, Weyand touches on the experiences early in his career as a high school and college athlete playing basketball and running track that sparked his pursuit of a research and academic career in sports science and human performance.

As a high school coach, Weyand’s early interest intensified, leading him to pursue advanced degrees and a scientific career exploring the mechanics of human locomotion and speed, including at the University of Georgia and then at Harvard’s Concord Field Station.

During that time, Weyand worked with early pioneers in the biomechanics and human performance field, including renowned researcher Dick Taylor. At the field station in particular, Weyand credits Taylor with mentoring young researchers in aggressively and fearlessly digging into basic science questions surrounding mammalian locomotion.

“It was wide open, anything goes. It wasn’t these reductionist questions …. It was anything under the sun you could cook up. And there was an insistence on good scientific questions, and a real integrative perspective on all of it. Those were my formative scientific experiences. People recognize the power of science, in terms of testing and numbers. But unless you’re involved in it it’s hard to appreciate the creativity that is also part of the process. There’s an art of doing science and Dick was a master of that. And everybody that came through that field station under his training, which is really a who’s who in our field in many respects, learned that art from him.”

Weyand is an expert on human locomotion and the mechanics of running. Research from his SMU Locomotor Performance Laboratory in SMU’s Annette Caldwell Simmons School of Education and Human Development has produced ground-breaking scientific findings about the science of human speed.

The lab focuses on the mechanical basis of human performance and includes physicist and engineer Laurence Ryan, an expert in force and motion analysis.

The Weyand lab’s most recent research found that the world’s fastest sprinter, Usain Bolt, has an asymmetrical running gait, contrary to the common notions about coaching and training for speed. Bolt’s asymmetry was discovered using the lab’s two-mass model tool, which the researchers have described in the Journal of Experimental Biology, “A general relationship links gait mechanics and running ground reaction forces.” The model can assess the crucial early portion of foot-ground contact — the impact-phase force and time relationships — from motion data only.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness.

Listen to the podcast.

EXCERPT:

By Martin Bingisser
GAINcast

There are some basic questions out there that are difficult to answer, such as what limits human running speed. As technology advances, scientists can better study and start to answer this and other simple questions like what makes one athlete faster than another.

Dr. Peter Weyand has spent decades researching locomotion on both animals and humans. His work with elite sprinters has brought some interesting conclusions and is driving the field forward. On this episode of the GAINcast he joins us to discuss his research and its practical implications.

Listen to the podcast.

Categories
Culture, Society & Family Learning & Education Researcher news

Mission Foods Texas-Mexico Center awards first research grants to shape economic, migration policies

Research findings will be presented at the second annual Mission Foods Texas-Mexico Center Symposium to be held in Mexico City April 6, 2018.

The Mission Foods Texas-Mexico Center at SMU has awarded grants to four scholars from both sides of the border who aim to support the Center’s goal of providing policy-relevant, action-oriented research on the dynamic relationship between Texas and Mexico.

Findings from each of the four projects, selected by the Texas-Mexico Center’s Faculty Advisory Board, will be shared this spring, says Luisa del Rosal, executive director of the Center.

“This is a tremendous benefit to Dedman College, where so many faculty members research and teach about Texas and Mexico,” says SMU Dedman College of Humanities and Sciences Dean Thomas DiPiero. “This will help strengthen the social, economic and cultural ties between the two regions.”

The four projects are:

  • “Migration, Inequality & Public Policies in Mexico and the United States”
    Lead researcher: Colegio de Mexico President Silvia Giorguli, Mexico City
  • “Are Mexican and U.S. Workers Complements or Substitutes?”
    Lead researcher: Raymond Robertson, Helen and Roy Ryu Chair in Economics
    & Government, Texas A&M Bush School of Government & Public Service, College Station
  • “Institutions, Trade and Economic Prosperity: An Examination of the U.S. and Mexican States”
    Lead researcher: Dean Stansel, associate professor, O’Neil Center for Global Markets and Freedom, SMU Cox School of Business
  • “Slowdown in Mexico-U.S. Migration: Why is Texas Different?”
    Lead researcher: Colegio Tlaxcala President Alfredo Cuecuecha, Tlaxcala, Mexico

Grant recipient Stansel said his team will focus on the potential economic damage from a possible new regime of trade restrictions in the U.S.

“By examining the interconnected relationships between trade policy, trade volume and economic prosperity in the U.S. and Mexico,” he said, “we hope to provide insights into the importance of maintaining a system of relatively free trade.”

Research findings will be presented at the second annual Mission Foods Texas-Mexico Center Symposium to be held in Mexico City April 6, 2018.

Three dozen applicants applied for the grants, which was “more than we expected for the first year,” says Javier Velez, vice-chair of the Texas-Mexico Center Executive Advisory Board and CEO of Mission Foods’ U.S. headquarters in Dallas.

“It was pleasing for us how much interest there is in effectively promoting and facilitating a better understanding of the relation between Texas and Mexico,” Velez said.

The Mission Foods Texas-Mexico Center at SMU is dedicated to improving relations between Texas and Mexico through dialogue and research. It works to encourage greater cross-border integration and cross-sector collaboration in academia, government, non-governmental organizations and business. The Center strives to enhance a political dialogue to reshape the policies that govern the relationship between Texas and Mexico, focusing on five areas: trade and investment, energy, human capital and education, border issues and migration. — Denise Gee, SMU

Categories
Culture, Society & Family Earth & Climate Energy & Matter Events Researcher news SMU In The News Videos

The CW33: Dark Matter Day rocks SMU’s campus

The CW33 TV visited SMU on Halloween to get a glimpse of International Dark Matter Day in action on the SMU campus.

The CW33 TV stopped at the SMU campus during the early morning hours of Halloween to interview SMU physics professor Jodi Cooley about the capers afoot in celebration of International Dark Matter Day.

The SMU Department of Physics in Dedman College of Humanities and Sciences hosted the Oct. 31, 2017 Dark Matter Day celebration for students, faculty, staff and Dallas-area residents.

As part of the festivities, there were speaking events by scientists in the field of dark matter, including dark matter expert Cooley, to explain the elusive particles that scientists refer to as dark matter.

Then throughout Halloween day, the public was invited to test their skills at finding dark matter — in this case, a series of 26 rocks bearing educational messages related to dark matter, which the Society of Physics Students had painted and hidden around the campus. Lucky finders traded them for prizes from the Physics Department.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” said Cooley, whose research is focused on the scientific challenge of detecting dark matter. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Watch the full news segment.

EXCERPT:

By Shardae Neal
The CW33

On Halloween (excuse us) “International Dark Matter Day,” SMU students hosted a public witch hunt to search for the unknown: dark matter.

“What we’re doing is hiding 26 rocks that we have with the help of our society of physic students,” explained SMU Physicist Jodi Cooley.

What exactly is dark matter?

“Think about all the stuff there is in the universe,” Cooley added. “What we can account for makes up only four to five percent of the universe. The rest of it is unknown. Turns out 26% of that unknown stuff is dark matter.”

Watch the full news segment.

Categories
Earth & Climate Energy & Matter Events Learning & Education Researcher news Student researchers Videos

SMU Dark Matter Day celebration culminates in a dark matter rock hunt on Halloween

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day.” — SMU physicist Jodi Cooley

This Halloween, people around the world will be celebrating the mysterious cosmic substance that permeates our universe: dark matter.

At SMU, the Department of Physics in Dedman College of Humanities and Sciences is hosting a Dark Matter Day celebration, and students, faculty, staff and DFW residents are invited to join in the educational fun with events open to the public.

To kick off the festivities, two speaking events by scientists in the field of dark matter will familiarize participants with the elusive particles that scientists refer to as dark matter. The first talk is oriented toward the general public, while the second is more technical and will appeal to people familiar with one of the STEM areas of science, technology, engineering or mathematics, particularly physics and astrophysics.

Then throughout Halloween day, everyone is invited to test their skills at finding dark matter — in this case, a series of rocks bearing educational messages related to dark matter, which the Society of Physics Students has painted and then hidden around the campus.

Anyone lucky enough to find one of the 26 rocks can present it at the Physics Department office to receive a prize, says SMU physics professor Jodi Cooley, whose research is focused on the scientific challenge of detecting dark matter.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” Cooley said. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Anyone who discovers a dark matter rock on the SMU campus is encouraged to grab their phone and snap a selfie with their rock. Tweet and tag your selfie #SMUDarkMatter so that @SMU, @SMUResearch and @SMUPhysics can retweet photos of the lucky finders.

As SMU’s resident dark matter scientist, Cooley is part of the 100-person international SuperCDMS SNOLAB experiment, which uses ultra pure materials and highly sensitive custom-built detectors to listen for the passage of dark matter.

SuperCDMS, an acronym for Super Cryogenic Dark Matter Search, resides at SNOLAB, an existing underground science laboratory in Ontario, Canada. Located deep underground, SNOLAB allows scientists to use the earth as a shield to block out particles that resemble dark matter, making it easier to see the real thing.

The SuperCDMS SNOLAB experiment, expected to be operational in 2020, has been designed to go deeper below the surface of the earth than earlier generations of the research.

“Dark matter experiments have been a smashing success — they’ve progressed farther than anyone anticipated. The SuperCDMS SNOLAB experiment is quite unique,” Cooley said. “It will allow us to probe models that predict dark matter with the tiniest masses.”

For more on Cooley’s research, go to “Hunt for dark matter takes physicists deep below earth’s surface, where WIMPS can’t hide. — Margaret Allen, SMU

Dark Matter Day events at SMU:

  • Sunday, Oct. 29, 4 p.m., McCord Auditorium — Maruša Bradač, Associate Professor at the University of California at Davis, will give a public lecture on dark matter. A reception will follow the lecture from 5 p.m. to 6 p.m. in the Dallas Hall Rotunda with beverages and light snacks. This event is free and open to the public, and is designed to be open to the widest possible audience.
  • Monday, Oct. 30, 4 p.m., Fondren Science Building, Room 158 — SMU Associate Professor Jodi Cooley will present a seminar on the SuperCDMS direct-detection dark matter search experiment. This event is part of the Physics Department Speaker Series. While this event is open to the public, it will be a more technical talk and may appeal more to an audience interested in the STEM areas of science, technology, engineering and mathematics, especially physics and astrophysics.
  • Tuesday, Oct. 31, 9 a.m. – 4 p.m., SMU Main Campus, Dark Matter Rock Hunt — The SMU Department of Physics has hidden “dark matter rocks” all across the SMU main campus. If you discover one of the dark matter rocks, bring it to the main office of the Physics Department, Fondren Science Building, Room 102, and get a special prize. All SMU students, faculty, staff and community members are welcome to join in the search.
Categories
Culture, Society & Family Feature Health & Medicine Student researchers

Study: New simple method determines rate at which we burn calories walking uphill, downhill, and on level ground

New method uses three variables of speed, load carried and slope to improve on the accuracy of existing standards for predicting how much energy people require for walking — a method beneficial to many, including military strategists to model mission success

When military strategists plan a mission, one of many factors is the toll it takes on the Army’s foot soldiers.

A long march and heavy load drains energy. So military strategists are often concerned with the calories a soldier will burn, and the effect of metabolic stress on their overall physiological status, including body temperature, fuel needs and fatigue.

Now scientists at Southern Methodist University, Dallas, have discovered a new more accurate way to predict how much energy a soldier uses walking.

The method was developed with funding from the U.S. military. It significantly improves on two existing standards currently in use, and relies on just three readily available variables.

An accurate quantitative assessment tool is important because the rate at which people burn calories while walking can vary tenfold depending on how fast they walk, if they carry a load, and whether the walk is uphill, downhill or level.

“Our new method improves on the accuracy of the two leading standards that have been in use for nearly 50 years,” said exercise physiologist Lindsay W. Ludlow, an SMU post-doctoral fellow and lead author on the study. “Our model is fairly simple and improves predictions.”

The research is part of a larger load carriage initiative undertaken by the U.S. Army Medical Research and Materiel Command. The average load carried by light infantry foot soldiers in Afghanistan in April and May 2003 was 132 pounds, according to a U.S. Army Borden Institute report.

“Soldiers carry heavy loads, so quantitative information on the consequences of load is critical for many reasons, from planning a route to evaluating the likelihood of mission success,” said SMU biomechanist and physiologist Peter Weyand, @Dr_Weyand.

“The military uses a variety of approaches to model, predict and monitor foot-soldier status and performance, including having soldiers outfitted with wearable devices,” Weyand said. “There is a critical need with modern foot soldiers to understand performance from the perspective of how big a load they are carrying.”

Weyand is senior author on the research and directs the Locomotor Performance Laboratory in the SMU Simmons School of Education, where subjects for the study were tested.

The researchers call their new method the “Minimum Mechanics Model” to reflect that it requires only three basic and readily available inputs to deliver broad accurate predictions. They report their findings in “Walking economy is predictably determined by speed, grade and gravitational load” in the Journal of Applied Physiology.

The necessary variables are the walker’s speed, the grade or slope of the walking surface, and the total weight of the body plus any load the walker is carrying.

“That’s all it takes to accurately predict how much energy a walker burns,” Ludlow said.

While the measurement is a critical one for foot soldiers, it’s also useful for hikers, backpackers, mall-walkers and others who are calorie conscious and may rely on wearable electronic gadgets to track the calories they burn, she said.

Muscle and gait mechanics tightly coupled across speed, grade, load
Existing standards now in use rely on the same three variables, but differently, and with less accuracy and breadth.

The new theory is a departure from the prevailing view that the mechanics of walking are too complex to be both simple and accurate.

“Ultimately, we found that three remarkably simple mechanical variables can provide predictive accuracy across a broad range of conditions,” Ludlow said. “The accuracy achieved provides strong indirect evidence that the muscular activity determining calorie-burn rates during walking is tightly coupled to the speed, surface inclination and total weight terms in our model.”

By using two different sets of research subjects, the researchers independently evaluated their model’s ability to accurately predict the amount of energy burned.

“If muscle and gait mechanics were not tightly coupled across speed, grade and load, the level of predictive accuracy we achieved is unlikely,” Weyand said.

First generalized equation developed directly from a single, large database
The two existing equations that have been the working standards for nearly 50 years were necessarily based on just a few subjects and a limited number of data points.

One standard from the American College of Sports Medicine tested only speed and uphill grades, with its first formulation being based on data from only three individuals.

