Categories
Energy & Matter Researcher news SMU In The News Student researchers Subfeature

SMU develops efficient methods to simulate how electromagnetic waves interact with devices

DALLAS (SMU) – It takes a tremendous amount of computer simulations to create a device like an MRI scanner that can image your brain by detecting electromagnetic waves propagating through tissue. The tricky part is figuring out how electromagnetic waves will react when they come in contact with the materials in the device.

SMU researchers have developed an algorithm that can be used in a wide range of fields – from biology and astronomy to military applications and telecommunications – to create equipment more efficiently and accurately.

Currently, it can take days or months to do simulations. And because of cost, there is a limit to the number of simulations typically done for these devices. SMU math researchers have revealed a way to do a faster algorithm for these simulations with the help of grants from the U.S. Army Research Office and the National Science Foundation.

“We can reduce the simulation time from one month to maybe one hour,” said lead researcher Wei Cai, Clements Chair of Applied Mathematics at SMU. “We have made a breakthrough in these algorithms.”

“This work will also help create a virtual laboratory for scientists to simulate and explore quantum dot solar cells, which could produce extremely small, efficient and lightweight solar military equipment,” said Dr. Joseph Myers, Army Research Office mathematical sciences division chief.

Dr. Bo Wang, a postdoctoral researcher at SMU (Southern Methodist University) and Wenzhong Zhang, a graduate student at the university, also contributed to this research. The study was published today by the SIAM Journal on Scientific Computing and can be viewed here. 

(From Left) Wei Cai, Dr. Bo Wang and Wenzhong Zhang. Credit: Photo courtesy of SMU (Southern Methodist University), Hillsman S. Jackson

The algorithm could have significant implications in a number of scientific fields.

“Electromagnetic waves exist as radiation of energies from charges and other quantum processes,” Cai explained.

They include things like radio waves, microwaves, light and X-rays. Electromagnetic waves are also the reason you can use a mobile phone to talk to someone in another state and why you can watch TV. In short, they’re everywhere.

An engineer or mathematician would be able to use the algorithm for a device whose job is to pick out a certain electromagnetic wave. For instance, she or he could potentially use it to design a solar light battery that lasts longer and is smaller than currently exists.

“To design a battery that is small in size, you need to optimize the material so that you can get the maximum conversion rate from the light energy to electricity,” Cai said. “An engineer could find that maximum conversion rate by going through simulations faster with this algorithm.”

Or the algorithm could help an engineer design a seismic monitor to predict earthquakes by tracking elastic waves in the earth, Cai noted.

“These are all waves, and our method applies for different kinds of waves,” he said. “There are a wide range of applications with what we have developed.”

Computer simulations map out how materials in a device like semiconductor materials will interact with light, in turn giving a sense of what a particular wave will do when it comes in contact with that device.

The manufacturing of many devices involving light interactions uses a fabrication process by layering material on top of each other in a lab, just like Legos. This is called layered media. Computer simulations then analyze the layered media using mathematical models to see how the material in question is interacting with light.

More Efficient, Less Expensive Way to Solve Helmholtz and Maxwell’s Equations

SMU researchers have found a more efficient and less expensive way to solve Helmholtz and Maxwell’s equations – difficult to solve but essential tools to predict the behavior of waves.

The problem of wave source and material interactions in the layer structure has been a very challenging one for the mathematicians and engineers for the last 30 years.

Professor Weng Cho Chew from Electrical and Computer Engineering at Purdue, a world leading expert on computational electromagnetics, said the problem “is notoriously difficult.”

Commenting on the work of Cai and his team, Chew said, “Their results show excellent convergence to small errors. I hope that their results will be widely adopted.”

The new algorithm modifies a mathematical method called the fast multipole method, or FMM, which was considered one of the top 10 algorithms in the 20th century.

To test the algorithm, Cai and the other researchers used SMU’s ManeFrame II – which is one of the fastest academic supercomputers in the nation – to run many different simulations.

Several outlets featured the news of the faster algorithm, including Breaking Defense, Primeur Magazine and the Army’s website.

 

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

Categories
Earth & Climate Energy & Matter Feature Researcher news SMU In The News Subfeature

New map outlines seismic faults across DFW region

Study by SMU, UT Austin and Stanford scientists rates faults for potential earthquakes; Faults under DFW urban area viewed as lower quake hazard

 

DALLAS (SMU) – Scientists from SMU, The University of Texas at Austin and Stanford University found that the majority of faults underlying the Fort Worth Basin are as sensitive to forces that could cause them to slip as those that have hosted earthquakes in the past.

 

The new study, published July 23rd by the journal Bulletin of the Seismological Society of America (BSSA), provides the most comprehensive fault information for the region to date. 

 

Fault slip potential modeling explores two scenarios: a model based on subsurface stress on the faults prior to high-volume wastewater injection and a model of those forces reflecting increase in fluid pressure due to injection.

 

A simplified version of the fault map created by the team of researchers. The map includes faults that are visible at the surface (green) and faults that are underground (black). The solid line indicates underground faults that researchers were able to map at a high resolution. The dotted line indicates faults that were mapped at a medium resolution. According to the research, in the presence of wastewater injection activity, the majority of the faults in the area are as susceptible to slipping as those faults that have already produced earthquakes. The map also marks earthquake locations and waste-water injection well locations and amounts. Credit: UT’s Bureau of Economic Geology

None of the faults shown to have the highest potential for an earthquake are located in the most populous Dallas-Fort Worth urban area or in the areas where there are currently many wastewater disposal wells.

 

Yet, the study also found that the majority of faults underlying the Fort Worth Basin are as sensitive to forces that could cause them to slip and cause an earthquake as those that have hosted earthquakes in recent years.

 

Though the majority of the faults identified on this map have not produced an earthquake, understanding why some faults have slipped and others with similar fault slip potential have not continues to be researched, said SMU seismologist and study co-author Heather DeShon, who has been the lead investigator of a series of other studies exploring the cause of the North Texas earthquakes.

Earthquakes were virtually unheard of in North Texas until slightly more than a decade ago. But more than 200 earthquakes have occurred in the region since late 2008, ranging in magnitude from 1.6 to 4.0. A series of studies have linked these events to the disposal of wastewater from oil and gas operations by injecting it deep into the earth at high volumes, triggering “dead” faults nearby.

A total of 251 faults have been identified in the Fort Worth Basin, but the researchers suspect that more exist that haven’t been identified. 

The study found that the faults remained relatively stable if they were left undisturbed. However, wastewater injection sharply increased the chances of these faults slipping, if they weren’t managed properly.

 

“That means the whole system of faults is sensitive,” said the lead author of the study Peter L. Hennings, a research scientist from UT Austin’s Bureau of Economic Geology and the principal investigator at the Center for Integrated Seismicity Research (CISR). 

DeShon said the new study provides fundamental information regarding earthquake hazard to the Dallas-Fort Worth region.

 

“The SMU earthquake catalog and the Texas Seismic Network catalog provide necessary earthquake data for understanding faults active in Texas right now,” she said. “This study provides key information to allow the public, cities, state and federal governments and industry to understand potential hazard and design effective public policies, regulations and mitigation strategies.”

“Industrial activities can increase the probability of triggering earthquakes before they would happen naturally, but there are steps we can take to reduce that probability,” added co-author Jens-Erik Lund Snee, a doctoral student at Stanford University.

 

Earthquake rates, like wastewater injection volumes, have decreased significantly since a peak in 2012.  But as long as earthquakes occur, earthquake hazard remains. Dallas-Fort Worth remains the highest risk region for earthquakes in Texas because of population density.

Even after the earthquakes died away, North Texas residents have wondered about the region’s vulnerability to future earthquakes – especially since no map was available to pinpoint the existence of all known faults in the region.  The new data, while still incomplete, benefited from information gleaned from newly released reflection seismic data held by oil and gas companies, reanalysis of publicly available well logs, and geologic outcrop information.

U of T at Austin and Stanford University provided the fault data and calculated fault slip potential. SMU, meanwhile, has been tracking seismic activity — which measures when the earth shakes —since people in the Dallas-Fort Worth area felt the first tremors near DFW International Airport in 2008. A catalog of all those tremors was recently published in June in the journal BSSA.

SMU seismologists have also been the lead or co-authors of a series of studies on the North Texas earthquakes. SMU research showed that many of the Dallas-Fort Worth earthquakes were triggered by increases in pore pressure — the pressure of groundwater trapped within tiny spaces inside rocks in the subsurface. An independent study done by SMU’s seismologist Beatrice Magnani found that wastewater injection reactivated dormant faults near Dallas that had been dormant for the last 300 million years.  

DeShon said any future plan to mine for oil or natural gas in Fort Worth basin should be done with an understanding that the basin contains several faults that are highly-sensitive to pore-pressure changes. The study noted that rates of injection dropped sharply in the Fort Worth basin, but the practice still continues. Most of the injection that has taken place has been concentrated in the Johnson, Tarrant, and Parker counties, near areas of continued seismic activity.  

“The largest earthquake the Dallas-Fort Worth region experienced was a magnitude 4 in 2015” DeShon said. “The U.S. Geological Survey and Red Cross provide practical preparedness advice for your home and work places. Just as we prepare for tornado season in north Texas, it remains important for us to have a plan for experiencing earthquake shaking.”

Many outlets covered the news:

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Categories
Energy & Matter Researcher news SMU In The News Subfeature

New power generation technology using waste heat from geothermal plants tested by SMU

The Geothermal Laboratory at Southern Methodist University (SMU) has just completed a research project that aims to use ultra-low-grade heat (150 °F to 250 °F) normally discarded by geothermal facilities to generate additional electricity. A central component of this project was the proprietary bottoming cycle technology of PwrCor, Inc., an advanced technology company that focuses on renewable energy solutions for Waste-to-Heat Power, Geothermal, and Solar markets.

Maria Richards

SMU’s Geothermal Laboratory, which is a research facility devoted to broadening the understanding and use of geothermal energy, compiled information such as ambient air temperature, injection temperature, and injection flow rate to quantify the total thermal energy within the spent geothermal fluids already being produced, but not utilized, by 31 of 73 U.S.-based geothermal sites for which data was available. What they found was that roughly 427 MWe can be generated from the spent geothermal fluids of currently existing facilities. This represents about 15% of the capacity of the sites looked at in the study.

“Geothermal energy is the work-horse of green power production.  Unlike various others, it operates 24/7, is suitable for baseload power supply, occupies a small footprint, and is designed to last,” noted Maria Richards, Geothermal Lab Coordinator for the Geothermal Laboratory. “PwrCor is working to improve the efficiency of our geothermal power infrastructure, and we commend their efforts.”

PwrCor is currently working with companies in the fuel cell and reciprocating engines industries, but they are also involved in initiatives in geothermal, oil and gas, and solar thermal. Their technology that allows for the cost-effective conversion of low-grade and ultra-low-grade heat to mechanical power and electricity could be revolutionary for businesses that could convert wasted heat to additional electrical power.

Joe Batir, a research geologist for the Geothermal Laboratory at SMU, said, “There is a great deal of heat being underutilized in geothermal power generating facilities around the United States.  Technology that can convert even a small portion of this underutilized heat into additional power has the potential of bringing major benefits to both geothermal power producers and to the environment.”– Globe News Wire and SMU

SMU’s research was featured in Think Geoenergy.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Categories
Energy & Matter Global Researcher news SMU In The News

SMU Physicist Honored for Dark Matter Research

Jodi Cooley named fellow of American Association for the Advancement of Science

DALLAS (SMU) – SMU physicist Jodi Cooley has been named a Fellow of the American Association for the Advancement of Science (AAAS). Election as an AAAS Fellow is an honor bestowed by their peers upon the group’s members for scientifically or socially distinguished efforts to advance science or its applications.

Cooley is one of 416 fellows to be honored during the 2019 AAAS annual meeting in Washington, D.C., on Saturday, Feb. 16. She is being honored for her contributions to the search for dark matter scattering with nuclei, particularly using cryogenic technologies. The nature of dark matter is unknown, but is believed to make up about 85 percent of the universe.

SMU physicist Jodi Cooley

“I feel incredibly privileged to have even been nominated for such an honor; to be further elected as a Fellow of the AAAS is humbling beyond words,” Cooley said. “I also feel an immense sense of gratitude toward all of those who supported me along this path: my family, my friends, and my mentors.”

Cooley, who joined SMU in 2009, is associate professor of experimental particle physics in SMU’s Dedman College of Humanities and Sciences.

“Professor Cooley is a distinguished scientist with a record of outstanding federal research support and innovative experimental design,” said Dedman College Dean Thomas DiPiero.  “In addition to her work in the lab and in the classroom, she also reaches out to the general public to explain the intricacies of particle physics in ways that are understandable and engaging.”

Cooley and her colleagues operated sophisticated detectors in the Soudan Underground Laboratory, MN. The Department of Energy and National Science Foundation announced they’ll provide funding to expand that research, so planning is now under way to move the experiment to an even deeper location, SNOLAB in Canada, to improve the search for dark matter. These detectors can distinguish between elusive dark matter particles and background particles that mimic dark matter interactions.

Cooley is a principal investigator on the SuperCDMS dark matter experiment and was principal investigator for the AARM collaboration, whose aim was to develop integrative tools for underground science. She has won numerous awards for her research, including an Early Career Award from the National Science Foundation and the Ralph E. Powe Junior Faculty Enhancement Award from the Oak Ridge Associated Universities.

Cooley received a B.S. degree in applied mathematics and physics from the University of Wisconsin in Milwaukee in 1997. She earned her master’s degree in 2000 and her Ph.D. in 2003 at the University of Wisconsin – Madison for her research searching for neutrinos from diffuse astronomical sources with the AMANDA-II detector. Upon graduation she did postdoctoral studies at both MIT and Stanford University.

The tradition of AAAS Fellows began in 1874. Currently, members can be considered for the rank of Fellow if nominated by the steering groups of the Association’s 24 sections, or by any three Fellows who are current AAAS members (so long as two of the three sponsors are not affiliated with the nominee’s institution), or by the AAAS chief executive officer. Fellows must have been continuous members of AAAS for four years by the end of the calendar year in which they are elected. AAAS Fellow’s lifetime honor comes with an expectation that recipients maintain the highest standards of professional ethics and scientific integrity.

Each steering group reviews the nominations of individuals within its respective section and a final list is forwarded to the AAAS Council, which votes on the aggregate list. The Council is the policymaking body of the Association, chaired by the AAAS president, and consisting of the members of the board of directors, the retiring section chairs, delegates from each electorate and each regional division, and two delegates from the National Association of Academies of Science.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas.  SMU’s alumni, faculty and nearly 12,000 students demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 About the AAAS

The American Association for the Advancement of Science (AAAS) is the world’s largest general scientific society and publisher of the journal Science (www.sciencemag.org) as well as Science Translational Medicine, Science Signaling, a digital, open-access journal, Science Advances, Science Immunology, and Science Robotics. AAAS was founded in 1848 and includes nearly 250 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to “advance science and serve society” through initiatives in science policy, international programs, science education, public engagement, and more. For the latest research news, log onto EurekAlert! (www.eurekalert.org), the premier science-news Web site, a service of AAAS. See www.aaas.org.

Categories
Energy & Matter Feature Global Learning & Education SMU In The News Technology

SMU Physicist Explains Significance of Latest Cern Discovery Related to the Higgs Boson

Stephen Sekula says observation of the Higgs particle transforming into bottom quarks confirms the 20th-century recipe for mass

DALLAS (SMU) – Scientists conducting physics experiments at CERN’s Large Hadron Collider have announced the discovery of the Higgs boson transforming, as it decays, into subatomic particles called bottom quarks, an observation that confirms that the “Standard Model” of the universe – the 20th century recipe for everything in the known physical world – is still valid.

This new discovery is a big step forward in the quest to understand how the Higgs enables fundamental particles to acquire mass. Many scientists suspect that the Higgs could interact with particles outside the Standard Model, such as dark matter – the unseen matter that does not emit or absorb light, but may make up more than 80 percent of the matter in the universe.

After several years of work experiments at both ATLAS and CMS – CERN detectors that use different types of technology to investigate a broad range of physics –have demonstrated that 60 percent of Higgs particles decay in the same way. By finding and mapping the Higgs boson interactions with known particles, scientists can simultaneously probe for new phenomena.

SMU played important roles in the analysis announced by CERN Aug. 28, including:

  • Development of the underlying analysis software framework (Stephen Sekula, SMU associate professor of physics was co-leader of the small group that included SMU graduate student Peilong Wang and post-doctoral researcher Francesco Lo Sterzo, that does this for the larger analysis for 2017-2018)
  • Studying background processes that mimic this Higgs boson decay, reducing measurement uncertainty in the final result.

“The Standard Model is the recipe for everything that surrounds us in the world today.  Sekula explained. “It has been tested to ridiculous precision. People have been trying for 30-40 years to figure out where or if the Standard Model described matter incorrectly. Like any recipe you inherit from a family member, you trust but verify. This might be grandma’s favorite recipe, but do you really need two sticks of butter? This finding shows that the Standard Model is still the best recipe for the Universe as we know it.”

Scientists would have been intrigued if the Standard Model had not survived this test, Sekula said, because failure would have produced new knowledge.

“When we went to the moon, we didn’t know we’d get Mylar and Tang,” Sekula said. “What we’ve achieved getting to this point is we’ve pushed the boundaries of technology in both computing and electronics just to make this observation. Technology as we know it will continue to be revolutionized by fundamental curiosity about why the universe is the way it is.

“As for what we will get from all this experimentation, the honest answer is I don’t know,” Sekula said. “But based on the history of science, it’s going to be amazing.”

About CERN

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. They use the world’s largest and most complex scientific instruments to study the basic constituents of matter – the fundamental particles. The particles are made to collide together at close to the speed of light. The process gives the physicists clues about how the particles interact, and provides insights into the fundamental laws of nature. Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near Geneva.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas.  SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Categories
Earth & Climate Energy & Matter Feature Researcher news Student researchers Videos

SMU physicist and her students join national laboratories, other universities in high-stakes hunt for elusive dark matter

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors.” — Jodi Cooley

SMU physicist Jodi Cooley is a member of the international scientific team that will use a powerful new tool to understand one of the biggest mysteries of modern physics.

The U.S. Department of Energy has approved funding and start of construction for SuperCDMS SNOLAB, a $34 million experiment designed to detect dark matter.

SuperCDMS will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs.

“Understanding the nature of dark matter is one of the most important scientific puzzles in particle astrophysics today,” said Cooley, an associate professor of experimental particle physics. “The experiment will have unprecedented sensitivity to dark matter particles that are hypothesized to have very low mass and interact very rarely. So they are extremely challenging to detect. This challenge has required us to develop cutting edge detectors.”

Cooley is one of 111 scientists from 26 institutions in the SuperCDMS collaboration. SMU graduate students on the experiment include Matt Stein (Ph.D. ’18) and Dan Jardin; and also previously Hang Qiu (Ph.D. ’17).

Physicists are searching for dark matter because although it makes up the bulk of the universe it remains a mystery. They theorize that dark matter could be composed of dark matter particles, with WIMPs a top contender for the title.

If dark matter WIMP particles exist, they would barely interact with their environment and fly right through regular matter. However, every so often, they could collide with an atom of our visible world, and dark matter researchers are looking for these rare interactions.

The SuperCDMS experiment will be the world’s most sensitive for detecting the relatively light WIMPs.

Cooley and her students in the SMU Department of Physics have been working with Washington-based Pacific Northwest National Laboratory on the challenge of background control and material selection for the experiment’s WIMP detectors.

Understanding background signals in the experiment is a major challenge for the detection of the faint WIMP signals.

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors,” Cooley said. “As such, the experiment is constructed from radiopure materials that are carefully characterized through a screening and assay before they are selected.”

The SMU research team also has performed simulations of background particles in the detectors.

“Doing this helps inform the design of the experiment shield,” Cooley said. “We want to select the right materials to use in construction of the experiment. For example, materials that are too high in radioactivity will produce background particles that might produce fake dark matter signals in our detectors. We are extremely careful to use materials that block background particles. We also take great care that the material we use to hold the detectors in place — copper — is very radiopure.”