The other standard, commonly referred to as the Pandolf equation is used more frequently by the military and relies heavily on data from six soldiers combined with earlier experimental results.

In contrast, the generalized equation from SMU was derived from what is believed to be the largest database available for human walking metabolism.

The SMU study tested 32 adult subjects individually under 90 different speed-grade and load conditions on treadmills at the SMU Locomotor Performance Laboratory, @LocomotorLabSMU.

“The leading standardized equations included only level and uphill inclinations,” Weyand said. “We felt it was important to also provide downhill capabilities since soldiers in the field will encounter negative inclines as frequently as positive ones.”

Subjects fast prior to measuring their resting metabolic rates
Another key element of the SMU lab’s Minimum Mechanics Model is the quantitative treatment of resting metabolic rate.

“To obtain true resting metabolic rate, we had subjects fast for 8 to 12 hours prior to measuring their resting metabolic rates in the early morning,” Ludlow said. “Once at the lab, they laid down for an hour while the researchers measured their resting metabolic rate.”

In separate test sessions, the subjects walked on the treadmill for dozens of trials lasting five minutes each, wearing a mouthpiece and nose clip. In the last two minutes of each trial, the researchers measured steady-state rates of oxygen uptake to determine the rate at which each subject was burning energy.

Adults in one group of 20 subjects were each measured walking without a load at speeds of 0.4 meters per second, 0.7 meters per second, 1 meter per second, 1.3 meters per second and 1.6 meters per second on six different gradients: downhill grades of minus six degrees and minus three degrees; level ground; and uphill at inclines of three degrees, six degrees and nine degrees.

Adults in a second group of 20 were each tested at speeds of 0.6 meters per second, 1 meter per second and 1.4 meters per second on the same six gradients, but they carried loads that were 18 percent of body weight, and 31 percent of body weight.

Walking metabolic rates increased in proportion to increased load
As expected, walking metabolic rates increased in direct proportion to the increase in load, and largely in accordance with support force requirements across both speed and grade, said Weyand and Ludlow.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development. He also is lead scientist for the biomechanics and modeling portion of the Sub-2-Hour marathon project, an international research consortium based in the United Kingdom. — Margaret Allen, SMU

Categories
Culture, Society & Family Fossils & Ruins Researcher news Subfeature

Prehistoric humans formed complex mating networks to avoid inbreeding

A new study has sequenced the genomes of individuals from an ancient burial site in Russia and discovered that they were, at most, first cousins, indicating that they had developed sexual partnerships beyond their immediate social and family group.

A new study has identified when humans transitioned from simple systems designed to minimize inbreeding to more complex ones suitable for hunter-gatherer societies.

The study findings are reported in the journal Science and demonstrate that, by at least 34,000 years ago, human hunter-gatherer groups had developed sophisticated social and mating networks that minimized inbreeding.

The study examined genetic information from the remains of modern humans who lived during the early part of the Upper Palaeolithic, a period when modern humans from Africa first colonized western Eurasia, eventually displacing the Neanderthals who lived there before.

The results suggest that people deliberately sought partners beyond their immediate family, and that they were probably connected to a wider network of groups from within which mates were chosen, thus avoiding inbreeding.

The research was carried out by an international team of academics, led by the University of Cambridge, U.K., and the University of Copenhagen, Denmark. The team included SMU archaeologist David J. Meltzer, whose expertise includes the First People in the Americas.

The researchers sequenced the genomes of four individuals from Sunghir, a famous Upper Palaeolithic site in Russia, which was inhabited about 34,000 years ago.

The article, “Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers,” is published in the Oct. 5, 2017 issue of Science.

Complex mating systems may partly explain modern human survival
Among recent hunter-gatherers, the exchange of mates between groups is embedded into a cultural system of rules, ceremonies and rituals. The symbolism, complexity and time invested in the extraordinarily rich objects and jewellery found in the Sunghir burials, as well as the burials themselves, suggest that these early human societies symbolically marked major events in the life of individuals and their community in ways that foreshadow modern rituals and ceremonies — birth, marriage, death, shared ancestry, shared cultures.

The study’s authors also hint that the early development of more complex mating systems may at least partly explain why modern humans proved successful while other, rival species, such as Neanderthals, did not. More ancient genomic information from both early humans and Neanderthals is needed to test this idea.

The human fossils buried at Sunghir are a unique source of information about early modern human societies of western Eurasia. Sunghir preserves two contemporaneous burials – that of an adult man, and that of two children buried together and which includes the symbolically modified remains of another adult.

To the researchers’ surprise, however, these individuals were not closely related in genetic terms; at the very most, they were second cousins. This is true even for the two children who were buried head-to-head in the same grave.

“What this means is that people in the Upper Palaeolithic, who were living in tiny groups, understood the importance of avoiding inbreeding,” said Eske Willerslev, a professor at St John’s College and the University of Copenhagen, who was senior author on the study. “The data that we have suggest that it was being purposely avoided. This means that they must have developed a system for this purpose. If the small hunter and gathering bands were mixing at random, we would see much greater evidence of inbreeding than we have here.”

Early human societies changed ancestral mating system
The small family bands were likely interconnected within larger networks, facilitating the exchange of peoples between bands in order to maintain diversity, said Martin Sikora, a professor at the Centre for GeoGenetics at the University of Copenhagen.

Most non-human primate societies are organized around single-sex kin (matrilines or patrilines), where one of the sexes remains resident and the other migrates to another group, thus minimizing inbreeding. At some point, early human societies changed the ancestral mating system into one in which a large number of the individuals that form small resident/foraging units are non-kin, where the relations among units that exchange mating partners are formalized through complex cultural systems.

In at least one Neanderthal case, an individual from the Altai Mountains who died about 50,000 years ago, inbreeding was not avoided, suggesting that the modern human cultural systems that allows to decouple the size of the resident community from the danger of inbreeding was not in place. This leads the researchers to speculate that an early, systematic approach to preventing inbreeding may have helped modern humans to thrive in relation to with other hominins.

This should be treated with caution, however.

“We don’t know why the Altai Neanderthal groups were inbred,” Sikora said. “Maybe they were isolated and that was the only option; or maybe they really did fail to develop a network of connections. We will need more genomic data of diverse Neanderthal populations to be sure.”

Upper Palaeolithic human groups sustained very small group sizes
The researchers were able to sequence the complete genomes of all four individuals found within the two graves at Sunghir. These data were compared with information on both modern and ancient human genomes from across the world.

They found that the four individuals studied were genetically no closer than second cousins, while the adult femur filled with red ochre found in the youngsters’ grave would have belonged to an individual no closer than great-great grandfather of the boys. “This goes against what many would have predicted,” Willerslev said. “I think many researchers had assumed that the people of Sunghir were very closely related, especially the two youngsters from the same grave.”

The people at Sunghir may have been part of a network similar to that of modern day hunter-gatherers, such as Aboriginal Australians and some historical Native American societies. Like their Upper Palaeolithic ancestors, these societies lived in fairly small groups of some 25 people, but they were also connected to a larger community of perhaps 200 people, within which there were rules governing with whom individuals can form partnerships.

“The results from Sunghir show that Upper Palaeolithic human groups could sustain very small group sizes by embedding them in a wide social network of other groups maintained by sophisticated cultural systems,” said Marta Mirazón Lahr, a professor at the University of Cambridge.

Willerslev also highlights a possible link with the unusual sophistication of the ornaments and cultural objects found at Sunghir. Such band-specific cultural expressions may have been used to signal who are “we” versus who are “they,” and thus a means of reinforcing a shared identity built on marriage exchange across foraging units. The number and sophistication of personal ornaments and artefacts found at Sunghir are exceptional even among other modern human burials, and not found among Neanderthals and other hominins.

“The ornamentation is incredible and there is no evidence of anything like that with other hominins,” Willerslev added. “When you put the evidence together, it seems to be telling us about the really big questions: what made these people who they were as a species, and who we are as a result.”

Ancient genomics throw light on aspects of social life
These results show the power of ancient genomics to throw light on aspects of social life among early humans, and pave the way for further studies to explore variation in social and demographic strategies in prehistoric socieities.

“Much of human evolution is about changes in our social and cultural behavior, and the impact this has had on our success as a species. This study takes us a step further toward pinpointing when and why the things that make humans unique evolved,” said Robert Foley, a professor at the University of Cambridge.

Meltzer is Henderson-Morrison Professor of Prehistory in the SMU Department of Anthropology in Dedman College. As a scientist who studies how people first came to inhabit North America, Meltzer in 2009 was elected a member of the National Academy of Sciences in recognition for his achievements in original scientific research. In 2013 he was elected to the American Academy of Arts and Sciences. — University of Cambridge, SMU

Categories
Culture, Society & Family Fossils & Ruins Researcher news Technology

A composite window into human history

Better integration of ancient DNA studies with archaeology promises deeper insights.

DNA testing alone of ancient human remains can’t resolve questions about past societies.

It’s time for geneticists and archaeologists to collaborate more fully in the face of ever greater advancements in ancient DNA research, according to SMU archaeologist David J. Meltzer and his colleagues in a recent article in the scientific journal Science.

The authors write in “A composite window into human history” that over the past decade, DNA testing of ancient human remains has become a valuable tool for studying and understanding past human population histories.

Most notably, for example, is how sequencing of ancient genomes resolved the dispute over our species’ evolutionary relationship with Neanderthals, the authors point out.

Even so, the authors caution that collaboration with archaeologists is key for scientific accuracy as well as navigating ethical implications.

Archaeologists know from the study of artifacts that it isn’t always the case that people who share material culture traits were likewise part of the same biological population.

“One can have similar traits without relatedness, and relatedness without similarity in traits,” say the authors in the article.

At the same time, where there is biological relatedness, cultural relatedness can’t be assumed, nor can language groups indicate that biological populations, material assemblages or even social units are related.

“Geneticists are often keen to use ancient DNA to understand the causes and mechanisms of demographic and cultural change,” the authors write. “But archaeologists long ago abandoned the idea that migrations or encounters between populations are a necessary or sufficient explanation of cultural change.”

The authors make the point that understanding population movements requires broad investigation of many factors, including environmental and social contexts, timing and logistics, how new resources and landscapes were managed, and the transfer of cultural knowledge.

“Hence, it requires evidence for archaeology, paleoecology and other fields to supplement and complement ancient DNA data,” the authors write. “And that entails effective collaboration, one that goes beyond archaeologists serving as passive sample providers.”

Meltzer is Henderson-Morrison Professor of Prehistory in the SMU Department of Anthropology in Dedman College. As a scientist who studies how people first came to inhabit North America, Meltzer in 2009 was elected a member of the National Academy of Sciences in recognition for his achievements in original scientific research. In 2013 he was elected to the American Academy of Arts and Sciences.

Co-authors on the perspective piece with Meltzer were Niels N. Johannsen, Aarhus University, Denmark; Greger Larson, University of Oxford; and Marc Vader Linden, University College London.

Categories
Culture, Society & Family Learning & Education Researcher news Subfeature

$2.5 million NSF grant gives teachers a math assessment tool to help students

New assessment tool for teachers to measure math reasoning skills can drive effort to intervene early in ongoing struggles of U.S. elementary and high school students

A $2.5 million grant from the National Science Foundation to researchers at Southern Methodist University, Dallas, targets the ongoing struggle of U.S. elementary and high school students with math.

When it comes to the STEM fields of science, technology, engineering and math, research shows that U.S. students continue at a disadvantage all the way through high school and entering college.

The four-year NSF grant to the Annette Caldwell Simmons School of Education and Human Development is led by SMU K-12 math education experts Leanne Ketterlin Geller and Lindsey Perry. They will conduct research and develop an assessment system comprised of two universal screening tools to measure mathematical reasoning skills for grades K–2.

“This is an opportunity to develop an assessment system that can help teachers support students at the earliest, and arguably one of the most critical, phases of a child’s mathematical development,” said Ketterlin Geller, a professor in the Simmons School and principal investigator for the grant developing the “Measures of Mathematical Reasoning Skills” system.

Teachers and schools will use the assessment system to screen students and determine who is at risk for difficulty in early mathematics, including students with disabilities. The measures also will help provide important information about the intensity of support needed for a given student.

Few assessments are currently available to measure the critical math concepts taught during those early school years, Ketterlin Geller said.

“Providing teachers with data to understand how a child processes these concepts can have a long-term impact on students’ success not only in advanced math like algebra, but also success in STEM fields, such as chemistry, biology, geology and engineering,” she said.

Early math a better predictor of future learning
A 2015 Mathematics National Assessment of Education Progress report found that only 40 percent of U.S. fourth-grade students were classified as proficient or advanced, and those numbers have not improved between 2009 and 2015. In fact, the geometry scale of the fourth-grade mathematics report was significantly lower in 2015 than in 2009.

Early mathematics is a better and more powerful predictor of future learning, including reading and mathematics achievement, compared to early reading ability or other factors such as attention skills, according to one 2007 study on school readiness.

Research also has found that students’ early mathematics knowledge is a more powerful predictor of their future socioeconomic status at age 42 than their family’s socioeconomic status as children.

Early mathematics comprises numerous skills. However, number sense — the ability to work with numbers flexibly — in addition to spatial sense — the ability to understand the complexity of one’s environment — are consistently identified as two of the main components that should be emphasized in early mathematics standards and instruction, say the SMU researchers.

The Measures of Mathematical Reasoning Skills system will contain tests for both numeric relational reasoning and spatial reasoning.

Universal screening tools focused on these topics do not yet exist
“I’m passionate about this research because students who can reason spatially and relationally with numbers are better equipped for future mathematics courses, STEM degrees and STEM careers,” said Perry, whose doctoral dissertation for her Ph.D. from SMU in 2016 specifically focused on those two mathematical constructs.

“While these are very foundational and predictive constructs, these reasoning skills have typically not been emphasized at these grade levels, and universal screening tools focused on these topics do not yet exist,” said Perry, who is co-principal investigator.

“Since intervention in the early elementary grades can significantly improve mathematics achievement, it is critical that K-2 teachers have access to high-quality screening tools to help them with their intervention efforts,” she said. “We feel that the Measures of Mathematical Reasoning Skills system can really make a difference for K-2 teachers as they prepare the next generation of STEM leaders.”