The experiment will be assembled and operated within the existing Canadian laboratory SNOLAB – 6,800 feet underground inside a nickel mine near the city of Sudbury. That’s the deepest underground laboratory in North America.

The experiment’s detectors will be protected from high-energy particles, called cosmic radiation, which can create the unwanted background signals that Cooley’s team wants to prevent.

SuperCDMS SNOLAB will be 50 times more sensitive than predecessor
Scientists know that visible matter in the universe accounts for only 15 percent of all matter. The rest is the mysterious substance called dark matter.

Due to its gravitational pull on regular matter, dark matter is a key driver for the evolution of the universe, affecting the formation of galaxies like our Milky Way. It therefore is fundamental to our very own existence.

The SuperCDMS SNOLAB experiment will be at least 50 times more sensitive than its predecessor, exploring WIMP properties that can’t be probed by other experiments.

The search will be done using silicon and germanium crystals, in which the collisions would trigger tiny vibrations. However, to measure the atomic jiggles, the crystals need to be cooled to less than minus 459.6 degrees Fahrenheit — a fraction of a degree above absolute zero temperature.

The ultra-cold conditions give the experiment its name: Cryogenic Dark Matter Search, or CDMS. The prefix “Super” indicates an increased sensitivity compared to previous versions of the experiment.

Experiment will measure “fingerprints” left by dark matter
The collisions would also produce pairs of electrons and electron deficiencies that move through the crystals, triggering additional atomic vibrations that amplify the signal from the dark matter collision. The experiment will be able to measure these “fingerprints” left by dark matter with sophisticated superconducting electronics.

Besides Pacific Northwest National Laboratory, two other Department of Energy national labs are involved in the project.

SLAC National Accelerator Laboratory in California is managing the construction project. SLAC will provide the experiment’s centerpiece of initially four detector towers, each containing six crystals in the shape of oversized hockey pucks. SLAC built and tested a detector prototype. The first tower could be sent to SNOLAB by the end of 2018.

Fermi National Accelerator Laboratory is working on the experiment’s intricate shielding and cryogenics infrastructure.

“Our experiment will be the world’s most sensitive for relatively light WIMPs,” said Richard Partridge, head of the SuperCDMS group at the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of SLAC and Stanford University. “This unparalleled sensitivity will create exciting opportunities to explore new territory in dark matter research.”

Close-knit network of strong partners is crucial to success
Besides SMU, a number of U.S. and Canadian universities also play key roles in the experiment, working on tasks ranging from detector fabrication and testing to data analysis and simulation. The largest international contribution comes from Canada and includes the research infrastructure at SNOLAB.

“We’re fortunate to have a close-knit network of strong collaboration partners, which is crucial for our success,” said Project Director Blas Cabrera from KIPAC. “The same is true for the outstanding support we’re receiving from the funding agencies in the U.S. and Canada.”

Funding is from the DOE Office of Science, $19 million, the National Science Foundation, $12 million, and the Canada Foundation for Innovation, $3 million.

SuperCDMS to search for dark matter in entirely new region
“Together we’re now ready to build an experiment that will search for dark matter particles that interact with normal matter in an entirely new region,” said SuperCDMS spokesperson Dan Bauer, Fermilab.

SuperCDMS SNOLAB will be the latest in a series of increasingly sensitive dark matter experiments. The most recent version, located at the Soudan Mine in Minnesota, completed operations in 2015.

”The project has incorporated lessons learned from previous CDMS experiments to significantly improve the experimental infrastructure and detector designs for the experiment,” said SLAC’s Ken Fouts, project manager for SuperCDMS SNOLAB. “The combination of design improvements, the deep location and the infrastructure support provided by SNOLAB will allow the experiment to reach its full potential in the search for low-mass dark matter.” — SLAC National Laboratory; and Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Student researchers Videos

WFAA Verify: Is West Texas sinking?

A new research report, from Southern Methodist University and funded by NASA, found a “…large swath of West Texas oil patch is heaving and sinking at alarming rates.”

WFAA-TV Channel 8’s Verify journalist David Schechter covered the phenomenon of the ground sinking at alarming rates in West Texas, according to the research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences.

The Dedman College researchers are co-authors of a new analysis using satellite radar images that discovered decades of oil production activity in West Texas have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks.

Schechter’s WFAA ABC report, “Verify: Is West Texas sinking?” aired April 18, 2018.

Lu and Kim reported their findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

The researchers analyzed satellite radar images that were made public by the European Space Agency, and supplemented that with oil activity data from the Railroad Commission of Texas.

The study is among the first of its kind to identify small-scale deformation signals over a vast region by drawing from big data sets spanning a number of years and then adding supplementary information.

The research is supported by the NASA Earth Surface and Interior Program, and the Shuler-Foscue Endowment at SMU.

An earlier study by the researchers revealed significant ground movement of two giant sinkholes near Wink, Texas. The SMU geophysicists found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

Watch the WFAA Verify news segment.

EXCERPT:

By David Schechter
WFAA-TV Verify

A new research report, from Southern Methodist University and funded by NASA, found a “…large swath of West Texas oil patch is heaving and sinking at alarming rates.”

To find out if West Texas is sinking, first I’m going to the guy who wrote the report, Dr. Zhong Lu. He’s a geophysicist who studies the earth using satellites.

By shooting a radar beam from space — like a measuring stick — a satellite can calculate elevation changes down to the centimeter. Lu did that over a 4000 square mile area.

“This area is sinking at half meter per year,” Dr. Lu says.

That’s more than a foot-and-a-half. Lu says, that’s alarming because that much change to the earth’s surface might normally take millions of years.

One of the images in his reports shows an area of sinking earth, near Wink, TX from 2011. Five years later, the satellite shows the sunken area had spread almost 240%.

“In this area that you are studying, is oil and gas the cause of the sinking?” I ask.

“Related to the oil and gas activities,” he says.

“Oil and gas activity is causing the sinking in West Texas?” I clarify.

“Yes,” he says.

Watch the WFAA Verify news segment.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Student researchers

The Guardian: Texas sinkholes — oil and gas drilling increases threat, scientists warn

Ground rising and falling in region that has been ‘punctured like a pin cushion’ since the 1940s, new study finds.

The Guardian and other news outlets covered the West Texas sinkhole and ground movement research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences at SMU.

The Dedman College researchers are co-authors of a new analysis using satellite radar images that shows decades of oil production activity in West Texas have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks.

An earlier study by the researchers revealed significant ground movement of two giant sinkholes near Wink, Texas. The SMU geophysicists found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

The Guardian article by journalist Tom Dart was published March 27, 2018, “Texas sinkholes: oil and gas drilling increases threat, scientists warn.”

Other coverage includes articles by Forbes, Tech Times, Phys.org, Ecowatch, Fox San Antonio, The Dallas Morning News and the Texas Tribune.

Others include EarthSky.org, Live Science, KERA News, San Antonio Express, Houston Chronicle, Science Daily, The Energy Mix, Digital Journal, Homeland Security News Wire and the Science Bulletin.

Lu is world-renowned for leading scientists in InSAR applications, short for a technique called interferometric synthetic aperture radar, to detect surface changes that aren’t visible to the naked eye. Lu is a member of the Science Definition Team for the dedicated U.S. and Indian NASA-ISRO InSAR mission, set for launch in 2020 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A. Sentinel-1A was launched in April 2014 as part of the European Union’s Copernicus program.

Lu and Kim reported their latest findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

Lu and Kim reported the earlier findings in the scientific journal Remote Sensing, in the article “Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR Interferometry.”

The research is supported by the U.S. Geological Survey Land Remote Sensing Program, the NASA Earth Surface & Interior Program, and the Shuler-Foscue Endowment at Southern Methodist University.

Read the full story.

EXCERPT:

By Tom Dart
The Guardian

Oil and gas activity is contributing to alarming land movements and a rising threat of sinkholes across a huge swath of west Texas, a new study suggests.

According to geophysicists from Southern Methodist University, the ground is rising and falling in a region that has been “punctured like a pin cushion with oil wells and injection wells since the 1940s”.

There were nearly 297,000 oil wells in Texas as of last month, according to the state regulator. Many are in the Permian Basin, described in a Bloomberg article last September as the “world’s hottest oil patch”.

But the Southern Methodist report warns of unstable land and the threat of sinkholes.

“These hazards represent a danger to residents, roads, railroads, levees, dams, and oil and gas pipelines, as well as potential pollution of ground water,” Zhong Lu, a professor, said in a statement.

Wink – a tiny town 400 miles west of Dallas best known as the childhood home of the singer Roy Orbison – attracted national headlines in 2016 when the same scientists warned that the land between two expanding sinkholes a mile apart was deteriorating, risking the formation of more sinkholes or even the creation of a colossal single hole.

Injection of wastewater and carbon dioxide increases pore pressure in rocks, a likely cause of uplift. Lu told the Guardian that cracks and corrosion from ageing wells may help explain the sinking.

A “subsidence bowl” near one of the Wink sinkholes has sunk at a rate of more than 15.5in a year, probably as a result of water leaks through abandoned wells causing salt layers to dissolve, the report found. Elsewhere, a lake formed after 2003 as a result of sinking ground and rising water.

Read the full story.

Categories
Earth & Climate Energy & Matter Fossils & Ruins Researcher news SMU In The News

The Dallas Morning News: Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut

“Faults are not like a light switch – you don’t turn off a well and automatically stop triggering earthquakes.” — Heather DeShon, SMU seismologist.

Science journalist Anna Kuchment covered the earthquake research of a team of SMU seismologists led by SMU Associate Professor Heather DeShon and SMU Post-doctoral Researcher Paul Ogwari, who developed a unique method of data analysis that yielded the study results.

Kuchment wrote Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut for The Dallas Morning News.

The results of the analysis showed that efforts to stop human-caused earthquakes by shutting down wastewater injection wells that serve adjacent oil and gas fields may oversimplify the challenge. The seismologists analyzed a sequence of earthquakes at DFW Airport and found that even though wastewater injection was halted after a year, the earthquakes continued.

The sequence of quakes began in 2008, and wastewater injection was halted in 2009. But earthquakes continued for at least seven more years.

“This tells us that high-volume injection, even if it’s just for a short time, when it’s near a critically stressed fault, can induce long-lasting seismicity,” said Ogwari. The earthquakes may be continuing even now, he said.