The four-year project, Measuring Early Mathematical Reasoning Skills: Developing Tests of Numeric Relational Reasoning and Spatial Reasoning, started Sept. 15, 2017. It employs an iterative research design for developing formative assessments, a process that Ketterlin Geller has devoted much of her 20-year career to.

Ketterlin Geller is Texas Instruments Endowed Chair in Education and director of Research in Mathematics Education in SMU’s Annette Caldwell Simmons School of Education and Human Development. She is also a Fellow with the Caruth Institute for Engineering Education in the Lyle School of Engineering.

Categories
Culture, Society & Family Feature Fossils & Ruins Researcher news SMU In The News

Sapiens: Why the Famous Folsom Point Isn’t a Smoking Gun

A Folsom spear point was discovered between the ribs of an extinct species of bison — but was it really proof that humans had killed the animal?

The research into the arrival of how and when people first arrived in North America by noted SMU archaeologist David J. Meltzer was covered in the online anthropology magazine Sapiens in a column by Stephen E. Nash, science historian and archaeologist at the Denver Museum of Nature & Science.

The article, Why the Famous Folsom Point Isn’t a Smoking Gun, published Aug. 29, 2017.

Meltzer, a member of the National Academy of Sciences and Henderson-Morrison Professor of Prehistory in SMU’s Dedman College of Humanities and Sciences, conducts original research into the origins, antiquity and adaptations of the first Americans.

Paleoindians colonized the North American continent at the end of the Ice Age. Meltzer focuses on how those hunter-gatherers met the challenges of moving across and adapting to the vast, ecologically diverse landscape of Late Glacial North America during a time of significant climate change.

Meltzer’s archaeology and history research has been supported by grants from the National Geographic Society, the National Science Foundation, The Potts and Sibley Foundation and the Smithsonian Institution. In 1996, he received a research endowment from Joseph and Ruth Cramer to establish the Quest Archaeological Research Program at SMU, which will support in perpetuity research on the earliest occupants of North America.

Read the full story.

EXCERPT:

By Stephen E. Nash
Sapiens

Remember the iconic Folsom point? The one that I said, in my last post, changed the future of archaeology?

To recap: On August 29, 1927, paleontologists from the Colorado Museum of Natural History (renamed the Denver Museum of Nature & Science in 2000) discovered a stone projectile point embedded in the ribs of an extinct form of bison.

After making that discovery in the field, the researchers left the point sitting where it was and immediately sent out a call to their colleagues to come to northeastern New Mexico to see it for themselves. Within two weeks a number of well-known scientists had visited the site, seen the point in position, and established a scientific consensus: Native Americans lived and hunted in North America during the end of the last Ice Age, about 12,000 years ago, far earlier than they were previously thought to be here.

It turns out, though, that the story at the Folsom Site was more complicated than researchers initially believed. So what has changed since 1927? The latest part of the story began 20 years ago.

In 1997, David Meltzer, an archaeologist at Southern Methodist University who studies “Paleoindians,” the earliest inhabitants of North America, began a three-year project at the Folsom Site to reassess and re-excavate the site using modern tools and techniques—which were not available in the 1920s. His goal was to better understand how, and under what conditions, the Folsom Site formed. Meltzer and his team used now-standard excavation-control techniques to record their findings in three-dimensional space and to determine if any unexcavated areas of the site could be found. In so doing, they hoped to find evidence of the Paleoindian campsite that might have been associated with the main bison-kill and butchering site.

As a result of Meltzer’s research, we now know that the bison-kill event occurred in the fall. How do we know? Bison reproduce, give birth, and grow up on a reasonably predictable annual cycle. Meltzer and his colleagues analyzed dental eruption patterns on excavated bison teeth to determine the season of the kill.

The archaeologists also determined that Folsom hunters were experts at their job, having systematically killed and butchered at least 32 bison at the site.

Read the full story.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

Australian Geographic: Secrets of leaf size revealed

New findings reveal the real reasons behind varying leaf sizes.

Australian Geographic has covered the research of SMU paleobotanist Bonnie F. Jacobs, a professor in SMU’s Roy M. Huffington Department of Earth Sciences.

Working with a global team of researchers, Jacobs and her colleagues cracked the mystery of leaf size. The research was published Sept. 1, 2017 as a cover story in Science.

The researchers from Australia, the U.K., Canada, Argentina, the United States, Estonia, Spain and China analyzed leaves from more than 7,600 species of plants over the past 20 years, then pooled and analyzed the data with new theory to create a series of equations that can predict the maximum viable leaf size anywhere in the world based on the risk of daytime overheating and night-time freezing.

The researchers will use these findings to create more accurate vegetation models. This will be used by governments to predict how vegetation will change locally and globally under climate change, and to plan for adaptation.

Jacobs contributed an extensive leaf database — research that was funded by a National Science Foundation grant. She analyzed the leaf characteristics of 880 species of modern tropical African plants, which occurred in various combinations among 30 plant communities. Jacobs measured leaves of the plant specimens at the Missouri Botanical Garden Herbarium, one of the largest archives of pressed dried plant specimens from around the world.

Jacobs is one of a handful of the world’s experts on the fossil plants of ancient Africa. As part of a team of paleontologists working there, she hunts plant and animal fossils in Ethiopia’s prolific Mush Valley, as well as elsewhere in Africa.

Read the full story.

EXCERPT:

By Karl Gruber
Australian Geographic

You may have learnt at school that leaf size depends on water availability and that they are meant to help plants avoid overheating. But a new study that looked at leaf sizes around the world found that, rather than water availability, it all boils down to temperature, both high and low.

Leaf sizes can vary by as much as 100,000 fold, with some leaves having an area of just 1 mm2 while other can have an area of up to 1 m2. But what is driving these big differences?

“The conventional explanation was that water availability and overheating were the two major limits to leaf size. But the data didn’t fit,” says Ian. “For example the tropics are both wet and hot, and leaves in cooler parts of the world are unlikely to overheat,” explained Ian Wright, from Macquarie University, who led the new study.

A key finding from the study is that for plants all around the world the main factors limiting leaf size are the risk of frosting in cold nights, which can damage leaves, and the risk of overheating during the day.

“Latitude explains 28% of variation leaf size, globally. Warm wet regions are characterised by large-leaved species, warm dry regions and cold regions by smaller-leaved species. These patterns can all be understood in relation to the energy inputs and outputs to leaves, but only if you consider both the daytime (overheating) and night-time (freezing) risks,” Wright says.

Read the full story.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

BBC: Clues to why leaves come in many sizes

The huge variety of leaves in the plant kingdom has long been a source of wonder and fascination.

BBC News has covered the research of SMU paleobotanist Bonnie F. Jacobs, a professor in SMU’s Roy M. Huffington Department of Earth Sciences.

Working with a global team of researchers, Jacobs and her colleagues cracked the mystery of leaf size. The research was published Sept. 1, 2017 as a cover story in Science.

The researchers from Australia, the U.K., Canada, Argentina, the United States, Estonia, Spain and China analyzed leaves from more than 7,600 species of plants over the past 20 years, then pooled and analyzed the data with new theory to create a series of equations that can predict the maximum viable leaf size anywhere in the world based on the risk of daytime overheating and night-time freezing.

The researchers will use these findings to create more accurate vegetation models. This will be used by governments to predict how vegetation will change locally and globally under climate change, and to plan for adaptation.

Jacobs contributed an extensive leaf database — research that was funded by a National Science Foundation grant. She analyzed the leaf characteristics of 880 species of modern tropical African plants, which occurred in various combinations among 30 plant communities. Jacobs measured leaves of the plant specimens at the Missouri Botanical Garden Herbarium, one of the largest archives of pressed dried plant specimens from around the world.

Jacobs is one of a handful of the world’s experts on the fossil plants of ancient Africa. As part of a team of paleontologists working there, she hunts plant and animal fossils in Ethiopia’s prolific Mush Valley, as well as elsewhere in Africa.

Read the full story.

EXCERPT:

By Helen Briggs
BBC News

The leaves of a banana plant, for instance, are about a million times bigger than the leaves of heather.

The conventional wisdom is that leaf size is limited by the balance between how much water is available to a plant and the risk of overheating.

However, a study of more than 7,000 plant species around the world suggests the answer may be more complex.

“A banana leaf is able to be so huge because bananas naturally grow in places that are very hot and very wet,” said Ian Wright of Macquarie University in Sydney, Australia.
“Our work shows that in fact that if there’s enough water in the soil then there’s almost no limit to how large leaves can be.”

He says this is only part of the puzzle of leaf size.

“The other part is about the tendency for larger leaves to freeze at night,” Dr Wright explained.

“And, you put these two ingredients together — the risk of freezing and the risk of overheating — and this helps understand the pattern of leaf sizes you see across the entire world.”

There are hundreds of thousands of plant species on the planet, from tiny alpine plants to massive jungle palms.

Their leaves vary in area from less than 1 square millimetre to greater than 1 square metre.

Large-leaved plants predominate in tropical jungle — something that was noted as early as the 19th Century. Meanwhile, small-leaved plants thrive in arid deserts and at high latitudes.

Some decades ago, scientists realised that variability in leaf size was related to water and temperature. They proposed that the limit to leaf size was set by the risk of overheating.

Thus, when rainfall is high, plants can get away with having larger leaves.
The new research, published in the journal Science, suggests this idea applies only in certain regions of the globe.

“There were some pieces in this puzzle that were clearly missing,” Dr. Wright told BBC News.

Read the full story.

Categories
Earth & Climate Feature Fossils & Ruins Plants & Animals Researcher news

The mystery of leaf size solved by global team of scientists

A global team of researchers, including SMU paleobotanist Bonnie Jacobs, have cracked the mystery of leaf size. The research was published Sept. 1, 2017 as a cover story in Science.

SMU paleobotanist Bonnie F. Jacobs has contributed research to a major new study that provides scientists with a new tool for understanding both ancient and future climate by looking at the size of plant leaves.

Why is a banana leaf a million times bigger than a common heather leaf? Why are leaves generally much larger in tropical jungles than in temperate forests and deserts? The textbooks say it’s a balance between water availability and overheating.

But it’s not that simple, the researchers found.

The study, published in the Sept. 1, 2017 issue of Science, was led by Associate Professor Ian Wright from Macquarie University, Australia. The study’s findings reveal that in much of the world the key factor limiting the size of a plant’s leaves is the temperature at night and the risk of frost damage to leaves.

Jacobs said the implications of the study are significant for enabling scientists to either predict modern leaf size in the distant future, or to understand the climate for a locality as it may have been in the past.

“This research provides scientists with another tool for predicting future changes in vegetation, given climate change, and for describing ancient climate given fossil leaves,” said Jacobs, a professor in SMU’s Roy M. Huffington Department of Earth Sciences in the Dedman College of Humanities and Sciences.

“Now we can reliably use this as another way to look at future climate models for a specific location and predict the size of plant leaves,” she said. “Or, if we’re trying to understand what the climate was for a prehistoric site tens of millions of years ago, we can look at the plant fossils discovered in that location and describe what the climate most likely was at that time.”

Wright, Jacobs and 15 colleagues from Australia, the U.K., Canada, Argentina, the United States, Estonia, Spain and China analyzed leaves from more than 7,600 species, then pooled and analyzed the data with new theory to create a series of equations that can predict the maximum viable leaf size anywhere in the world based on the risk of daytime overheating and night-time freezing.

The researchers will use these findings to create more accurate vegetation models. This will be used by governments to predict how vegetation will change locally and globally under climate change, and to plan for adaptation.

Big data solves century-old conundrum
The iconic paintings of Henri Rousseau illustrate that when we think of steamy tropics we expect large leaves. But for scientists it’s been a century-old conundrum: why does leaf size vary with latitude – from very small near the poles to massive leaves in the tropics?

“The conventional explanation was that water availability and overheating were the two major limits to leaf size. But the data didn’t fit,” says Wright. “For example the tropics are both wet and hot, and leaves in cooler parts of the world are unlikely to overheat.”

“Our team worked both ends of the problem – observation and theory,” he says. “We used big data – measurements made on tens of thousands of leaves. By sampling across all continents, climate zones and plant types we were able to show that simple ‘rules’ seemingly operate across the world’s plant species, rules that were not apparent from previous, more limited analyses.”

Jacobs contributed an extensive leaf database she compiled about 20 years ago, funded by a National Science Foundation grant. She analyzed the leaf characteristics of 880 species of modern tropical African plants, which occurred in various combinations among 30 plant communities. Jacobs measured leaves of the plant specimens at the Missouri Botanical Garden Herbarium, one of the largest archives of pressed dried plant specimens from around the world.

She looked at all aspects of leaf shape and climate, ranging from seasonal and annual rainfall and temperature for each locale, as well as leaf shape, size, tip, base, among others. Using statistical analyses to plot the variables, she found the most prominent relationship between leaf shape and climate was that size increases with rainfall amount. Wet sites had species with larger leaves than dry sites.

Her Africa database was added to those of many other scientists who have compiled similar data for other localities around the world.

Threat of night time frost damage determines the size of a leaf
“Using our knowledge of plant function and biophysics we developed a fresh take on ‘leaf energy balance’ theory, and compared our predictions to observed leaf sizes,” Wright says.

“The most surprising result was that over much of the world the maximum size of leaves is set not by the risk of overheating, but rather by the risk of damaging frost at night. Larger leaves have thicker, insulating ‘boundary layers’ of still air that slows their ability to draw heat from their surroundings – heat that is needed to compensate for longwave energy lost to the night-time sky,” says co-author Colin Prentice from Imperial College London, who co-ordinated the mathematical modelling effort.

“International collaborations are making ecology into a predictive science at global scale,” says Emeritus Professor Mark Westoby. “At Macquarie University we’re proud to have led this networking over the past 20 years.” — Margaret Allen, SMU, and Macquarie University

By Ian Wright
Macquarie University

As a plant ecologist, I try to understand variation in plant traits (the physical, chemical and physiological properties of their tissues) and how this variation affects plant function in different ecosystems.

For this study I worked with 16 colleagues from Australia, the UK, Canada, Argentina, the US, Estonia, Spain and China to analyse leaves from more than 7,600 species. We then teamed the data with new theory to create a model that can predict the maximum viable leaf size anywhere in the world, based on the dual risks of daytime overheating and night-time freezing.

These findings will be used to improve global vegetation models, which are used to predict how vegetation will change under climate change, and also to better understand past climates from leaf fossils.