The article by Kuchment, “Earthquakes at DFW Airport continued for years after oil and gas wastewater well was shut,” published Feb. 21, 2018.

Read the full story.

EXCERPT:

By Anna Kuchment
The Dallas Morning News

Earthquakes beneath DFW International Airport continued for seven years after an oil and gas company shut a nearby wastewater injection well that had been linked to the quakes, according to a new study by scientists at Southern Methodist University.

A wastewater well that continues to operate at the northern end of the airport – and which some area residents have said should be closed — was probably not involved in the events and poses little earthquake hazard, the researchers concluded.

“Faults are not like a light switch – you don’t turn off a well and automatically stop triggering earthquakes,” said Heather DeShon, a seismologist at Southern Methodist University and co-author of the paper, in an email.

The earthquakes at DFW Airport started on Halloween 2008, seven weeks after Chesapeake Energy began injecting wastewater into a well at the southern end of the airport. Scientists at SMU and the University of Texas at Austin investigated the quakes at the time and concluded they were most likely associated with the well.

Though Chesapeake shut its well in August 2009, earthquakes continued through at least the end of 2015. The largest, a 3.4-magnitude event, struck three years after the well was closed.

“It’s very surprising that one year of injection could produce earthquakes running for more than seven years,” said Paul Ogwari, the study’s lead author and a post-doctoral researcher at SMU. The paper was published in the Journal of Geophysical Research.

While earthquake magnitudes did not decline, Ogwari said, earthquake rates did: More than 80 percent of quakes in the sequence occurred during the first seven months of seismicity.

The DFW quakes are significant, because they mark the start of an unprecedented surge of earthquakes in North Texas and across the middle of the country.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news Slideshows Student researchers

Solving the dark energy mystery: A new sky survey assignment for a 45-year-old telescope

SMU and other members of a scientific consortium prepare for installation of the Dark Energy Spectroscopic Instrument to survey the night sky from a mile-high mountain peak in Arizona

As part of a large scientific consortium studying dark energy, SMU physicists are on course to help create the largest 3-D map of the universe ever made.

The map will emerge from data gathered by the Dark Energy Spectroscopic Instrument (DESI) being installed on the Nicholas U. Mayall Telescope atop a mountain in Arizona.

The map could help solve the mystery of dark energy, which is driving the accelerating expansion of the universe.

DESI will capture about 10 times more data than a predecessor survey of space using an array of 5,000 swiveling robots. Each robot will be carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.

“DESI will provide the first precise measures of the expansion history of the universe covering approximately the last 10 billion years,” said SMU physicist Robert Kehoe, a professor in the SMU Department of Physics. “This is most of the 13 billion year age of the universe, and it encompasses a critical period in which the universe went from being matter-dominated to dark-energy dominated.”

The universe was expanding, but at a slowing pace, until a few billion years ago, Kehoe said.

“Then the expansion started accelerating,” he said. “The unknown ‘dark energy’ driving that acceleration is now dominating the universe. Seeing this transition clearly will provide a critical test of ideas of what this dark energy is, and how it may tie into theories of gravitation and other fundamental forces.”

The Mayall telescope was originally commissioned 45 years ago to survey the night sky and record observations on glass photographic plates. The telescope is tucked inside a 14-story, 500-ton dome atop a mile-high peak at the National Science Foundation’s Kitt Peak National Observatory – part of the National Optical Astronomy Observatory.

SMU researchers have conducted observing with the Mayall. Decommissioning of that telescope allows for building DESI in it’s place, as well as reusing some parts of the telescope and adding major new sytems. As part of DESI, SMU is involved in development of software for operation of the experiment, as well as for data simulation to aid data anlysis.

“We are also involved in studying the ways in which observational effects impact the cosmology measurements DESI is pursuing,” Kehoe said. SMU graduate students Govinda Dhungana and Ryan Staten also work on DESI. A new addition to the SMU DESI team, post-doctoral researcher Sarah Eftekharzadeh, is working on the SMU software and has studied the same kinds of galaxies
DESI will be measuring.

Now the dome is closing on the previous science chapters of the 4-meter Mayall Telescope so that it can prepare for its new role in creating the 3-D map.

The temporary closure sets in motion the largest overhaul in the telescope’s history and sets the stage for the installation of the Dark Energy Spectroscopic Instrument, which will begin a five-year observing run next year.

“This day marks an enormous milestone for us,” said DESI Director Michael Levi of the Department of Energy’s Lawrence Berkeley National Laboratory , which leads the project’s international collaboration. “Now we remove the old equipment and start the yearlong process of putting the new stuff on.”

More than 465 researchers from about 71 institutions are participating in the DESI collaboration.

The entire top end of the telescope, which weighs as much as a school bus and houses the telescope’s secondary mirror and a large digital camera, will be removed and replaced with DESI instruments. A large crane will lift the telescope’s top end through the observing slit in its dome.

Besides providing new insights about the universe’s expansion and large-scale structure, DESI will also help to set limits on theories related to gravity and the formative stages of the universe, and could even provide new mass measurements for a variety of elusive yet abundant subatomic particles called neutrinos.

“One of the primary ways that we learn about the unseen universe is by its subtle effects on the clustering of galaxies,” said DESI collaboration co-spokesperson Daniel Eisenstein of Harvard University. “The new maps from DESI will provide an exquisite new level of sensitivity in our study of cosmology.”

Mayall’s sturdy construction is perfect platform for new 9-ton instrument
The Mayall Telescope has played an important role in many astronomical discoveries, including measurements supporting the discovery of dark energy and establishing the role of dark matter in the universe from measurements of galaxy rotation. Its observations have also been used in determining the scale and structure of the universe. Dark matter and dark energy together are believed to make up about 95 percent of all of the universe’s mass and energy.

It was one of the world’s largest optical telescopes at the time it was built, and because of its sturdy construction it is perfectly suited to carry the new 9-ton instrument.

“We started this project by surveying large telescopes to find one that had a suitable mirror and wouldn’t collapse under the weight of such a massive instrument,” said Berkeley Lab’s David Schlegel, a DESI project scientist.

Arjun Dey, the NOAO project scientist for DESI, explained, “The Mayall was precociously engineered like a battleship and designed with a wide field of view.”

The expansion of the telescope’s field-of-view will allow DESI to map out about one-third of the sky.

DESI will transform the speed of science with automated preprogrammed robots
Brenna Flaugher, a DESI project scientist who leads the astrophysics department at Fermi National Accelerator Laboratory, said DESI will transform the speed of science at the Mayall Telescope.

“The telescope was designed to carry a person at the top who aimed and steered it, but with DESI it’s all automated,” she said. “Instead of one at a time we can measure the velocities of 5,000 galaxies at a time – we will measure more than 30 million of them in our five-year survey.”

DESI will use an array of 5,000 swiveling robots, each carefully choreographed to point a fiber-optic cable at a preprogrammed sequence of deep-space objects, including millions of galaxies and quasars, which are galaxies that harbor massive, actively feeding black holes.

The fiber-optic cables will carry the light from these objects to 10 spectrographs, which are tools that will measure the properties of this light and help to pinpoint the objects’ distance and the rate at which they are moving away from us. DESI’s observations will provide a deep look into the early universe, up to about 11 billion years ago.

DESI will capture about 10 times more data than a predecessor survey
The cylindrical, fiber-toting robots, which will be embedded in a rounded metal unit called a focal plate, will reposition to capture a new exposure of the sky roughly every 20 minutes. The focal plane assembly, which is now being assembled at Berkeley Lab, is expected to be completed and delivered to Kitt Peak this year.

DESI will scan one-third of the sky and will capture about 10 times more data than a predecessor survey, the Baryon Oscillation Spectroscopic Survey (BOSS). That project relied on a manually rotated sequence of metal plates – with fibers plugged by hand into pre-drilled holes – to target objects.

All of DESI’s six lenses, each about a meter in diameter, are complete. They will be carefully stacked and aligned in a steel support structure and will ultimately ride with the focal plane atop the telescope.

Each of these lenses took shape from large blocks of glass. They have criss-crossed the globe to receive various treatments, including grinding, polishing, and coatings. It took about 3.5 years to produce each of the lenses, which now reside at University College London in the U.K. and will be shipped to the DESI site this spring.

Precise measurements of millions of galaxies will reveal effects of dark energy
The Mayall Telescope has most recently been enlisted in a DESI-supporting sky survey known as the Mayall z-Band Legacy Survey, which is one of four sky surveys that DESI will use to preselect its targeted sky objects. SMU astrophysicists carried out observing duties on that survey, which wrapped up just days ago on Feb. 11, to support the coming DESI scientific results.

Data from these surveys are analyzed at Berkeley Lab’s National Energy Research Scientific Computing Center, a DOE Office of Science User Facility. Data from these surveys have been released to the public at http://legacysurvey.org.

“We can see about a billion galaxies in the survey images, which is quite a bit of fun to explore,” Schlegel said. “The DESI instrument will precisely measure millions of those galaxies to see the effects of dark energy.”


Levi noted that there is already a lot of computing work underway at the Berkeley computing center to prepare for the stream of data that will pour out of DESI once it starts up.

“This project is all about generating huge quantities of data,” Levi said. “The data will go directly from the telescope to the Berkeley computing center for processing. We will create hundreds of universes in these computers and see which universe best fits our data.”

Installation of DESI’s components is expected to begin soon and to wrap up in April 2019, with first science observations planned in September 2019.

“Installing DESI on the Mayall will put the telescope at the heart of the next decade of discoveries in cosmology,” said Risa Wechsler, DESI collaboration co-spokesperson and associate professor of physics and astrophysics at SLAC National Accelerator Laboratory and Stanford University. “The amazing 3-D map it will measure may solve some of the biggest outstanding questions in cosmology, or surprise us and bring up new ones.” — Berkeley Lab and SMU

Categories
Earth & Climate Energy & Matter Feature Fossils & Ruins Researcher news

SMU study finds earthquakes continue for years after gas field wastewater injection stops

High rates of injection and large volumes can perturb critically stressed faults, triggering earthquakes years after wastewater wells are shut in.

Efforts to stop human-caused earthquakes by shutting down wastewater injection wells that serve adjacent oil and gas fields may oversimplify the challenge, according to a new study from seismologists at Southern Methodist University, Dallas.