From giants to dwarfs
The world’s plant species vary enormously in the typical size of their leaves; from 1 square millimetre in desert species such as common eutaxia (Eutaxia microphylla), or in common heather (Calluna vulgaris) in Europe, to as much as 1 square metre in tropical species like Musa textilis, the Filipino banana tree.

But what is the physiological or ecological significance of all this variation in leaf size? How does it affect the way that plants “do business”, using leaves as protein-rich factories that trade water (transpiration) for carbon (photosynthesis), powered by energy from the sun?

More than a century ago, early plant ecologists such as Eugenius Warming argued that it was the high rainfall in the tropics that allowed large-leaved species to flourish there.

In the 1960s and ‘70s physicists and physiologists tackled the problem, showing that in mid-summer large leaves are more prone to overheating, requiring higher rates of “transpirational cooling” (a process akin to sweating) to avoid damage. This explained why many desert species have small leaves, and why species growing in cool, shaded understoreys (below the tree canopy) can have large leaves.

But still there were missing pieces to this puzzle. For example, the tropics are both wet and hot, and these theories predicted disadvantages for large-leafed species in hot regions. And, in any case, overheating must surely be unlikely for leaves in many cooler parts of the world.

Our research aimed to find these missing pieces. By collecting samples from all continents, climate zones and plant types, our team found simple “rules” that appear to apply to all of the world’s plant species – rules that were not apparent from previous, more limited analyses.

We found the key factors are day and night temperatures, rainfall and solar radiation (largely determined by distance from the Equator and the amount of cloud cover). The interaction of these factors means that in hot and sunny regions that are also very dry, most species have small leaves, but in hot or sunny regions that receive high rainfall, many species have large leaves. Finally, in very cold regions (e.g. at high elevation, or at high northern latitudes), most species have small leaves.

But the most surprising results emerged from teaming the new theory for leaf size, leaf temperature and water use with the global data analyses, to investigate what sets the maximum size of leaves possible at any point on the globe.

Read the author’s full essay

Categories
Culture, Society & Family Learning & Education Researcher news SMU In The News

Texas Tribune: The Q&A — Paige Ware, SMU Simmons School

In this week’s Q&A, The Texas Tribune interviews Paige Ware, who chairs the Department of Teaching and Learning at the Simmons School of Education and Human Development at Southern Methodist University.

Texas Tribune reporter Cassandra Pollock interviewed SMU education expert Paige Ware in the Annette Caldwell Simmons School of Education and Human Development for a Q&A about preparing the teachers who teach English language learners by instructing them on-site at their schools and helping them work with families in community centers.

Ware’s research focuses both on the use of multimedia technologies for fostering language and literacy growth among adolescents, as well as on the use of Internet-based communication for promoting intercultural awareness through international and domestic online language and culture partnerships.

Her research has been funded by a National Academy of Education/Spencer Post-Doctoral Fellowship, by the International Research Foundation for English Language Education, and by the Ford Scholars program at SMU.

Ware was the principal investigator of a Department of Education Office of English Language Acquisition professional development grant supporting secondary school educators in obtaining their ESL supplemental certification.

She is co-author of a technology standards book for Teachers of English to Speakers of Other Languages and has written or co-written dozens of peer-reviewed articles and book chapters. She is a frequent speaker on technology as an acquisition tool for language and culture and on writing development in adolescent learners.

The Texas Tribune article, “The Q&A: Paige Ware,” published Aug. 31, 2017.

Read the full story.

EXCERPT:

By Cassandra Pollock
Texas Tribune

Paige Ware chairs the Department of Teaching and Learning at Southern Methodist University’s Simmons School of Education and Human Development. She recently received a $2 million grant from the U.S. Department of Education to prepare ELL (English language learners) teachers by instructing them on-site at their schools and helping them work with families in community centers.

Tasbo+Edu: Can you expand on the U.S. Department of Education grant you recently received?

Paige Ware: Yes — I co-wrote it with two of my colleagues. The Department of Education can offer these grants every five years; traditionally, they’re called professional development grants, and it’s basically money that flows into tuition to provide teacher training. However, this particular grant required an embedded strong research design into the teacher training components. That’s never been the case with these grants — it’s been exclusively just teacher training.

There were over 300 applications, and only 55 were funded. For our particular grant, we think we got funded for two reasons. First, we partnered really well with Dallas Independent School District. There’s a real desire right now for higher education and teacher training programs to do more partnering and work with districts to be more purposeful about the kind of professional development teachers need. We also partnered with the community; there’s a place in Dallas called the School Zone, which is a consortium of nonprofit groups that are there to help impact West Dallas.

The second reason we think we got the grant is our teachers will be deeply embedded in these community settings. They’ll be learning not just how to teach English better to those learners, but also learning the context. There are also multiple opportunities to work with parents.

Tasbo+Edu: The question your team is trying to tackle is whether it makes a difference for teachers to be practicing in community settings. How are you planning to move forward on it?

Ware: The question came about because most of the time in higher ed for master-level courses, we deliver instruction on university campuses; it’s divorced from actual practice in the field. Or we deliver our instruction on university campuses and then assign teachers to work on their own with English learners. There’s not engagement in the community at the graduate level. What do teachers learn differently when they’re not isolated, but when they’re actually out there in the field? We’re interested in knowing what advantages are there, and what you gain by placing teachers in the community.

There are six reasons why we think it will be advantageous for teaching in the community. First, professional development typically focuses on instruction. Second, our teachers will have more opportunities to engage with families, which isn’t always possible in a school setting. A third reason is our teachers will be able to learn from one another. Fourth, they’ll get to know the children really well because they’re only working with two children for an entire academic year. Fifth, there are a lot of opportunities for feedback, since our instructors will be with teachers in the field, giving them feedback on a weekly basis. Finally, we think this approach will help cultivate a mindset such that when teachers think about English learners, they’re seeing the education of new immigrants as a larger web of bringing people into the community.

Read the full story.

Categories
Culture, Society & Family Events Learning & Education Researcher news

Class of 2017: SMU professor named outstanding teacher by UT Regents

Alisa Winkler is an SMU adjunct faculty member and research assistant professor of paleontology in the SMU Roy M. Huffington Department of Earth Sciences.

The University of Texas System has recognized SMU Research Assistant Professor Alisa J. Winkler for extraordinary classroom performance and innovation in undergraduate instruction.

Winkler, who is an SMU adjunct faculty member in the SMU Roy M. Huffington Department of Earth Sciences, was named to the Class of 2017 for the Regent’s Outstanding Teaching Awards of The University of Texas. It is the Board of Regents’ highest honor. It recognizes faculty for the highest quality of instruction in the classroom, laboratory, field and online.

Winkler earned her Ph.D. in geology from SMU in 1990, specializing in mammalian vertebrate paleontology.

“To be honest, when I was young I never thought about being a teacher. Later in life it just came with the territory of being in academia,” Winkler said. “What I discovered as a teacher, however, is how much I enjoy, learn from, and am inspired by my students. Their passion for knowledge is both a challenge and a stimulus for me to continue learning myself.”

She is an associate professor at U.T. Southwestern Medical Center in the Department of Cell Biology, Graduate School of Biomedical Sciences.

In addition to her teaching commitments and some contributions to the higher education literature, Winkler maintains an active research program in vertebrate paleontology as a research professor in SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College of Humanities and Sciences.

In recent work, she analyzed research literature for “Fossil Rodents of Africa,” the first comprehensive summary and distribution analysis of Africa’s fossil rodents since 1978, according to SMU professor of geological sciences and vertebrate paleontologist Louis Jacobs, a world-renowned dinosaur expert and president of SMU’s Institute for the Study of Earth and Man.

“Alisa has been recognized for her teaching skills at U.T. Southwestern, but she is also globally recognized for her research on East African fossil mammals, which constrains the age and paleo-environments of human evolution,” Jacobs said. “Working from her research office in the Huffington Department of Earth Sciences, and in the field in Kenya and Uganda, she is a great asset to our students and adds depth to our program.”

Winkler received a B.A. in Biology from the University of Virginia, Charlottesville in 1978. She then earned an M.A. from the University of Texas at Austin in 1982.

She has been teaching anatomy at U.T. Southwestern since 1990. Winkler is currently co-director of the Human Structure course (anatomy, embryology and radiology) for first year medical students, and director of the Anatomy course for health professions students. Both courses focus on a cadaver-based dissection laboratory, and require extensive administrative, organizational and teaching commitments.

Winkler is the recipient of numerous teaching awards from the medical students, including seven pre-clinical teaching awards and a Katherine Howe Muntz Award for Teaching in Anatomy (2010). The Human Structure course was awarded the best course award for first year courses in 2016. She was awarded an outstanding educator award in health care sciences from the health professions students in 2014.

The Regent’s Outstanding Teacher Award was established in 2008 and is offered annually in recognition of faculty members at the The University of Texas System’s eight academic and six health institutions. With a monetary award of $25,000, the Regents’ Outstanding Teaching Awards are among the largest and most competitive in the nation for rewarding outstanding faculty performance.

Faculty members undergo a series of rigorous evaluations by students, peer faculty and external reviewers. The review panels consider a range of activities and criteria in their evaluations of a candidate’s teaching performance, including classroom expertise, curricula quality, innovative course development and student learning outcomes.

Winkler is one of 56 faculty members from across U.T.’s 14 academic and health institutions honored with the award by the Regents Aug. 23 in Austin. — SMU, U.T. System

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News

Sapiens: Can Medical Anthropology Solve the Diabetes Dilemma?

As the number of sufferers continues to rise, some researchers are moving in new directions to figure out how culture and lifestyle shape disease outcomes.

Sapiens reporter Kate Ruder covered the research of SMU anthropologist Carolyn Smith-Morris, who has studied diabetes among Arizona’s Pima Indians for more than 15 years.

Smith-Morris wrote about what she learned from her research in her 2006 book, “Diabetes Among the Pima: Stories of Survival.”

The Pima have the highest prevalence of diabetes ever recorded, although the disease is alarmingly on the increase throughout the United States. In an effort to understand the rise of the disease, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) from 1965 to 2007 focused on the Pima to carry out the largest continuous study of diabetes in Native Americans. Researchers examined the environmental and genetic triggers of the disorder, management of the disease, and the treatment of thousands of Pimas.

Smith-Morris is a medical anthropologist and associate professor in the SMU Anthropology Department in Dedman College. Her research addresses chronic disease, particularly diabetes, through ethnographic and mixed methodologies. She has conducted ethnographic research among the Gila River (Akimel O’odham) Indian Community of Southern Arizona, Mexicans and Mexican immigrants to the U.S. and veterans with spinal cord injuries.

The Sapiens article, “Can Medical Anthropology Solve the Diabetes Dilemma?” published Aug. 22, 2017.

Read the full story.

EXCERPT:

By Kate Ruder
Sapiens

Mary (a pseudonym) was 18 years old and halfway through her second pregnancy when anthropologist Carolyn Smith-Morris met her 10 years ago. Mary, a Pima Indian, was living with her boyfriend, brother, parents, and 9-month-old baby in southern Arizona. She had been diagnosed with gestational diabetes during both of her pregnancies, but she didn’t consider herself diabetic because her diabetes had gone away after her first birth. Perhaps her diagnosis was even a mistake, she felt. Mary often missed her prenatal appointments, because she didn’t have a ride to the hospital from her remote home on the reservation. She considered diabetes testing a “personal thing,” so she didn’t discuss it with her family.

As Smith-Morris’ research revealed, Mary’s story was not unique among Pima women. Many had diabetes, but they didn’t understand the risks. These women’s narratives have helped to explain, in part, why diabetes has been so prevalent in this corner of the world. An astonishing half of all adult Pimas have diabetes.

Medical anthropologists like Smith-Morris are helping the biomedical community untangle the social roots of diabetes and understand how and why the disease is exploding in the United States. Smith-Morris, based out of Southern Methodist University in Dallas, Texas, has been working on this cause for over 15 years—from a decade spent among the Pimas, to a new study sponsored by Google aiming to prevent diabetes-related blindness. Anthropology, she says, provides the most holistic perspective of this complex problem: “Anthropology seems to me the only discipline that allows you to look both closely at disease … and from the bird’s eye perspective.”

More than 30 million people in the United States are estimated to have diabetes, and it’s on the rise. If trends continue, 1 out of every 3 American adults could have diabetes by 2050, according to the Centers for Disease Control and Prevention.

The condition involves insulin, a hormone that regulates the way the body uses food for energy. In type 1 diabetes, the body stops making insulin entirely; those affected need daily insulin injections to survive. In type 2 diabetes, which accounts for the vast majority of cases, change is more gradual.The body slowly makes less insulin and becomes less sensitive to it over the years. Gestational diabetes, which strikes during pregnancy, can give mothers a dangerous condition called preeclampsia, which is related to high blood pressure and can harm both mothers and babies. Women with gestational diabetes are more than seven times likelier to later develop type 2 diabetes than women who do not have the condition in pregnancy, and their children are at higher risk of obesity and diabetes. If left untreated, diabetes can cause heart disease, kidney failure, foot problems that can lead to amputation, and blindness.

The preventative measures for type 2 and gestational diabetes are seemingly straightforward: eat healthy foods, lose weight, and exercise. Treatment for both can include taking medications. Yet prevention, lifestyle, and treatment cannot entirely solve the problem; family history, ethnicity, and other factors play a critical role in a person’s susceptibility to type 2 and gestational diabetes. Both forms of diabetes continue to plague Americans, particularly certain groups, including Native Americans. “My interest in diabetes grew out of an interest in Indigenous groups,” says Smith-Morris. “I took on diabetes because it was important to them.”

From 1965 to 2007, the Pimas of Arizona were the focus of the largest continuous study of diabetes in Native Americans. Conducted by researchers from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), it examined the environmental and genetic triggers of the disorder, management of the disease, and the treatment of thousands of Pimas. It also documented that they had the highest prevalence of diabetes ever recorded. The pivotal work told researchers much of what they know about diabetes today, including that obesity is a significant risk factor, and that a mother’s diabetes during pregnancy can pass risk along to her children.

The political and economic contributors to the Pima people’s health problems have long been well-known: Their traditional farming practices collapsed during the late 1800s and early 1900s when non-Native settlers upstream diverted essential water resources, contributing to poverty, sedentariness, and a lack of fresh food. Yet Smith-Morris felt something integral was missing from this picture: the Pimas’ stories.

Read the full story.

Categories
Culture, Society & Family Earth & Climate Events Feature Learning & Education Slideshows SMU In The News Videos

A Total Eclipse of the First Day of School

Dedman College, SMU Physics Department host Great American Solar Eclipse 2017 viewing

Thousands of students, faculty and townspeople showed up to campus Monday, Aug. 21 to observe the Great American Solar Eclipse at a viewing hosted by Dedman College of Humanities and Sciences and the SMU Department of Physics.

The festive event coincided with the kick-off of SMU’s Fall Semester and included Solar Eclipse Cookies served while viewing the rare astronomical phenomenon.

The eclipse reached its peak at 1:09 p.m. in Dallas at more than 75% of totality.

“What a great first day of the semester and terrific event to bring everyone together with the help of Dedman College scientists,” said Dedman Dean Thomas DiPiero. “And the eclipse cookies weren’t bad, either.”

Physics faculty provided indirect methods for observing the eclipse, including a telescope with a viewing cone on the steps of historic Dallas Hall, a projection of the eclipse onto a screen into Dallas Hall, and a variety of homemade hand-held devices.

Outside on the steps of Dallas Hall, Associate Professor Stephen Sekula manned his home-built viewing tunnel attached to a telescope for people to indirectly view the eclipse.

“I was overwhelmed by the incredible response of the students, faculty and community,” Sekula said. “The people who flocked to Dallas Hall were energized and engaged. It moved me that they were so interested in — and, in some cases, had their perspective on the universe altered by — a partial eclipse of the sun by the moon.”

A team of Physics Department faculty assembled components to use a mirror to project the eclipse from a telescope on the steps of Dallas Hall into the rotunda onto a screen hanging from the second-floor balcony.

Adjunct Professor John Cotton built the mount for the mirror — with a spare, just in case — and Professor and Department Chairman Ryszard Stroynowski and Sekula arranged the tripod setup and tested the equipment.

Stroynowski also projected an illustration of the Earth, the moon and the sun onto the wall of the rotunda to help people visualize movement and location of those cosmic bodies during the solar eclipse.

Professor Fred Olness handed out cardboard projectors and showed people how to use them to indirectly view the eclipse.

“The turn-out was fantastic,” Olness said. “Many families with children participated, and we distributed cardboard with pinholes so they could project the eclipse onto the sidewalk. It was rewarding that they were enthused by the science.”

Stroynowski, Sekula and others at the viewing event were interviewed by CBS 11 TV journalist Robert Flagg.

Physics Professor Thomas Coan and Guillermo Vasquez, SMU Linux and research computing support specialist, put together a sequence of photos they took during the day from Fondren Science Building.

“The experience of bringing faculty, students and even some out-of-campus community members together by sharing goggles, cameras, and now pictures of one of the great natural events, was extremely gratifying,” Vasquez said.

Sekula said the enthusiastic response from the public is driving plans to prepare for the next event of this kind.

“I’m really excited to share with SMU and Dallas in a total eclipse of the sun on April 8, 2024,” he said.

Categories
Culture, Society & Family Earth & Climate Learning & Education Researcher news SMU In The News

Texas Tribune: The Q&A — Dr. Diego Román, Simmons School

In this week’s Q&A, The Texas Tribune interviews Diego Román, assistant professor of teaching and learning at Southern Methodist University.

Texas Tribune reporter Cassandra Pollock interviewed SMU education expert Diego Román in the Annette Caldwell Simmons School of Education and Human Development for a Q&A about how middle school science textbooks frame climate change as an opinion rather than scientific fact.

Román is co-author of a 2015 study of California 6th grade science textbooks and how they present global warming.

Studies estimate that only 3 percent of scientists who are experts in climate analysis disagree about the role of humans in the causes of climate change. And the most recent report from the Intergovernmental Panel on Climate Change — the evidence of 600 climate researchers in 32 countries reporting changes to Earth’s atmosphere, ice and seas — in 2013 stated “human influence on the climate system is clear.”

Yet only 54 percent of American teens believe climate change is happening, 43 percent don’t believe it’s caused by humans, and 57 percent aren’t concerned about it.

The new study measured how four sixth-grade science textbooks adopted for use in California frame the subject of global warming. Sixth grade is the first time California state standards indicate students will encounter climate change in their formal science curriculum.

“We found that climate change is presented as a controversial debate stemming from differing opinions,” said Román, an assistant professor in the Department of Teaching and Learning. “Climate skeptics and climate deniers are given equal time and treated with equal weight as scientists and scientific facts — even though scientists who refute global warming total a miniscule number.”

The findings were reported in October 2015 at the 11th Conference of the European Science Education Research Association (ESERA), held in Helsinki, Finland.

The findings were also published in the Environmental Education Research journal in the article, “Textbooks of doubt: Using systemic functional analysis to explore the framing of climate change in middle-school science textbooks.”

The Texas Tribune article, “The Q&A: Diego Román,” published Aug. 17, 2017.

Read the full story.

EXCERPT:

By Cassandra Pollock
Texas Tribune

With each issue, Tasbo+Edu brings you an interview with experts on issues related to health care. Here is this week’s subject:

Diego Román is an assistant professor in teaching and learning at Southern Methodist University. He has recently researched how climate change is framed for middle school students in science textbooks.

Tasbo+Edu: Can you briefly explain your research findings?

Dr. Diego Román: The big picture of my research is that I look at the linguistic and social factors that impact language use in the science-education context and language development for English learners who are attending school in the U.S.

I am an applied linguist, and one of my research topics was the framing of climate change in middle school textbooks. In terms of the science textbooks and what we found in that specific study, the ones we investigated don’t reflect the way scientists discuss climate change in reports. While science reports resort to the certainty that climate change is happening, the textbooks that we looked at were very uncertain about defining that issue. We looked into seeing why that would be the case, particularly at how science is seen as very specific, objective and certain, but when we discuss climate change, we use a lot of qualifiers — “would,” “could” and “might.”

We’re arguing that this places the weight on the reader to decipher what that means. “Not all” could mean 90 percent, 55 percent or 10 percent, depending on who you’re talking to. So while textbooks are required to address certain topics — such as climate change — they’re not using specific language to help students and teachers have a better understanding and discussion around the issue.

I also look at how we use language — and I do that by using a framework called systemic functional linguistics. It argues that language is caused by the context of use, so the way we talk about science and the way we frame science topics when discussing them may be different than social studies. To explain a different type of knowledge, we connect ideas differently. For example, we emphasize the idea versus the people in science, but in social studies, we look at the people. To do that, we use language. So I look at how language is used in those purposes to convey knowledge and be effective. I try to understand the perspectives of the authors or the people. That’s a big picture description of my research.

Tasbo+Edu: What are the biggest challenges you see moving forward to try to modify the textbook system?

Román: It seems to be how research can impact, in this case, textbook development, and how to find things that applied linguists are doing when it relates to how language is used and if there’s a way to convey scientific knowledge — from a contextual perspective, but also from a linguistics perspective.

Read the full story.

Categories
Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Quartz: The science explaining how Usain Bolt became the fastest human in the world

The health and science reporter for Quartz magazine, Katherine Ellen Foley, covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about how world championship sprinter Usain Bolt runs so fast.

The article, “The science explaining how Usain Bolt became the fastest human in the world,” published Aug. 2, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, an expert on human locomotion and the mechanics of running, is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Katherine Ellen Foley
Quartz

Eight years ago, Usain Bolt made history in less than 10 seconds at the International Association of Athletics Federations World Championship in Berlin, Germany.

The Jamaican sprinter set the world record for the 100-meter dash, clocking in at 9.58 seconds. Since then, no one (not even Bolt himself) has been able to best that time. On Saturday, August 5, Bolt will once more run the 100-meter dash at the IAAF World Championship (assuming he makes it through the qualifying race on August 4). This will be his last race; Bolt is set to retire after this running season (there’s some speculation he may still race in the 2020 Olympics, although as of now Bolt has said he doesn’t want to).

There’s no such thing as a perfect human running machine. But Bolt comes close—thanks to a combination of having all the advantages of a natural-born sprinter and putting in the effort needed to minimize any of his disadvantages.

Broadly speaking, Bolt has the unique muscular build shared by most of the very best sprinters. All human muscles are made of a mix of slow- and fast-twitch fibers—as well as some that are undifferentiated, and will become slow- or fast-twitch depending on how we use them most often. Slow-twitch fibers are built for efficiency and use oxygen to generate energy from sugar. They’re most effective for activities sustained over a long period of time, like distance running. Fast-twitch muscle fibers are used to generate huge amounts of force, but they don’t use oxygen and as a result can’t carry us far. Training can help shape undifferentiated fibers into either slow- or fast-twitch, but for the most part the best runners were born with an imbalance of one or the other. Elite marathoners have way more slow-twitch fibers, and sprinters like Bolt have an abundance of fast-twitch ones.

The best sprinters also run with a different form than the rest of us. It’s not that they move their legs significantly faster; it’s that they hit the ground harder (paywall). Most of the force sprinters generate is directed straight into the ground for vertical movement; only about 5% is used to propel them forward, Peter Weyand, a physiologist studying human speed at Southern Methodist University in Texas, told Popular Science in 2013. The more force a sprinter can pack into the ground with a quick foot strike, the faster he or she goes.

In a 2010 study, Weyand’s lab conducted an experiment where subjects jogged, ran, and hopped on one foot on a treadmill. They found that the most force came from hopping, thanks to the leg’s longer airtime. The researchers then calculated that if a runner were to generate the maximum hopping force possible with each step, he or she’d be able to reach a speed of 19.3 meters per second (63.3 feet per second)—which would make for a 5.18 second 100-meter dash.

This is just a fun theoretical experiment; it’s impossible to actually sprint and jump straight up and down at the same time. But it appears Bolt generates a powerful punch to the track—maybe the most powerful ever.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News Student researchers

How Stuff Works: Scientists Discover Something Mind-blowing About How Usain Bolt Runs

Journalist Patrick J. Kiger with the news site How Stuff Works covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s asymmetrical running gait.

The article, “Scientists Discover Something Mind-blowing About How Usain Bolt Runs,” published Aug. 2, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who leads the lab and its researchers, he is an expert on human locomotion and the mechanics of running. He is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Patrick J. Kiger
How Stuff Works

Jamaican sprinter Usain Bolt is the world record-holder in both the 100- and 200-meter, and winner of those events in the last three Summer Olympics. Bolt can hit a top speed of around 27 mph (43.5 kph), and has clearly established himself as the greatest sprinter of all time. But there’s something curious about his legs, and the way he uses them.

As the athlete prepares to run in his final world championship meet in London’s 2017 World Athletics Championships, taking place Aug. 4-13 and less than three weeks before Bolt’s 31st birthday, scientists are still trying to figure out just how the fastest human on the planet manages to achieve such incredible speed. Researchers at the Southern Methodist University (SMU) Locomotor Performance Laboratory don’t quite have the answer yet — but they’ve made a surprising discovery.

The researchers analyzed video footage of Bolt and other sprinters from the 2011 Diamond League race at the World Athletics Championships in Monaco. They also used a “two mass model” analysis tool they developed, which allows them to study the physical forces that a runner creates — without actually bringing Bolt into a lab and putting him on a treadmill. They found that Bolt had an uneven, assymetrical stride, which is something that scientists might have expected to slow him down.

When he runs, Bolt’s right leg strikes the ground with 13 percent more peak force than does his left leg, and with each stride, his left leg stays in contact with the track about 14 percent longer than the right. The researchers findings have been published in a new study in the Journal of Experimental Biology.

Bolt’s asymmetrical stride is probably due to his anatomy. As he recounted in his autobiography “The Fastest Man Alive: The True Story of Usain Bolt,” Bolt discovered as an adult that he has scoliosis, a condition in which his spine curves slightly to the left, which has forced his hips out of alignment so that his right leg is a half-inch (1.2 centimeters) shorter than the left. Bolt has written that he feels awkward standing still, and leans to the right because it feels uncomfortable to stand and place pressure on his left leg. Sitting in the same position for too long gives him backaches.

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News Student researchers Subfeature

Slate: Making the Perfect Sprinter More Perfect

How Usain Bolt could have run even faster.

Slate online magazine journalist Adam Willis covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about the world’s fastest sprinter, Usain Bolt, and whether he could possibly run even faster with different form.

The article, “Making the Perfect Sprinter More Perfect,” published Aug. 4, 2017.

Weyand, who leads the SMU Locomotor Performance Laboratory, is an expert on human locomotion and the mechanics of running. In his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. Called the two-mass model, the work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

His lab also reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand also has been widely interviewed in years past on the controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

The researchers described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

Read the full story.

EXCERPT:

By Adam Willis
Slate

Usain Bolt is the only person to win both the 100 and 200 meters at three Olympic games. He is also the only person to do this at two Olympic games. Bolt has broken five individual outdoor track and field world records, three of them his own. He has run three of the five fastest 100-meter races and four of the six fastest 200-meter races in history. As Bolt gets set for the World Athletics Championships in London, the final meet of his beyond-illustrious career, we should be grateful for all the memorable moments the world’s fastest man has given us. We should also be ingrates and ask: Could he have run faster?

Bolt has an uncanny knack for making the incredibly difficult look easy—like Muhammad Ali coming off the ropes, like Westley fencing with his left hand, like James Joyce writing Ulysses from Paris. It’s only natural to wonder, then, if he could have done more. His midrace celebrations, his apparent aversion for practice and affinity for parties, his less than sensible diet—he reportedly ate 1,000 Chicken McNuggets in 10 days during the Beijing Olympics—all suggest history’s greatest sprinter might’ve had a little bit more in the tank.

After Bolt breezed to a 9.69 world record in the 100 meters at the 2008 Olympics, jogging and chest thumping across the finish line just days before his 22nd birthday, his coach Glen Mills made headlines with his claim that Bolt would have hit 9.52, at worst, if he had just run through the line. Scientists took on the task of projecting the time that might have been, with most concluding that 9.52 was, at best, a slight exaggeration. Bolt, though, made that claim look less sensational when he tore through his own world records at the world championships in Berlin a year later, posting 9.58 in the 100 and 19.19 in the 200. Still, Bolt would never reach the 9.52 that Mills estimated, nor, for that matter, the 9.4 that he himself predicted. He would never best those world records that he set in Berlin, when he was not yet 23 years old.