The seismologists analyzed a sequence of earthquakes at DFW Airport and found that even though wastewater injection was halted after a year, the earthquakes continued.

The sequence of quakes began in 2008, and wastewater injection was halted in 2009. But earthquakes continued for at least seven more years.

“This tells us that high-volume injection, even if it’s just for a short time, when it’s near a critically stressed fault, can induce long-lasting seismicity,” said SMU seismologist Paul O. Ogwari, who developed a unique method of data analysis that yielded the study results.

The earthquakes may be continuing even now, said Ogwari, whose analysis extended through 2015.

The study’s findings indicate that shutting down injection wells in reaction to earthquakes, as some states such as Oklahoma and Arkansas are doing, may not have the desired effect of immediately stopping further earthquakes, said seismologist Heather DeShon, a co-author on the study and an associate professor in the SMU Earth Sciences Department.

“The DFW earthquake sequence began on Halloween in 2008 — before Oklahoma seismicity rates had notably increased,” said DeShon. “This study revisits what was technically the very first modern induced earthquake sequence in this region and shows that even though the wastewater injector in this case had been shut off very quickly, the injection activity still perturbed the fault, so that generated earthquakes even seven years later.”

That phenomenon is not unheard of. Seismologists saw that type of earthquake response from a rash of human-induced earthquakes in Colorado after wastewater injection during the 1960s at the Rocky Mountain Arsenal near Denver. Similarly in that case, injection was started and stopped, but earthquakes continued.

Such a possibility has not been well understood outside scientific circles, said DeShon. She is a member of the SMU seismology team that has studied and published extensively on their scientific findings related to the unusual spate of human-induced earthquakes in North Texas.

“The perception is that if the oil and gas wastewater injectors are leading to this, then you should just shut the injection wells down,” DeShon said. “But Paul’s study shows that there’s a lot to be learned about the physics of the process, and by monitoring continuously for years.”

Ogwari, DeShon and fellow SMU seismologist Matthew J. Hornbach reported the findings in the peer-reviewed Journal of Geophysical Research in the article “The Dallas-Fort Worth Airport Earthquake Sequence: Seismicity Beyond Injection Period.”

Known DFW Airport quakes number more than 400
The DFW Airport’s unprecedented earthquake clusters were the first ever documented in the history of the North Texas region’s oil-rich geological system known as the Fort Worth Basin. The quakes are also the first of multiple sequences in the basin tied to large-scale subsurface disposal of waste fluids from oil and gas operations.

The DFW Airport earthquakes began in 2008, as did high-volume wastewater injection of brine. Most of the seismic activity occurred in the first two months after injection began, primarily within .62 miles, or 1 kilometer, from the well. Other clusters then migrated further to the northeast of the well over the next seven years. The quakes were triggered on a pre-existing regional fault that trends 3.7 miles, or 6 kilometers, northeast to southwest.

Ogwari, a post-doctoral researcher in the SMU Roy M. Huffington Earth Sciences Department in Dedman College, analyzed years of existing seismic data from the region to take a deeper look at the DFW Airport sequence, which totaled 412 earthquakes through 2015.

Looking at the data for those quakes, Ogwari discovered that they had continued for at least seven years into 2015 along 80% of the fault, even though injection was stopped after only 11 months in August of 2009.

Rate of quakes declined, but magnitude has never lessened
In another important finding from the study, Ogwari found that the magnitude of the DFW Airport earthquakes didn’t lessen over time, but instead held steady. Magnitude ranged from 0.5 to 3.4, with the largest one occurring three years after injection at the well was stopped.

“What we’ve seen here is that the magnitude is consistent over time within the fault,” Ogwari said. “We expect to see the bigger events during injection or immediately after injection, followed by abrupt decay. But instead we’re seeing the fault continue to produce earthquakes with similar magnitudes that we saw during injection.”

While the rate of earthquakes declined — there were 23 events a month from 2008 to 2009, but only 1 event a month after May 2010 — the magnitude stayed the same. That indicates the fault doesn’t heal completely.

“We don’t know why that is,” Ogwari said. “I think that’s a question that is out there and may need more research.”

More monitoring needed for human-induced quakes
Answering that question, and others, about the complex characteristics and behavior of faults and earthquakes, requires more extensive monitoring than is currently possible given the funding allotted to monitor quakes.

Monitoring the faults involves strategically placed stations that “listen” and record waves of intense energy echoing through the ground, DeShon said.

The Fort Worth Basin includes the Barnett shale, a major gas producing geological formation, atop the deep Ellenberger formation used for wastewater storage, which overlays a granite basement layer. The ancient Airport fault system extends through all units.

Friction prevented the fault from slipping for millions of years, but in 2008 high volumes of injected wastewater disturbed the Airport fault. That caused the fault to slip, releasing stored-up energy in waves. The most powerful waves were “felt” as the earth shaking.

“The detailed physical equations relating wastewater processes to fault processes is still a bit of a question,” DeShon said. “But generally the favored hypothesis is that the injected fluid changes the pressure enough to change the ratio of the downward stress to the horizontal stresses, which allows the fault to slip.”

Earthquakes in North Texas were unheard of until 2008, so when they began to be felt, seismologists scrambled to install monitors. When the quakes died down, the monitoring stations were removed.

“As it stands now, we miss the beginning of the quakes. The monitors are removed when the earthquakes stop being felt,” DeShon said. “But this study tells us that there’s more to it than the ‘felt’ earthquakes. We need to know how the sequences start, and also how they end. If we’re ever going to understand what’s happening, we need the beginning, the middle — and the end. Not just the middle, after they are felt.”

Innovative method tapped for studying earthquake activity
Monitors the SMU team installed at the DFW Airport were removed when seismic activity appeared to have died down in 2009.

Ogwari hypothesized he could look at historical data from distant monitoring stations still in place to extract information and document the history of the DFW Airport earthquakes.

The distant stations are a part of the U.S. permanent network monitored and maintained by the U.S. Geological Survey. The nearest one is 152 miles, 245 kilometers, away.

Earthquake waveforms, like human fingerprints, are unique. Ogwari used the local station monitoring data to train software to identify DFW earthquakes on the distant stations. Ogwari took each earthquake’s digital fingerprint and searched through years of data, cross-correlating waveforms from both the near and regional stations and identified the 412 DFW Airport events.

“The earthquakes are small, less than magnitude three,” DeShon said. “So on the really distant stations it’s like searching for a needle in a haystack, sifting them from all the other tiny earthquakes happening all across the United States.”

Each path is unique for every earthquake, and seismologists record each wave’s movement up and down, north to south, and east to west. From that Ogwari analyzed the evolution of seismicity on the DFW airport fault over space and time. He was able to look at data from the distant monitors and find seismic activity at the airport as recent as 2015.

“Earthquakes occurring close in space usually have a higher degree of similarity,” Ogwari said. “As the separation distance increases the similarity decreases.”

To understand the stress on the fault, the researchers also modeled the location and timing of the pressure in the pores of the rock as the injected water infiltrated.

For the various earthquake clusters, the researchers found that pore pressure increased along the fault at varying rates, depending on how far the clusters were from the injection well, the rate and timing of injection, and hydraulic permeability of the fault.

The analysis showed pore-pressure changes to the fault from the injection well where the earthquakes started in 2008; at the location of the May 2010 quakes along the fault; and at the northern edge of the seismicity.

Will the DFW Airport fault continue to slip and trigger earthquakes?

“We don’t know,” Ogwari said. “We can’t tell how long it will continue. SMU and TexNet, the Texas Seismic Network, continue to monitor both the DFW Airport faults and other faults in the Basin.” — Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Feature Learning & Education Researcher news

Exploring the mysteries of the universe: Reality in the Shadows

New knowledge has caused us to reconsider many previous conclusions about what the universe is and how it works.

Despite centuries of scientific advancements, there is much about the universe that remains unknown. New knowledge and discoveries in the last 20 years have challenged previously accepted ideas and theories that were once regarded as scientific truth and have subjected them to increasing scrutiny.

These additions to our knowledge have caused scientists to reconsider many previous conclusions about what the universe is and how it works.

“Reality in the Shadows”” or “What the Heck’s the Higgs?” is a new book that explores the concepts that shape our current understanding of the universe and the frontiers of our knowledge of the cosmos.

The authors — two physicists and an engineer — tell us in a manner that non-scientists can readily follow, why studies have moved to superstring theory/M-theory, ideas about extra dimensions of space, and ideas about new particles in nature to find answers. It also explores why these ideas are far from established as accurate descriptions of reality.

“Our book explains how we know what we know about the universe, what we don’t know, and what we wish we did know,” said co-author Stephen Sekula, an associate professor of Physics at SMU. A physicist, Sekula conducts research into the Higgs Boson at the energy frontier on CERN’s ATLAS Experiment.

The book was initiated by Frank Blitzer, an engineer who participated on national space programs like Apollo and Patriot, several years ago, Sekula said. He was joined by co-author S. James Gates Jr., well known for his work on supersymmetry, supergravity and superstring theory, a few years ago.

“Frank and Jim sought additional input to help complete the book, and serendipitously Frank’s grandson, Ryan, was an SMU undergraduate and Hunt Scholar who helped connect them to me,” Sekula said. “After over an additional year of work, the book was completed.”

The foundations of modern physics rest on ideas that are over 100 years old and battle-tested, Sekula said.

“But nature has offered us new puzzles that have not yet been successfully explained by those ideas,” he added. “Perhaps we don’t yet have the right idea, or perhaps we haven’t searched deep enough into the cosmos. These are exciting times, with opportunities for a new generation of physicists who might crack these puzzles. Our book will help a curious reader to see the way in which knowledge was established, and encourage them to be engaged in solving the new mysteries.”

“Reality in the Shadows,” available through YBK Publishers, describes how humanity came to learn the workings of the universe as groundwork for the science that found the Higgs particle. Now scientists are hunting for the explanations for dark matter and the accelerated expansion of the cosmos, as well as for the many new questions the Higgs Boson itself has raised.

Scientists have recently discovered colliding black holes and neutron stars, that there is more non-luminous matter (dark matter) in the universe than the ordinary stuff of everyday life, and that the universe seems to grow larger each second at a faster and faster rate. Readers will learn how scientists discern such features of the universe and begin to see how to think beyond what is known to what is not yet known.

Throughout the book are descriptions of important developments in theoretical physics that lead the reader to a step-by-step understanding.

Sekula teaches physics and conducts research at ATLAS. He contributed to the measurement of decay modes of the Higgs boson and to the measurement of its spin-parity quantum numbers. Complementary to these efforts, he has worked with colleagues on the ATLAS Experiment to search for additional Higgs bosons in nature, providing intellectual leadership and direct involvement in several searches.

Gates was named 2014 “Scientist of the Year” by the Harvard Foundation. He was elected to the prestigious National Academy of Sciences in 2013 and received the 2013 National Medal of Science, the highest recognition given to scientists by the United States.

Gates has been featured on many TV documentary programs on physics, including “The Elegant Universe,” “Einstein’s Big Idea,” “Fabric of the Cosmos” and “The Hunt for the Higgs.” His DVD series, “Superstring Theory: The DNA of Reality,” makes the complexities of unification theory comprehensible.

Blitzer has more than 50 years of experience in engineering, program management, and business development and participated on national space programs, and The Strategic Defense Initiative (SDI), holding several patents in guidance and control. He has spent more than 20 years in independent research of the subject of the book.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Videos

Daily Planet: Star Wars come to life in SMU chemist’s invention

Long ago, sort of, scenes from Star Wars triggered a child’s imagination, so that today it’s informed one of his research goals as a chemist.

Discover Canada’s science magazine show Daily Planet reported on the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. An economical method for shaping light into an infinite number of volumetric objects, the technology will be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

The Daily Planet segment aired Dec. 12, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Watch the full Dec. 12 show.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Scientific American: Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes

For 300 million years faults showed no activity, and then wastewater injections from oil and gas wells came along. Study authors took a different approach in the new work — they hunted for deformed faults below Texas.

Science journalist Anna Kuchment covered the landmark earthquake research of a team of SMU geophysicists led by SMU Associate Professor Beatrice Magnani in the SMU Department of Earth Sciences. Kuchment wrote Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes for Scientific American.

The SMU researchers tapped seismic data to analyze earthquakes in Texas over the past decade.

The results of the analysis showed that human activity is causing the earthquakes as a result of movement in faults that have been silent for at least 300 million years, until recent injection of oil and gas wastewater.

The article by Kuchment, “Drilling Reawakens Sleeping Faults in Texas, Leads to Earthquakes,” published Nov. 24, 2017.

Read the full story.

EXCERPT:

By Anna Kuchment
Scientific American

Since 2008, Texas, Oklahoma, Kansas and a handful of other states have experienced unprecedented surges of earthquakes. Oklahoma’s rate increased from one or two per year to more than 800. Texas has seen a sixfold spike. Most have been small, but Oklahoma has seen several damaging quakes stronger than magnitude 5. While most scientists agree that the surge has been triggered by the injection of wastewater from oil and gas production into deep wells, some have suggested these quakes are natural, arising from faults in the crust that move on their own every so often. Now researchers have traced 450 million years of fault history in the Dallas-Fort Worth area and learned these faults almost never move. “There hasn’t been activity along these faults for 300 million years,” says Beatrice Magnani, a seismologist at Southern Methodist University in Dallas and lead author of a paper describing the research, published today in Science Advances. “Geologically, we usually define these faults as dead.”

Magnani and her colleagues argue that these faults would not have produced the recent earthquakes if not for wastewater injection. Pressure from these injections propagates underground and can disturb weak faults. The work is another piece of evidence implicating drilling in the quakes, yet the Texas government has not officially accepted the link to one of its most lucrative industries.

Magnani and her colleagues studied the Texas faults using images of the subsurface similar to ultrasound scans. Known as seismic reflection data, the images are created by equipment that generates sound waves and records the speeds at which the waves bounce off faults and different rock layers deep within the ground. Faults that have produced earthquakes look like vertical cracks in a brick wall, where one side of the wall has sunk down a few inches so the rows of bricks no longer line up. Scientists know the age of each rock layer—each row of bricks–based on previous studies that have used a variety of dating techniques.

Read the full story.

Categories
Earth & Climate Energy & Matter Fossils & Ruins Researcher news SMU In The News

The Washington Post: Oil and gas industry is causing Texas earthquakes, a ‘landmark’ study suggests

The study authors took a different approach in the new work — they hunted for deformed faults below Texas.

The Washington Post covered the landmark earthquake research of a team of SMU geophysicists led by SMU Associate Professor Beatrice Magnani in the SMU Department of Earth Sciences.

The researchers tapped seismic data to analyze earthquakes in Texas over the past decade.

The results of the analysis showed that human activity is causing the earthquakes as a result of movement in faults that have been silent for at least 300 million years, until recent injection of oil and gas wastewater.

The article by journalist Ben Guarino, “Oil and gas industry is causing Texas earthquakes, a ‘landmark’ study suggests,” published Nov. 24, 2017.

Read the full story.

EXCERPT:

By Ben Guarino
The Washington Post

An unnatural number of earthquakes hit Texas in the past decade, and the region’s seismic activity is increasing. In 2008, two earthquakes stronger than magnitude 3 struck the state. Eight years later, 12 did.

Natural forces trigger most earthquakes. But humans are causing earthquakes, too, with mining and dam construction the most frequent suspects. There has been a recent increase in natural gas extraction — including fracking, or hydraulic fracturing, but other techniques as well — which produces a lot of wastewater. To get rid of it, the water is injected deep into the ground. When wastewater works its way into dormant faults, the thinking goes, the water’s pressure nudges the ancient cracks. Pent-up tectonic stress releases and the ground shakes.

But for any given earthquake, it is virtually impossible to tell whether humans or nature triggered the quake. There are no known characteristics of a quake, not in magnitude nor in the shape of its seismic waves, that provide hints to its origins.

“It’s been a head-scratching period for scientists,” said Maria Beatrice Magnani, who studies earthquakes at Southern Methodist University in Dallas. Along with a team of researchers at the U.S. Geological Survey, Magnani, an author of a new report published Friday in the journal Science Advances, attempted to better identify what has been causing the rash of Texas quakes.

A cluster of earthquakes around a drilling project can, at best, suggest a relationship. “The main approach has been to correlate the location to where there has been human activity,” said Michael Blanpied, a USGS geophysicist and co-author of the new study.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news

SMU seismology research shows North Texas earthquakes occurring on “dead” faults

Study by Beatrice Magnani, USGS and other SMU scientists shows recent seismicity in Fort Worth Basin occurred on faults not active for 300 million years

Recent earthquakes in the Fort Worth Basin — in the rural community of Venus and the Dallas suburb of Irving – occurred on faults that had not been active for at least 300 million years, according to research led by SMU seismologist Beatrice Magnani.

The research supports the assertion that recent North Texas earthquakes were induced, rather than natural – a conclusion entirely independent of previous analyses correlating seismicity to the timing of wastewater injection practices, but that corroborates those earlier findings.

The full study, “Discriminating between natural vs induced seismicity from long-term deformation history of intraplate faults,” was published online Nov. 24, 2017 by the journal Science Advances.

“To our knowledge this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques,” said Magnani, associate professor of geophysics in SMU’s Huffington Department of Earth Sciences. Co-authors for the study include Michael L. Blanpied, associate coordinator of the USGS Earthquake Hazard program, and SMU seismologists Heather DeShon and Matthew Hornbach.

The results were drawn from analyzing the history of fault slip (displacement) over the lifetime of the faults. The authors analyzed seismic reflection data, which allow “mapping” of the Earth’s subsurface from reflected, artificially generated seismic waves. Magnani’s team compared data from the North Texas area, where several swarms of felt earthquakes have been occurring since 2008, to data from the Midwestern U.S. region that experienced major earthquakes in 1811 and 1812 in the New Madrid seismic zone.

Frequent small earthquakes are still recorded in the New Madrid seismic zone, which is believed to hold the potential for larger earthquakes in the future.

“These North Texas faults are nothing like the ones in the New Madrid Zone – the faults in the Fort Worth Basin are dead,” Magnani said. “The most likely explanation for them to be active today is because they are being anthropogenically induced to move.”

In the New Madrid seismic zone, the team found that motion along the faults that are currently active has been occurring over many millions of years. This has resulted in fault displacements that grow with increasing age of sedimentary formations.

In the Fort Worth Basin, along faults that are currently seismically active, there is no evidence of prior motion over the past 300 million years.

“The study’s findings suggest that the recent Fort Worth Basin earthquakes, which involve swarms of activity on several faults in the region, have been induced by human activity,” said USGS scientist Blanpied.

The findings further suggest that these North Texas earthquakes are not simply happening somewhat sooner than they would have otherwise on faults continually active over long time periods. Instead, Blanpied said, the study indicates reactivation of long-dormant faults as a consequence of waste fluid injection.

Seismic reflection profiles in the Venus region used for this study were provided by the U.S. Geological Survey Earthquake Hazards Program.

Seismic reflection profiles for the Irving area are proprietary. Magnani and another team of scientists collected seismic reflection data used for this research during a 2008-2011 project in the northern Mississippi embayment, home to the New Madrid seismic zone. — Kim Cobb, SMU

Categories
Culture, Society & Family Earth & Climate Energy & Matter Events Researcher news SMU In The News Videos

The CW33: Dark Matter Day rocks SMU’s campus

The CW33 TV visited SMU on Halloween to get a glimpse of International Dark Matter Day in action on the SMU campus.

The CW33 TV stopped at the SMU campus during the early morning hours of Halloween to interview SMU physics professor Jodi Cooley about the capers afoot in celebration of International Dark Matter Day.

The SMU Department of Physics in Dedman College of Humanities and Sciences hosted the Oct. 31, 2017 Dark Matter Day celebration for students, faculty, staff and Dallas-area residents.

As part of the festivities, there were speaking events by scientists in the field of dark matter, including dark matter expert Cooley, to explain the elusive particles that scientists refer to as dark matter.

Then throughout Halloween day, the public was invited to test their skills at finding dark matter — in this case, a series of 26 rocks bearing educational messages related to dark matter, which the Society of Physics Students had painted and hidden around the campus. Lucky finders traded them for prizes from the Physics Department.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” said Cooley, whose research is focused on the scientific challenge of detecting dark matter. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Watch the full news segment.