“We haven’t seen the 2009 Bolt since 2009,” says Peter Weyand, the director of the Locomotor Performance Laboratory at Southern Methodist University and a leading expert on the science of sprinting. When I asked Weyand about Bolt’s early peak, he told me that, although 22 or 23 is not an unusual age for a sprinter to top out, he would have predicted more after Bolt’s 2009 performances.

While recent research from Weyand’s lab concluded that Bolt’s stride is abnormally asymmetric, Weyand says it’s unlikely this asymmetry held Bolt back in any way. He does point, however, to several aspects of Bolt’s form that are considered unorthodox and potentially suboptimal.

Read the full story.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Subfeature

Dallas Innovates: SMU, UTA Scientists To Help Unlock Mystery of Neutrinos

A massive particle detector a mile underground is the key to unlocking the secrets of a beam of neutrinos that will be shot beneath the Earth from Chicago to South Dakota.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Thomas E. Coan in the SMU Department of Physics.

Coan is one of about 1,000 scientists around the world collaborating on DUNE — a massive particle detector being built a mile underground in South Dakota to unlock the mysteries of neutrino particles.

The research is funded by the by the U.S. Department of Energy’s Office of Science in conjunction with CERN and international partners from 30 countries.

SMU is one of more than 100 institutions from around the world building hardware for the massive international experiment that may change our understanding of the universe. Construction will take years and scientists expect to begin taking data in the middle of the next decade, said Coan.

The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment. When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of the mysterious particles called neutrinos.

The Dallas Innovates article, “SMU, UTA Scientists To Help Unlock Mystery of Neutrinos,” published July 28, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Construction of a huge particle detector in South Dakota could lead to a change in how we understand the universe, and scientists from the University of Texas at Arlington and Southern Methodist University in Dallas will play roles in helping to unlock the mystery of neutrinos.

Ground was broken a mile underground recently at the Sanford Underground Research Facility at the Homestake Gold Mine in Lead, South Dakota for the Long-Baseline Neutrino Facility (LBNF) that will house the Deep Underground Neutrino Experiment (DUNE).

SMU physicist Thomas E. Coan, and UTA Physics professors Jonathan Asaadi and Jaehoon Yu will be among scientists from more than 100 institutions around the world who will be involved in the experiment.

DUNE will be constructed and operated at the mine site by a group of about 1,000 scientists and engineers from 30 nations.

The Homestake Mine was the location where neutrinos were discovered by Raymond Davis Jr. in 1962. It was the the largest and deepest gold mine in North America until its closure in 2002.

LBNF/DUNE will be the biggest experiment ever built in the U.S. to study the properties of neutrinos, one of the fundamental particles that make up the universe.

“DUNE is designed to investigate a broad swath of the properties of neutrinos, one of the universe’s most abundant but still mysterious electrically neutral particles,” Coan said in the release.

These puzzling particles are similar to electrons, but they have one huge difference — they don’t carry an electrical charge. Neutrinos come in three types: the electron neutrino, the muon, and the tau.

What is the experiment’s goal? Coan said it seeks to understand strange phenomena such as neutrinos changing identities in mid-flight — known as “oscillation” — as well as the behavioral differences between a neutrino and its anti-neutrino sibling.

“A crisp understanding of neutrinos holds promise for understanding why any matter survived annihilation with antimatter from the Big Bang to form the people, planets, and stars we see today,” Coan said in the release. “DUNE is also able to probe whether or not the humble proton, found in all atoms of the universe, is actually unstable and ultimately destined to eventually decay away. It even has sensitivity to understanding how stars explode into supernovae by studying the neutrinos that stream out from them during the explosion.”

Coan also is involved in another massive particle detector in northern Minnesota knows as NOvA, where he is a principal investigator.

Read the full story.

Categories
Earth & Climate Feature Fossils & Ruins Learning & Education Plants & Animals Researcher news SMU In The News Student researchers

LiveScience: Newfound dino looks like creepy love child of a turkey and ostrich

A new giant bird-like dinosaur discovered in China has been named for SMU paleontologist Louis L. Jacobs, Corythoraptor jacobsi, by the scientists who identified the new oviraptorid.

Live Science Senior Writer Laura Geggel covered the discovery of a new Cretaceous Period dinosaur from China that is named for paleontologist Louis L. Jacobs, an SMU professor in SMU’s Roy M. Huffington Department of Earth Sciences.

Jacobs mentored three of the authors on the article. First author on the paper was Junchang Lü, an SMU Ph.D. alum, with co-authors Yuong–Nam Lee and Yoshitsugu Kobayashi, both SMU Ph.D. alums.

The Live Science article, Newfound dino looks like creepy love child of a turkey and ostrich, published July 27, 2017. The dinosaur’s name, Corythoraptor jacobsi, translates to Jacobs’ helmeted thief.

The scientific article “High diversity of the Ganzhou Oviraptorid Fauna increased by a new “cassowary-like” crested species” was published July 27, 2017 in Nature’s online open access mega-journal of primary research Scientific Reports.

Jacobs in 2016 co-authored an analysis of the Cretaceous Period dinosaur Pawpawsaurus based on the first CT scans ever taken of the dinosaur’s skull.

He is president of SMU’s Institute for the Study of Earth and Man.

A world-renowned vertebrate paleontologist, Jacobs in 2012 was honored by the 7,200-member Science Teachers Association of Texas with their prestigious Skoog Cup for his significant contributions to advance quality science education. He joined SMU’s faculty in 1983.

Jacobs is the author of “Quest for the African Dinosaurs: Ancient Roots of the Modern World” (Villard Books and Johns Hopkins U. Press, 2000); “Lone Star Dinosaurs” (Texas A&M U. Press, 1999), which is the basis of a Texas dinosaur exhibit at the Fort Worth Museum of Science and History; “Cretaceous Airport” (ISEM, 1993); and more than 100 scientific papers and edited volumes.

Read the full story.

EXCERPT:

By Laura Geggel
Live Science

The newly identified oviraptorid dinosaur Corythoraptor jacobsi has a cassowary-like head crest, known as a casque.

A Chinese farmer has discovered the remains of a dinosaur that could have passed for the ostrich-like cassowary in its day, sporting the flightless bird’s head crest and long thunder thighs, indicating it could run quickly, just like its modern-day lookalike, a new study finds.

The newfound dinosaur’s 6-inch-tall (15 centimeters) head crest is uncannily similar to the cassowary’s headpiece, known as a casque, the researchers said. In fact, the crests have such similar shapes, the cassowary’s may provide clues about how the dinosaur used its crest more than 66 million years ago, they said.

The findings suggest that the dinosaur, which would have towered at 5.5 feet (1.6 meters), may have had a similar lifestyle to the modern cassowary bird (Casuarius unappendiculatus), which is native to Australia and New Guinea, the study’s lead researcher, Junchang Lü, a professor at the Institute of Geology, Chinese Academy of Geological Sciences, told Live Science in an email.

Researchers found the oviraptorid — a type of giant, bird-like dinosaur — in Ganzhou, a city in southern China, in 2013. The specimen was in remarkable shape: The paleontologists found an almost complete skeleton, including the skull and lower jaw, which helped them estimate that the creature was likely a young adult, or at least 8 years of age, when it died.

The long-necked and crested dinosaur lived from about 100 million to 66 million years ago during the late Cretaceous period, and likely used its clawed hands to hunt lizards and other small dinosaurs, Lü added.

The research team named the unique beast Corythoraptor jacobsi. Its genus name refers to the raptor’s cassowary-like crest, and the species name honors Louis Jacobs, a vertebrate paleontologist at Southern Methodist University who mentored three of the study’s researchers.

The researchers think the crest likely served the dinosaur in different ways, they said, including in display, communication and perhaps even as an indication of the dinosaur’s fitness during the mating season.

Read the full story.

Categories
Energy & Matter Events Feature Learning & Education Researcher news Videos

Construction begins on international mega-science neutrino experiment

Groundbreaking held today in South Dakota marks the start of excavation for the Long-Baseline Neutrino Facility, future home to the international Deep Underground Neutrino Experiment.

SMU is one of more than 100 institutions from around the world building hardware for a massive international experiment — a particle detector — that could change our understanding of the universe.

Construction will take years and scientists expect to begin taking data in the middle of the next decade, said SMU physicist Thomas E. Coan, a professor in the SMU Department of Physics and a researcher on the experiment.

The turning of a shovelful of earth a mile underground marks a new era in particle physics research. The groundbreaking ceremony was held Friday, July 21, 2017 at the Sanford Underground Research Facility in Lead, South Dakota.

Dignitaries, scientists and engineers from around the world marked the start of construction of the experiment that could change our understanding of the universe.

The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment. Called DUNE for short, it will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries, including Coan.

When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.

“DUNE is designed to investigate a broad swath of the properties of neutrinos, one of the universe’s most abundant but still mysterious electrically neutral particles,” Coan said.

The experiment seeks to understand strange phenomena like neutrinos changing identities — called “oscillation” — in mid-flight and the behavioral differences between a neutrino an its anti-neutrino sibling, Coan said.

“A crisp understanding of neutrinos holds promise for understanding why any matter survived annihilation with antimatter from the Big Bang to form the people, planets and stars we see today,” Coan said. “DUNE is also able to probe whether or not the humble proton, found in all atoms of the universe, is actually unstable and ultimately destined to eventually decay away. It even has sensitivity to undertanding how stars explode into supernovae by studying the neutrinos that stream out from them during the explosion.”

Coan also is a principal investigator on NOvA, another neutrino experiment collaboration of the U.S. Department of Energy’s Fermi National Laboratory. NOvA, in northern Minnesota, is another massive particle detector designed to observe and measure the behavior of neutrinos.

Similar to NOvA, DUNE will be a neutrino beam from Fermilab that runs to Homestake Gold Mine in South Dakota. DUNE’s beam will be more powerful and will take the measurements NOvA is taking to an unprecedented precision, scientists on both experiments have said. Any questions NOvA fails to answer will most certainly be answered by DUNE.

At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois.

Institutions in dozens of countries will contribute to the construction of DUNE components. The DUNE experiment will attract students and young scientists from around the world, helping to foster the next generation of leaders in the field and to maintain the highly skilled scientific workforce in the United States and worldwide.

Beam of neutrinos will travel 800 miles (1,300 kilometers) through the Earth
The U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago, will generate a beam of neutrinos and send them 800 miles (1,300 kilometers) through the Earth to Sanford Lab, where a four-story-high, 70,000-ton detector will be built beneath the surface to catch those neutrinos.

Scientists will study the interactions of neutrinos in the detector, looking to better understand the changes these particles undergo as they travel across the country in less than the blink of an eye.

Ever since their discovery 61 years ago, neutrinos have proven to be one of the most surprising subatomic particles, and the fact that they oscillate between three different states is one of their biggest surprises. That discovery began with a solar neutrino experiment led by physicist Ray Davis in the 1960s, performed in the same underground mine that now will house LBNF/DUNE. Davis shared the Nobel Prize in physics in 2002 for his experiment.

DUNE scientists will also look for the differences in behavior between neutrinos and their antimatter counterparts, antineutrinos, which could give us clues as to why the visible universe is dominated by matter.

DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay, bringing us closer to fulfilling Einstein’s dream of a grand unified theory.

Construction over the next 10 years is funded by DOE with 30 countries
But first, the facility must be built, and that will happen over the next 10 years. Now that the first shovel of earth has been moved, crews will begin to excavate more than 870,000 tons of rock to create the huge underground caverns for the DUNE detector.

Large DUNE prototype detectors are under construction at European research center CERN, a major partner in the project, and the technology refined for those smaller versions will be tested and scaled up when the massive DUNE detectors are built.

This research is funded by the U.S. Department of Energy Office of Science in conjunction with CERN and international partners from 30 countries.

DUNE collaborators come from institutions in Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, the Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom and the United States. — Fermilab, SMU

Categories
Energy & Matter Feature Health & Medicine Learning & Education Plants & Animals Researcher news SMU In The News Student researchers Technology Videos

The New York Times: Something Strange in Usain Bolt’s Stride

Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.

The New York Times reporter Jeré Longman covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s apparent asymmetrical running stride.

The article, “Something Strange in Usain Bolt’s Stride,” published July 20, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the running controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

They described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

The New York Times subscribers or readers with remaining limited free access can read the full story.

EXCERPT:

By Jeré Longman
The New York Times

DALLAS — Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-meter race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 meters and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers here at Southern Methodist University, among the leading experts on the biomechanics of sprinting, said they found something unexpected during video examination of Bolt’s stride: His right leg appears to strike the track with about 13 percent more peak force than his left leg. And with each stride, his left leg remains on the ground about 14 percent longer than his right leg.

This runs counter to conventional wisdom, based on limited science, that an uneven stride tends to slow a runner down.

So the research team at S.M.U.’s Locomotor Performance Laboratory is considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 meters and 4×100-meter relay next month at the world track and field championships in London.

Among those questions: Does evenness of stride matter for speed? Did Bolt optimize this irregularity to become the fastest human? Or, with a more balanced stride during his prime, could he have run even faster than 9.58 seconds at 100 meters and 19.19 seconds at 200 meters?

“That’s the million-dollar question,” said Peter Weyand, director of the S.M.U. lab.

The S.M.U. study of Bolt, led by Andrew Udofa, a doctoral researcher, is not yet complete. And the effect of asymmetrical strides on speed is still not well understood. But rather than being detrimental for Bolt, the consequences of an uneven stride may actually be beneficial, Weyand said.

It could be that Bolt has naturally settled into his stride to accommodate the effects of scoliosis. The condition curved his spine to the right and made his right leg half an inch shorter than his left, according to his autobiography.

Initial findings from the study were presented last month at an international conference on biomechanics in Cologne, Germany. Most elite sprinters have relatively even strides, but not all. The extent of Bolt’s variability appears to be unusual, Weyand said.

“Our working idea is that he’s probably optimized his speed, and that asymmetry reflects that,” Weyand said. “In other words, correcting his asymmetry would not speed him up and might even slow him down. If he were to run symmetrically, it could be an unnatural gait for him.”

Antti Mero, an exercise physiologist at the University of Jyvaskyla in Finland, who has researched Bolt’s fastest races, said he was intrigued by the S.M.U. findings.

The New York Times subscribers or readers with remaining limited free access can read the full story.

Categories
Culture, Society & Family Learning & Education Researcher news Technology Videos

People ForWords team named semifinalist in national XPrize competition

SMU’s puzzle-solving smartphone app selected as one of eight to move to next round in $7M Barbara Bush Foundation Adult Literacy XPRIZE competition

For Corey Clark, deputy director for research in the SMU Guildhall game development program, adult literacy became a personal challenge the moment he learned of its scope. “There are about 600,000 adults in Dallas who have less than a third-grade reading level,” he says. “If we could help 10 percent of those people, that’s 60,000 people who could learn to read proficiently. That makes a difference in a lot of people’s lives.”

This challenge is at the heart of a partnership between Southern Methodist University and Literacy Instruction for Texas (LIFT), and their work has been recognized with a semifinalist position in the $7 million Barbara Bush Foundation Adult Literacy XPRIZE presented by Dollar General Literacy Foundation competition.

The team, People ForWords, includes collaborators from SMU Guildhall, SMU Simmons School of Education and Human Development, and LIFT. People ForWords is one of eight teams chosen for the semifinals out of 109 entrants, and the only Texas team to make the cut.

In this global competition, teams develop mobile applications, compatible with smart phone devices, that have the potential to increase literacy skills among adult learners. The solutions discovered through the applications will help reveal and overcome roadblocks in improving adult literacy through providing access, retention, and a scalable product to the public.

As development lead of People ForWords, Clark recruited a cadre of Guildhall-trained artists, programmers and producers via the program’s alumni career portal. The development team came together in March 2016. By October, they had created a beta version of Codex: The Lost Words of Atlantis.

As participants in a globe-trotting adventure, English-language learners play as enterprising archaeologists and work to decipher the forgotten language of a lost civilization. As the players solve the puzzles of the Atlantean runes, audible prompts for each letter and sound help them learn the look and feel of written English<, developing and strengthening their own reading skills. Developed for English- and Spanish-speaking adults, but safe for all ages, the game also provides history lessons as it visits real locations around the world. Needs of adult literacy learners very different from other gamers
Codex: The Lost Words of Atlantis supports English literacy learners in both English and Spanish. Egypt is the first destination in a planned five-region journey across the globe; in future versions, People ForWords plans to develop additional regions with new gameplay, new characters, and new literacy skills.

An important step in the game design process came with playtesting at LIFT Academy and Dallas’ Jubilee Park community center — where the designers could reach their game’s target audience. They quickly figured out that the needs of adult literacy learners were very different from those of other gamers.

“This was the first time some participants had used a desktop computer,” Clark says. “How do you make a game that’s fun and interactive, yet simple and intuitive enough to be a first experience with technology?”

To find out, Clark collected and analyzed data on game elements such as how long players stuck with a task, how many times they repeated moves, how quickly they progressed, and whether performing the game actions translated into the desired learning outcomes. “First, games have to be fun,” he says. “From story to characters, you want to engage people enough to play over and over again. And this happens to be the exact same process that reinforces learning.”

And as Clark points out, at its core, every game is about learning. “Whether it’s a map, a system or a skill, you learn something new with every move you make,” he says. “And games are safe environments to do that, because they allow you to fail in ways that aren’t overwhelming. They let you keep trying until you succeed.”

Illiteracy plays a factor in poverty
In North Texas, the XPRIZE is more than a competition. According to LIFT, one in five adults in North Texas cannot read, a key factor in poverty. Dallas has the fourth highest concentration of poverty in the nation, with a 41 percent increase from 2000 to 2014.

“This is a dedicated effort by our team to tackle the growing issue of low literacy and poverty in our communities,” according to a People ForWords statement. “Each organization involved in the collaboration brings their expertise to the competition: knowledge in education, adult literacy, and game development. Together these skills have allowed our team to build a functional, fun application that helps improve adult literacy through sharpening reading and writing skills.”

“The faculty at SMU Guildhall bridge the gap between serious academic research and commercial video games,” says Guildhall Director Gary Brubaker. “This environment has allowed our research and development team to yield a product for the XPRIZE adult literacy competition that brings together the creative, entertaining nature of games with the impactful literacy lessons being taught.”

Research plays a large role at SMU Guildhall. Not only are large-scale research endeavors such as the XPRIZE taking place year-round, but research is also incorporated into the curriculum. Independent studies such as student theses explore a vast range of interests within video game development and its global implications and uses. Both current students and alumni are able to put their analytical and research skills to good use by participating as funded research assistants on a myriad of Guildhall’s “games for good” projects.

“Our students greatly benefit from breaking ground with new gaming technologies and expanding their usage into other fields,” said Elizabeth Stringer, Deputy Director of Academics at SMU Guildhall. “Many of our graduates continue to use their game development skills to aid society and further causes for which they are passionate.”

Testing of the eight semifinalists’ literacy software begins in mid-July with 12,000 adults who read English at a third grade level or lower. Selection of up to five finalists will depend on results of post-game testing to evaluate literacy gains among test subjects. Finalists will be named in May 2018, and the winner will be selected in 2019. — Kathleen Tibbetts, SMU

Categories
Culture, Society & Family Feature Learning & Education Researcher news Technology Videos

SMU and LIFT team named one of eight semifinalists for $7M Barbara Bush Foundation Adult Literacy XPrize

SMU’s “Codex: Lost Words of Atlantis” adult literacy video game is puzzle-solving smartphone game app to help adults develop literacy skills

The SMU and Literacy Instruction for Texas (LIFT) team was named today one of eight semifinalists in the $7 million Barbara Bush Foundation Adult Literacy XPRIZE presented by Dollar General Literacy Foundation.

The XPRIZE is a global competition that challenges teams to develop mobile applications designed to increase literacy skills in adult learners.

SMU participants include education experts from SMU’s Simmons School of Education and Human Development, along with video game developers from SMU Guildhall — a graduate school video game development program. They are working with literacy experts from LIFT to design an engaging, puzzle-solving smartphone app to help adults develop literacy skills. Students from LIFT help test the game.

The SMU and LIFT team, People ForWords, is one of 109 teams who entered the competition in 2016. The team developed “Codex: Lost Words of Atlantis.”

In the game, players become archeologists hunting for relics from the imagined once-great civilization of Atlantis. By deciphering the forgotten language of Atlantis, players develop and strengthen their own reading skills. The game targets English- and Spanish-speaking adults.

Students at LIFT, a North Texas nonprofit adult literacy provider, have tested and provided key insights for the game during its development. According to LIFT, one in five adults in North Texas cannot read, a key factor in poverty. Dallas has the fourth highest concentration of poverty in the nation, with a 41 percent increase from 2000 to 2014. LIFT is one of the largest and most widely respected adult basic education programs in Texas and offers adult basic literacy, GED preparation and English as a Second Language programs with the goal of workforce empowerment.

Testing of the eight semi-finalists’ literacy software begins in mid-July with 12,000 adults who read English at a third grade level or lower. Selection of up to five finalists will depend on results of post-game testing to evaluate literacy gains among test subjects. Finalists will be named in May of 2018 and the winner will be named in 2019. — Nancy George, SMU

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Cosmos: Painting with light in three dimensions

A new technique uses photoswitch molecules to create three-dimensional images from pure light.

Australia’s quarterly science magazine Cosmos covered the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

Cosmos reporter Joel F. Hooper wrote about the new technology in “Painting with light in three dimensions,” which published online July 14, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Read the full story.

EXCERPT:

By Joel F. Hooper
Cosmos

Those of us who grew up watching science fiction movies and TV shows imagined our futures to be filled with marvellous gadgets, but we’ve sometimes been disappointed when science fails to deliver. We can’t take a weekend trip to Mars yet, and we’re still waiting for hoverboards that actually hover.

But in the case of 3-D image projection, the technology used by R2D2 in Star Wars is making its way into reality. Using advances in fluorescent molecules that can be switched on by UV light, scientists at Southern Methodist University in Dallas have created a method for producing images and animations by structuring light in 3-dimentions.

The technology uses a solution of fluorescent molecules called rhodamines, which have the potential to emit visible light when they are excited by a light beam of the right wavelength. But these molecules are usually in an inactive state, and must be “switched on” by UV light before they can become emitters. When a UV light or visible light beam alone shines through the solution, the rhodamines to not emit light. But where these two beams intersect, the emitting molecules are both switched on and excited, and can produce a small glowing 3D pixel, known as a voxel.

When a number of voxels are produced at once, using two projectors positioned at 90° to a flask containing a solution of the fluorescent molecules, a 3D image is produced.

“Our idea was to use chemistry and special photoswitch molecules to make a 3D display that delivers a 360-degree view,” says Alexander Lippert, lead author of the study. “It’s not a hologram, it’s really three-dimensionally structured light.”

Read the full story.

Categories
Culture, Society & Family Energy & Matter Feature Health & Medicine Learning & Education Researcher news Student researchers Technology

Better than Star Wars: Chemistry discovery yields 3-D table-top objects crafted from light

Photoswitch chemistry allows construction of light shapes into structures that have volume and are viewable from 360 degrees, making them useful for biomedical imaging, teaching, engineering, TV, movies, video games and more

A scientist’s dream of 3-D projections like those he saw years ago in a Star Wars movie has led to new technology for making animated 3-D table-top objects by structuring light.

The new technology uses photoswitch molecules to bring to life 3-D light structures that are viewable from 360 degrees, says chemist Alexander Lippert, Southern Methodist University, Dallas, who led the research.

The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

“Our idea was to use chemistry and special photoswitch molecules to make a 3-D display that delivers a 360-degree view,” said Lippert, an assistant professor in the SMU Department of Chemistry. “It’s not a hologram, it’s really three-dimensionally structured light.”

Key to the technology is a molecule that switches between non-fluorescent and fluorescent in reaction to the presence or absence of ultraviolet light.

The new technology is not a hologram, and differs from 3-D movies or 3-D computer design. Those are flat displays that use binocular disparity or linear perspective to make objects appear three-dimensional when in fact they only have height and width and lack a true volume profile.

“When you see a 3-D movie, for example, it’s tricking your brain to see 3-D by presenting two different images to each eye,” Lippert said. “Our display is not tricking your brain — we’ve used chemistry to structure light in three actual dimensions, so no tricks, just a real three-dimensional light structure. We call it a 3-D digital light photoactivatable dye display, or 3-D Light Pad for short, and it’s much more like what we see in real life.”

At the heart of the SMU 3-D Light Pad technology is a “photoswitch” molecule, which can switch from colorless to fluorescent when shined with a beam of ultraviolet light.

The researchers discovered a chemical innovation for tuning the photoswitch molecule’s rate of thermal fading — its on-off switch — by adding to it the chemical amine base triethylamine.

Now the sky is the limit for the new SMU 3-D Light Pad technology, given the many possible uses, said Lippert, an expert in fluorescence and chemiluminescence — using chemistry to explore the interaction between light and matter.

For example, conference calls could feel more like face-to-face meetings with volumetric 3-D images projected onto chairs. Construction and manufacturing projects could benefit from rendering them first in 3-D to observe and discuss real-time spatial information. For the military, uses could include tactical 3-D replications of battlefields on land, in the air, under water or even in space.

Volumetric 3-D could also benefit the medical field.

“With real 3-D results of an MRI, radiologists could more readily recognize abnormalities such as cancer,” Lippert said. “I think it would have a significant impact on human health because an actual 3-D image can deliver more information.”

Unlike 3-D printing, volumetric 3-D structured light is easily animated and altered to accommodate a change in design. Also, multiple people can simultaneously view various sides of volumetric display, conceivably making amusement parks, advertising, 3-D movies and 3-D games more lifelike, visually compelling and entertaining.

Lippert and his team in The Lippert Research Group report on the new technology and the discovery that made it possible in the article “A volumetric three-dimensional digital light photoactivatable dye display,” published in the journal Nature Communications.

Some of the 3-D images generated with the new technology are viewable in this video.

Co-authors are Shreya K. Patel, lead author, and Jian Cao, both students in the SMU Department of Chemistry.

Genesis of an idea — cinematic inspiration
The idea to shape light into volumetric animated 3-D objects came from Lippert’s childhood fascination with the movie “Star Wars.” Specifically he was inspired when R2-D2 projects a hologram of Princess Leia. Lippert’s interest continued with the holodeck in “Star Trek: The Next Generation.”

“As a kid I kept trying to think of a way to invent this,” Lippert said. “Then once I got a background in chemistry molecules that interact with light, and an understanding of photoswitches, it finally dawned on me that I could take two beams of light and use chemistry to manipulate the emission of light.”

Key to the new technology was discovering how to turn the chemical photoswitch off and on instantly, and generating light emissions from the intersection of two different light beams in a solution of the photoactivatable dye, he said.

SMU graduate student in chemistry Jian Cao hypothesized the activated photoswitch would turn off quickly by adding the base. He was right.

“The chemical innovation was our discovery that by adding one drop of triethylamine, we could tune the rate of thermal fading so that it instantly goes from a pink solution to a clear solution,” Lippert said. “Without a base, the activation with UV light takes minutes to hours to fade back and turn off, which is a problem if you’re trying to make an image. We wanted the rate of reaction with UV light to be very fast, making it switch on. We also wanted the off-rate to be very fast so the image doesn’t bleed.”

SMU 3-D Light Pad
In choosing among various photoswitch dyes, the researchers settled on N-phenyl spirolactam rhodamines. That particular class of rhodamine dyes was first described in the late 1970s and made use of by Stanford University’s Nobel prize-winning W.E. Moerner.

The dye absorbs light within the visible region, making it appropriate to fluoresce light. Shining it with UV radiation, specifically, triggers a photochemical reaction and forces it to open up and become fluorescent.

Turning off the UV light beam shuts down fluorescence, diminishes light scattering, and makes the reaction reversible — ideal for creating an animated 3-D image that turns on and off.

“Adding triethylamine to switch it off and on quickly was a key chemical discovery that we made,” Lippert said.

To produce a viewable image they still needed a setup to structure the light.

Structuring light in a table-top display
The researchers started with a custom-built, table-top, quartz glass imaging chamber 50 millimeters by 50 millimeters by 50 millimeters to house the photoswitch and to capture light.

Inside they deployed a liquid solvent, dichloromethane, as the matrix in which to dissolve the N-phenyl spirolactam rhodamine, the solid, white crystalline photoswitch dye.

Next they projected patterns into the chamber to structure light in two dimensions. They used an off-the-shelf Digital Light Processing (DLP) projector purchased at Best Buy for beaming visible light.