EXCERPT:

By Shardae Neal
The CW33

On Halloween (excuse us) “International Dark Matter Day,” SMU students hosted a public witch hunt to search for the unknown: dark matter.

“What we’re doing is hiding 26 rocks that we have with the help of our society of physic students,” explained SMU Physicist Jodi Cooley.

What exactly is dark matter?

“Think about all the stuff there is in the universe,” Cooley added. “What we can account for makes up only four to five percent of the universe. The rest of it is unknown. Turns out 26% of that unknown stuff is dark matter.”

Watch the full news segment.

Categories
Earth & Climate Energy & Matter Events Learning & Education Researcher news Student researchers Videos

SMU Dark Matter Day celebration culminates in a dark matter rock hunt on Halloween

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day.” — SMU physicist Jodi Cooley

This Halloween, people around the world will be celebrating the mysterious cosmic substance that permeates our universe: dark matter.

At SMU, the Department of Physics in Dedman College of Humanities and Sciences is hosting a Dark Matter Day celebration, and students, faculty, staff and DFW residents are invited to join in the educational fun with events open to the public.

To kick off the festivities, two speaking events by scientists in the field of dark matter will familiarize participants with the elusive particles that scientists refer to as dark matter. The first talk is oriented toward the general public, while the second is more technical and will appeal to people familiar with one of the STEM areas of science, technology, engineering or mathematics, particularly physics and astrophysics.

Then throughout Halloween day, everyone is invited to test their skills at finding dark matter — in this case, a series of rocks bearing educational messages related to dark matter, which the Society of Physics Students has painted and then hidden around the campus.

Anyone lucky enough to find one of the 26 rocks can present it at the Physics Department office to receive a prize, says SMU physics professor Jodi Cooley, whose research is focused on the scientific challenge of detecting dark matter.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” Cooley said. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Anyone who discovers a dark matter rock on the SMU campus is encouraged to grab their phone and snap a selfie with their rock. Tweet and tag your selfie #SMUDarkMatter so that @SMU, @SMUResearch and @SMUPhysics can retweet photos of the lucky finders.

As SMU’s resident dark matter scientist, Cooley is part of the 100-person international SuperCDMS SNOLAB experiment, which uses ultra pure materials and highly sensitive custom-built detectors to listen for the passage of dark matter.

SuperCDMS, an acronym for Super Cryogenic Dark Matter Search, resides at SNOLAB, an existing underground science laboratory in Ontario, Canada. Located deep underground, SNOLAB allows scientists to use the earth as a shield to block out particles that resemble dark matter, making it easier to see the real thing.

The SuperCDMS SNOLAB experiment, expected to be operational in 2020, has been designed to go deeper below the surface of the earth than earlier generations of the research.

“Dark matter experiments have been a smashing success — they’ve progressed farther than anyone anticipated. The SuperCDMS SNOLAB experiment is quite unique,” Cooley said. “It will allow us to probe models that predict dark matter with the tiniest masses.”

For more on Cooley’s research, go to “Hunt for dark matter takes physicists deep below earth’s surface, where WIMPS can’t hide. — Margaret Allen, SMU

Dark Matter Day events at SMU:

  • Sunday, Oct. 29, 4 p.m., McCord Auditorium — Maruša Bradač, Associate Professor at the University of California at Davis, will give a public lecture on dark matter. A reception will follow the lecture from 5 p.m. to 6 p.m. in the Dallas Hall Rotunda with beverages and light snacks. This event is free and open to the public, and is designed to be open to the widest possible audience.
  • Monday, Oct. 30, 4 p.m., Fondren Science Building, Room 158 — SMU Associate Professor Jodi Cooley will present a seminar on the SuperCDMS direct-detection dark matter search experiment. This event is part of the Physics Department Speaker Series. While this event is open to the public, it will be a more technical talk and may appeal more to an audience interested in the STEM areas of science, technology, engineering and mathematics, especially physics and astrophysics.
  • Tuesday, Oct. 31, 9 a.m. – 4 p.m., SMU Main Campus, Dark Matter Rock Hunt — The SMU Department of Physics has hidden “dark matter rocks” all across the SMU main campus. If you discover one of the dark matter rocks, bring it to the main office of the Physics Department, Fondren Science Building, Room 102, and get a special prize. All SMU students, faculty, staff and community members are welcome to join in the search.
Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Subfeature

Dallas Innovates: SMU, UTA Scientists To Help Unlock Mystery of Neutrinos

A massive particle detector a mile underground is the key to unlocking the secrets of a beam of neutrinos that will be shot beneath the Earth from Chicago to South Dakota.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Thomas E. Coan in the SMU Department of Physics.

Coan is one of about 1,000 scientists around the world collaborating on DUNE — a massive particle detector being built a mile underground in South Dakota to unlock the mysteries of neutrino particles.

The research is funded by the by the U.S. Department of Energy’s Office of Science in conjunction with CERN and international partners from 30 countries.

SMU is one of more than 100 institutions from around the world building hardware for the massive international experiment that may change our understanding of the universe. Construction will take years and scientists expect to begin taking data in the middle of the next decade, said Coan.

The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment. When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of the mysterious particles called neutrinos.

The Dallas Innovates article, “SMU, UTA Scientists To Help Unlock Mystery of Neutrinos,” published July 28, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Construction of a huge particle detector in South Dakota could lead to a change in how we understand the universe, and scientists from the University of Texas at Arlington and Southern Methodist University in Dallas will play roles in helping to unlock the mystery of neutrinos.

Ground was broken a mile underground recently at the Sanford Underground Research Facility at the Homestake Gold Mine in Lead, South Dakota for the Long-Baseline Neutrino Facility (LBNF) that will house the Deep Underground Neutrino Experiment (DUNE).

SMU physicist Thomas E. Coan, and UTA Physics professors Jonathan Asaadi and Jaehoon Yu will be among scientists from more than 100 institutions around the world who will be involved in the experiment.

DUNE will be constructed and operated at the mine site by a group of about 1,000 scientists and engineers from 30 nations.

The Homestake Mine was the location where neutrinos were discovered by Raymond Davis Jr. in 1962. It was the the largest and deepest gold mine in North America until its closure in 2002.

LBNF/DUNE will be the biggest experiment ever built in the U.S. to study the properties of neutrinos, one of the fundamental particles that make up the universe.

“DUNE is designed to investigate a broad swath of the properties of neutrinos, one of the universe’s most abundant but still mysterious electrically neutral particles,” Coan said in the release.

These puzzling particles are similar to electrons, but they have one huge difference — they don’t carry an electrical charge. Neutrinos come in three types: the electron neutrino, the muon, and the tau.

What is the experiment’s goal? Coan said it seeks to understand strange phenomena such as neutrinos changing identities in mid-flight — known as “oscillation” — as well as the behavioral differences between a neutrino and its anti-neutrino sibling.

“A crisp understanding of neutrinos holds promise for understanding why any matter survived annihilation with antimatter from the Big Bang to form the people, planets, and stars we see today,” Coan said in the release. “DUNE is also able to probe whether or not the humble proton, found in all atoms of the universe, is actually unstable and ultimately destined to eventually decay away. It even has sensitivity to understanding how stars explode into supernovae by studying the neutrinos that stream out from them during the explosion.”

Coan also is involved in another massive particle detector in northern Minnesota knows as NOvA, where he is a principal investigator.

Read the full story.

Categories
Energy & Matter Events Feature Learning & Education Researcher news Videos

Construction begins on international mega-science neutrino experiment

Groundbreaking held today in South Dakota marks the start of excavation for the Long-Baseline Neutrino Facility, future home to the international Deep Underground Neutrino Experiment.

SMU is one of more than 100 institutions from around the world building hardware for a massive international experiment — a particle detector — that could change our understanding of the universe.

Construction will take years and scientists expect to begin taking data in the middle of the next decade, said SMU physicist Thomas E. Coan, a professor in the SMU Department of Physics and a researcher on the experiment.

The turning of a shovelful of earth a mile underground marks a new era in particle physics research. The groundbreaking ceremony was held Friday, July 21, 2017 at the Sanford Underground Research Facility in Lead, South Dakota.

Dignitaries, scientists and engineers from around the world marked the start of construction of the experiment that could change our understanding of the universe.

The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment. Called DUNE for short, it will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries, including Coan.

When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.

“DUNE is designed to investigate a broad swath of the properties of neutrinos, one of the universe’s most abundant but still mysterious electrically neutral particles,” Coan said.

The experiment seeks to understand strange phenomena like neutrinos changing identities — called “oscillation” — in mid-flight and the behavioral differences between a neutrino an its anti-neutrino sibling, Coan said.

“A crisp understanding of neutrinos holds promise for understanding why any matter survived annihilation with antimatter from the Big Bang to form the people, planets and stars we see today,” Coan said. “DUNE is also able to probe whether or not the humble proton, found in all atoms of the universe, is actually unstable and ultimately destined to eventually decay away. It even has sensitivity to undertanding how stars explode into supernovae by studying the neutrinos that stream out from them during the explosion.”

Coan also is a principal investigator on NOvA, another neutrino experiment collaboration of the U.S. Department of Energy’s Fermi National Laboratory. NOvA, in northern Minnesota, is another massive particle detector designed to observe and measure the behavior of neutrinos.

Similar to NOvA, DUNE will be a neutrino beam from Fermilab that runs to Homestake Gold Mine in South Dakota. DUNE’s beam will be more powerful and will take the measurements NOvA is taking to an unprecedented precision, scientists on both experiments have said. Any questions NOvA fails to answer will most certainly be answered by DUNE.

At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois.

Institutions in dozens of countries will contribute to the construction of DUNE components. The DUNE experiment will attract students and young scientists from around the world, helping to foster the next generation of leaders in the field and to maintain the highly skilled scientific workforce in the United States and worldwide.

Beam of neutrinos will travel 800 miles (1,300 kilometers) through the Earth
The U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago, will generate a beam of neutrinos and send them 800 miles (1,300 kilometers) through the Earth to Sanford Lab, where a four-story-high, 70,000-ton detector will be built beneath the surface to catch those neutrinos.

Scientists will study the interactions of neutrinos in the detector, looking to better understand the changes these particles undergo as they travel across the country in less than the blink of an eye.