The DLP projector, which reflects visible light via an array of microscopically tiny mirrors on a semiconductor chip, projected a beam of green light in the shape of a square. For UV light, the researchers shined a series of UV light bars from a specially made 385-nanometer Light-Emitting Diode projector from the opposite side.

Where the light intersected and mixed in the chamber, there was displayed a pattern of two-dimensional squares stacked across the chamber. Optimized filter sets eliminated blue background light and allowed only red light to pass.

To get a static 3-D image, they patterned the light in both directions, with a triangle from the UV and a green triangle from the visible, yielding a pyramid at the intersection, Lippert said.

From there, one of the first animated 3-D images the researchers created was the SMU mascot, Peruna, a racing mustang.

“For Peruna — real-time 3-D animation — SMU undergraduate student Shreya Patel found a way to beam a UV light bar and keep it steady, then project with the green light a movie of the mustang running,” Lippert said.

So long Renaissance
Today’s 3-D images date to the Italian Renaissance and its leading architect and engineer.

“Brunelleschi during his work on the Baptistery of St. John was the first to use the mathematical representation of linear perspective that we now call 3-D. This is how artists used visual tricks to make a 2-D picture look 3-D,” Lippert said. “Parallel lines converge at a vanishing point and give a strong sense of 3-D. It’s a useful trick but it’s striking we’re still using a 500-year-old technique to display 3-D information.”

The SMU 3-D Light Pad technology, patented in 2016, has a number of advantages over contemporary attempts by others to create a volumetric display but that haven’t emerged as commercially viable.

Some of those have been bulky or difficult to align, while others use expensive rare earth metals, or rely on high-powered lasers that are both expensive and somewhat dangerous.

The SMU 3-D Light Pad uses lower light powers, which are not only cheaper but safer. The matrix for the display is also economical, and there are no moving parts to fabricate, maintain or break down.

Lippert and his team fabricated the SMU 3-D Light Pad for under $5,000 through a grant from the SMU University Research Council.

“For a really modest investment we’ve done something that can compete with more expensive $100,000 systems,” Lippert said. “We think we can optimize this and get it down to a couple thousand dollars or even lower.”

Next Gen: SMU 3-D Light Pad 2.0
The resolution quality of a 2-D digital photograph is stated in pixels. The more pixels, the sharper and higher-quality the image. Similarly, 3-D objects are measured in voxels — a pixel but with volume. The current 3-D Light Pad can generate more than 183,000 voxels, and simply scaling the volume size should increase the number of voxels into the millions – equal to the number of mirrors in the DLP micromirror arrays.

For their display, the SMU researchers wanted the highest resolution possible, measured in terms of the minimum spacing between any two of the bars. They achieved 200 microns, which compares favorably to 100 microns for a standard TV display or 200 microns for a projector.

The goal now is to move away from a liquid vat of solvent for the display to a solid cube table display. Optical polymer, for example, would weigh about the same as a TV set. Lippert also toys with the idea of an aerosol display.

The researchers hope to expand from a monochrome red image to true color, based on mixing red, green and blue light. They are working to optimize the optics, graphics engine, lenses, projector technology and photoswitch molecules.

“I think it’s a very fascinating area. Everything we see — all the color we see — arises from the interaction of light with matter,” Lippert said. “The molecules in an object are absorbing a wavelength of light and we see all the rest that’s reflected. So when we see blue, it’s because the object is absorbing all the red light. What’s more, it is actually photoswitch molecules in our eyes that start the process of translating different wavelengths of light into the conscious experience of color. That’s the fundamental chemistry and it builds our entire visual world. Being immersed in chemistry every day — that’s the filter I’m seeing everything through.”

The SMU discovery and new technology, Lippert said, speak to the power of encouraging young children.

“They’re not going to solve all the world’s problems when they’re seven years old,” he said. “But ideas get seeded and if they get nurtured as children grow up they can achieve things we never thought possible.” — Margaret Allen, SMU

Categories
Culture, Society & Family Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Dallas Innovates: SMU Researchers: Usain Bolt’s Gait is Asymmetrical

The researchers assessed Bolt’s running using a new motion-based method to test how hard and fast each foot hits the ground.

Journalist Lance Murray with D Magazine’s Dallas Innovates covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s asymmetrical running gait.

The article, “SMU Researchers: Usain Bolt’s Gait is Asymmetrical,” published July 5, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who leads the lab and its researchers, he is an expert on human locomotion and the mechanics of running. He is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

When it comes to running, nobody does it faster than Usain Bolt, the eight-time Olympic champion and triple world record holder.

The lanky Jamaican sprinter is known for his explosive acceleration down the track and the famous images of him looking back as he leaves his competitors in his wake.

You’d think Bolt’s powerful legs work as a symmetrical team propelling him at great speed toward the finish line, but according to researchers at Southern Methodist University, Bolt’s gait may, in fact, be asymmetrical.

SMU researchers examined the running mechanics of Bolt, who is considered the world’s fastest man.

The analysis, so far, suggests that his mechanics may vary from his right leg to his left, according to Andrew Udofa, a biometrics researcher in the SMU Locomotor Performance Laboratory.

According to a blog on SMU Research News, most running experts assume that asymmetry impairs performance and slows a runner down. This unexpected asymmetry in Bolt’s mechanics could help scientist better understand the basis of maximal running speeds, according to the university.

“Our observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified,” Udofa, a research team member, said in the blog.

Read the full story.

Categories
Culture, Society & Family Learning & Education Mind & Brain Researcher news SMU In The News

Texas Tribune: The Q&A — Dr. Jill Allor, Simmons School

In this week’s Q&A, The Texas Tribune interviews Jill Allor, professor of teaching and learning at Southern Methodist University.

Texas Tribune reporter Sanya Monsoor interviewed SMU education expert Jill Allor, professor of Teaching and Learning in the Annette Caldwell Simmons School of Education and Human Development for a Q&A about kids with disabilities and struggling readers.

A former special education teacher, Allor’s research is school-based and focuses on reading acquisition for students with and without disabilities, including students with learning disabilities and intellectual disabilities.

She is principal investigator on the federally-funded research grant “Project Intensity: The Development of a Supplemental Literacy Program Designed to Provide Extensive Practice with Multiple-Criteria Text for Students with Intellectual Disabilities” from the Institute of Education Sciences.

The grant’s purpose is to develop carefully designed texts and application lessons to provide students who are struggling to learn to read, particularly those with intellectual disabilities.

Allor was awarded the 2000 Award for Outstanding Research by the Council on Learning Disabilities.

The Texas Tribune article, “The Q&A: Jill Allor,” published June 21, 2017.

Read the full story.

EXCERPT:

By Sanya Monsoor
Texas Tribune

With each issue, Trib+Edu brings you an interview with experts on issues related to public education. Here is this week’s subject:

Jill Allor is a professor with the Department of Teaching and Learning at Southern Methodist University. Her research focuses on reading and reading disabilities.

Editor’s note: This interview has been edited for length and clarity.

Trib+Edu: Tell me about the most important aspects of your research as it relates to kids with disabilities and struggling readers.

Jill Allor: One of the things that’s really interesting about kids with disabilities is the things we know that are effective for teaching kids in general are also effective for them.

The differences are in how explicit we need to be and how much repetition is needed. A child with a disability needs more intensive instruction — they need more practice and they need every step laid out very carefully.

Research shows if you start out with explicit instruction in kindergarten and first grade, you can address reading problems extremely early. You can prevent many problems and prevent some kids from even needing a diagnosis.

Trib+Edu: What are some of the biggest challenges in identifying and addressing these problems?

Allor: There are some kids that have average intelligence or better but yet struggle to learn how to read. We have a lot of research about what to do for them. They need explicit instruction and the primary problem is usually in the phonological areas. So focusing on phonics early and making that very explicit is critical.

The majority of the kids in special education have learning disabilities. But more recently, since 2005, my focus has been on students who have intellectual disabilities.

A student with a learning disability generally has an average IQ level but has an unexpected problem learning how to read. For a student with an intellectual disability, they’re going to have problems learning in all areas.

What we found in our research is all of the things that work for students who have a learning disability, who are struggling readers, also work for (students with an intellectual disability) but it needs to be even more explicit and more intensive.

Trip+Edu: How do you attain that intensive instruction?

Read the full story.

Categories
Feature Health & Medicine Learning & Education Plants & Animals Researcher news Student researchers Technology Videos

Does symmetry matter for speed? Study finds Usain Bolt may have asymmetrical running gait

A new method for assessing patterns of ground-force application suggests the right and left legs of the world’s fastest man may perform differently, defying current scientific assumptions about running speed.

World champion sprinter Usain Bolt may have an asymmetrical running gait, according to data recently presented by researchers from Southern Methodist University, Dallas.

While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after SMU researchers assessed the running mechanics of the world’s fastest man.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg and his right, said Andrew Udofa, a biomechanics researcher in the SMU Locomotor Performance Laboratory.

The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

“Our observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified,” said Udofa, a member of the research team.

The SMU Locomotor Lab, led by Peter Weyand, focuses on the mechanical basis of human performance. The group includes physicist and engineer Laurence Ryan, an expert in force and motion analysis, and doctoral researcher Udofa.

The intriguing possibility of Bolt’s asymmetry emerged after the SMU researchers decided to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Impulse is a combination of the amount of force applied to the ground multiplied by the time of foot-ground contact.

“The manner in which Bolt achieves his impulses seems to vary from leg to leg,” Udofa said. “Both the timing and magnitude of force application differed between legs in the steps we have analyzed so far.”

Impulse matters because that’s what determines a runner’s time in the air between steps.

“If a runner has a smaller impulse, they don’t get as much aerial time,” Weyand said. “Our previous published research has shown greater ground forces delivered in shorter periods of foot-ground contact are necessary to achieve faster speeds. This is true in part because aerial times do not differ between fast and slow runners at their top speeds. Consequently, the combination of greater ground forces and shorter contact times is characteristic of the world’s fastest sprinters.”

The researchers didn’t test Bolt in the SMU lab. Instead, they used a new motion-based method to assess the patterns of ground-force application. They analyzed Bolt and other elite runners using existing high-speed race footage available from NBC Universal Sports. The runners were competing in the 2011 Diamond League race at the World Athletics Championships in Monaco.

Udofa analyzed 20 of Bolt’s steps from the Monaco race, averaging data from 10 left and 10 right.

The researchers relied upon foot-ground contact time, aerial time, running velocity and body mass to determine the ground reaction forces using the new method, made possible by the “two-mass model” of running mechanics.

Runners typically run on a force-instrumented treadmill or force plates for research examining running ground-reaction forces. However, the two-mass model method provides a tool that enables motion-based assessments of ground reaction forces without direct force measurements.

“There are new avenues of research the model may make possible because direct-force measurements are not required,” Weyand said. “These include investigations of the importance of symmetry for sprinting performance. The two-mass model may facilitate the acquisition of data from outside the lab to help us better address these kinds of questions.”

Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

Two-mass model relies on basic motion data
SMU researchers developed the concise two-mass model as a simplified way to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.

The model integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force on the ground.

It provides accurate predictions of the ground force vs. time patterns throughout each instant of the contact period, regardless of limb mechanics, foot-strike type or running speed.

The two-mass model is substantially less complex than other scientific models that explain patterns of ground force application during running. Most existing models are more elaborate in relying on 14 or more variables, many of which are less clearly linked to the human body.

“The two-mass model provides us with a new tool for assessing the crucial early portion of foot-ground contact that is so important for sprinting performance,” said Udofa. “The model advances our ability to assess the impact-phase force and time relationships from motion data only.”

The two-mass model was developed in SMU’s Locomotor Performance Laboratory by Kenneth P. Clark, now an assistant professor in the Department of Kinesiology at West Chester University, West Chester, Pa.; Ryan, a physicist and research engineer at SMU’s Locomotor Performance Laboratory; and Weyand.

The researchers described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

Support for the research came from the U.S. Army Medical Research and Materiel Command.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development. — Margaret Allen, SMU

Categories
Health & Medicine Learning & Education Researcher news Student researchers Technology

SMU chemist wins prestigious NSF Career Award

Alex Lippert’s research uses chemistry to develop affordable, glowing internal imaging techniques

SMU chemist Alex Lippert has received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences, is an organic chemist and adviser to four doctoral students and five undergraduates who assist in his research.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. For example, when injected into a mouse’s tumor, the compounds luminesce in response to the cancer’s pH and oxygen levels. Place that mouse in a sealed dark box with a sensitive CCD camera that can detect low levels of light, and images can be captured of the light emanating from the mouse’s tumor.

“We are developing chemiluminescent imaging agents, which basically amounts to a specialized type of glow-stick chemistry,” Lippert says. “We can use this method to image the insides of animals, kind of like an MRI, but much cheaper and easier to do.”

Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

But first, there are still a few ways the technique can be improved, and that’s where Lippert says the grant will come in handy.

“In preliminary studies, we needed to directly inject the compound into the tumor to see the chemistry in the tumor,” Lippert says. “One thing that’s funded by this grant is intravenous injection capability, where you inject a test subject and let the agent distribute through the body, then activate it in the tumor to see it light up.”

Another challenge the team will use the grant to explore is making a compound that varies by color instead of glow intensity when reacting to cancer cells. This will make it easier to read images, which can sometimes be buried under several layers of tissue, making the intensity of the glow difficult to interpret.

“We’re applying the method to tumors now, but you could use similar designs for other types of tissues,” Lippert says. “The current compound reacts to oxygen levels and pH, which are important in cancer biology, but also present in other types of biology, so it can be more wide-ranging than just looking at cancer.”

“This grant is really critical to our ability to continue the research going forward,” Lippert adds. “This will support the reagents and supplies, student stipends, and strengthen our collaboration with UT Southwestern Medical Center. Having that funding secure for five years is really nice because we can now focus our attention on the actual science instead of writing grants. It’s a huge step forward in our research progress.”

Lippert joined SMU in 2012. He was a postdoctoral researcher at the University of California, Berkeley, from 2009-12, earned his Ph.D. at the University of Pennsylvania in 2008 and earned a Bachelor of Science at the California Institute of Technology in 2003.

The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…” NSF is the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. — Kenny Ryan, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News Student researchers Technology

Dallas Innovates: SMU Researchers, Gamers Partner on Cancer Research