Ever since their discovery 61 years ago, neutrinos have proven to be one of the most surprising subatomic particles, and the fact that they oscillate between three different states is one of their biggest surprises. That discovery began with a solar neutrino experiment led by physicist Ray Davis in the 1960s, performed in the same underground mine that now will house LBNF/DUNE. Davis shared the Nobel Prize in physics in 2002 for his experiment.

DUNE scientists will also look for the differences in behavior between neutrinos and their antimatter counterparts, antineutrinos, which could give us clues as to why the visible universe is dominated by matter.

DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay, bringing us closer to fulfilling Einstein’s dream of a grand unified theory.

Construction over the next 10 years is funded by DOE with 30 countries
But first, the facility must be built, and that will happen over the next 10 years. Now that the first shovel of earth has been moved, crews will begin to excavate more than 870,000 tons of rock to create the huge underground caverns for the DUNE detector.

Large DUNE prototype detectors are under construction at European research center CERN, a major partner in the project, and the technology refined for those smaller versions will be tested and scaled up when the massive DUNE detectors are built.

This research is funded by the U.S. Department of Energy Office of Science in conjunction with CERN and international partners from 30 countries.

DUNE collaborators come from institutions in Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, the Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom and the United States. — Fermilab, SMU

Categories
Energy & Matter Feature Health & Medicine Learning & Education Plants & Animals Researcher news SMU In The News Student researchers Technology Videos

The New York Times: Something Strange in Usain Bolt’s Stride

Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.

The New York Times reporter Jeré Longman covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s apparent asymmetrical running stride.

The article, “Something Strange in Usain Bolt’s Stride,” published July 20, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the running controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

They described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

The New York Times subscribers or readers with remaining limited free access can read the full story.

EXCERPT:

By Jeré Longman
The New York Times

DALLAS — Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-meter race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 meters and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers here at Southern Methodist University, among the leading experts on the biomechanics of sprinting, said they found something unexpected during video examination of Bolt’s stride: His right leg appears to strike the track with about 13 percent more peak force than his left leg. And with each stride, his left leg remains on the ground about 14 percent longer than his right leg.

This runs counter to conventional wisdom, based on limited science, that an uneven stride tends to slow a runner down.

So the research team at S.M.U.’s Locomotor Performance Laboratory is considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 meters and 4×100-meter relay next month at the world track and field championships in London.

Among those questions: Does evenness of stride matter for speed? Did Bolt optimize this irregularity to become the fastest human? Or, with a more balanced stride during his prime, could he have run even faster than 9.58 seconds at 100 meters and 19.19 seconds at 200 meters?

“That’s the million-dollar question,” said Peter Weyand, director of the S.M.U. lab.

The S.M.U. study of Bolt, led by Andrew Udofa, a doctoral researcher, is not yet complete. And the effect of asymmetrical strides on speed is still not well understood. But rather than being detrimental for Bolt, the consequences of an uneven stride may actually be beneficial, Weyand said.

It could be that Bolt has naturally settled into his stride to accommodate the effects of scoliosis. The condition curved his spine to the right and made his right leg half an inch shorter than his left, according to his autobiography.

Initial findings from the study were presented last month at an international conference on biomechanics in Cologne, Germany. Most elite sprinters have relatively even strides, but not all. The extent of Bolt’s variability appears to be unusual, Weyand said.

“Our working idea is that he’s probably optimized his speed, and that asymmetry reflects that,” Weyand said. “In other words, correcting his asymmetry would not speed him up and might even slow him down. If he were to run symmetrically, it could be an unnatural gait for him.”

Antti Mero, an exercise physiologist at the University of Jyvaskyla in Finland, who has researched Bolt’s fastest races, said he was intrigued by the S.M.U. findings.

The New York Times subscribers or readers with remaining limited free access can read the full story.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Cosmos: Painting with light in three dimensions

A new technique uses photoswitch molecules to create three-dimensional images from pure light.

Australia’s quarterly science magazine Cosmos covered the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

Cosmos reporter Joel F. Hooper wrote about the new technology in “Painting with light in three dimensions,” which published online July 14, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Read the full story.

EXCERPT:

By Joel F. Hooper
Cosmos

Those of us who grew up watching science fiction movies and TV shows imagined our futures to be filled with marvellous gadgets, but we’ve sometimes been disappointed when science fails to deliver. We can’t take a weekend trip to Mars yet, and we’re still waiting for hoverboards that actually hover.

But in the case of 3-D image projection, the technology used by R2D2 in Star Wars is making its way into reality. Using advances in fluorescent molecules that can be switched on by UV light, scientists at Southern Methodist University in Dallas have created a method for producing images and animations by structuring light in 3-dimentions.

The technology uses a solution of fluorescent molecules called rhodamines, which have the potential to emit visible light when they are excited by a light beam of the right wavelength. But these molecules are usually in an inactive state, and must be “switched on” by UV light before they can become emitters. When a UV light or visible light beam alone shines through the solution, the rhodamines to not emit light. But where these two beams intersect, the emitting molecules are both switched on and excited, and can produce a small glowing 3D pixel, known as a voxel.

When a number of voxels are produced at once, using two projectors positioned at 90° to a flask containing a solution of the fluorescent molecules, a 3D image is produced.

“Our idea was to use chemistry and special photoswitch molecules to make a 3D display that delivers a 360-degree view,” says Alexander Lippert, lead author of the study. “It’s not a hologram, it’s really three-dimensionally structured light.”

Read the full story.

Categories
Culture, Society & Family Energy & Matter Feature Health & Medicine Learning & Education Researcher news Student researchers Technology

Better than Star Wars: Chemistry discovery yields 3-D table-top objects crafted from light

Photoswitch chemistry allows construction of light shapes into structures that have volume and are viewable from 360 degrees, making them useful for biomedical imaging, teaching, engineering, TV, movies, video games and more

A scientist’s dream of 3-D projections like those he saw years ago in a Star Wars movie has led to new technology for making animated 3-D table-top objects by structuring light.

The new technology uses photoswitch molecules to bring to life 3-D light structures that are viewable from 360 degrees, says chemist Alexander Lippert, Southern Methodist University, Dallas, who led the research.

The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

“Our idea was to use chemistry and special photoswitch molecules to make a 3-D display that delivers a 360-degree view,” said Lippert, an assistant professor in the SMU Department of Chemistry. “It’s not a hologram, it’s really three-dimensionally structured light.”

Key to the technology is a molecule that switches between non-fluorescent and fluorescent in reaction to the presence or absence of ultraviolet light.

The new technology is not a hologram, and differs from 3-D movies or 3-D computer design. Those are flat displays that use binocular disparity or linear perspective to make objects appear three-dimensional when in fact they only have height and width and lack a true volume profile.

“When you see a 3-D movie, for example, it’s tricking your brain to see 3-D by presenting two different images to each eye,” Lippert said. “Our display is not tricking your brain — we’ve used chemistry to structure light in three actual dimensions, so no tricks, just a real three-dimensional light structure. We call it a 3-D digital light photoactivatable dye display, or 3-D Light Pad for short, and it’s much more like what we see in real life.”

At the heart of the SMU 3-D Light Pad technology is a “photoswitch” molecule, which can switch from colorless to fluorescent when shined with a beam of ultraviolet light.

The researchers discovered a chemical innovation for tuning the photoswitch molecule’s rate of thermal fading — its on-off switch — by adding to it the chemical amine base triethylamine.

Now the sky is the limit for the new SMU 3-D Light Pad technology, given the many possible uses, said Lippert, an expert in fluorescence and chemiluminescence — using chemistry to explore the interaction between light and matter.

For example, conference calls could feel more like face-to-face meetings with volumetric 3-D images projected onto chairs. Construction and manufacturing projects could benefit from rendering them first in 3-D to observe and discuss real-time spatial information. For the military, uses could include tactical 3-D replications of battlefields on land, in the air, under water or even in space.

Volumetric 3-D could also benefit the medical field.

“With real 3-D results of an MRI, radiologists could more readily recognize abnormalities such as cancer,” Lippert said. “I think it would have a significant impact on human health because an actual 3-D image can deliver more information.”

Unlike 3-D printing, volumetric 3-D structured light is easily animated and altered to accommodate a change in design. Also, multiple people can simultaneously view various sides of volumetric display, conceivably making amusement parks, advertising, 3-D movies and 3-D games more lifelike, visually compelling and entertaining.

Lippert and his team in The Lippert Research Group report on the new technology and the discovery that made it possible in the article “A volumetric three-dimensional digital light photoactivatable dye display,” published in the journal Nature Communications.

Some of the 3-D images generated with the new technology are viewable in this video.

Co-authors are Shreya K. Patel, lead author, and Jian Cao, both students in the SMU Department of Chemistry.

Genesis of an idea — cinematic inspiration
The idea to shape light into volumetric animated 3-D objects came from Lippert’s childhood fascination with the movie “Star Wars.” Specifically he was inspired when R2-D2 projects a hologram of Princess Leia. Lippert’s interest continued with the holodeck in “Star Trek: The Next Generation.”

“As a kid I kept trying to think of a way to invent this,” Lippert said. “Then once I got a background in chemistry molecules that interact with light, and an understanding of photoswitches, it finally dawned on me that I could take two beams of light and use chemistry to manipulate the emission of light.”

Key to the new technology was discovering how to turn the chemical photoswitch off and on instantly, and generating light emissions from the intersection of two different light beams in a solution of the photoactivatable dye, he said.

SMU graduate student in chemistry Jian Cao hypothesized the activated photoswitch would turn off quickly by adding the base. He was right.

“The chemical innovation was our discovery that by adding one drop of triethylamine, we could tune the rate of thermal fading so that it instantly goes from a pink solution to a clear solution,” Lippert said. “Without a base, the activation with UV light takes minutes to hours to fade back and turn off, which is a problem if you’re trying to make an image. We wanted the rate of reaction with UV light to be very fast, making it switch on. We also wanted the off-rate to be very fast so the image doesn’t bleed.”

SMU 3-D Light Pad
In choosing among various photoswitch dyes, the researchers settled on N-phenyl spirolactam rhodamines. That particular class of rhodamine dyes was first described in the late 1970s and made use of by Stanford University’s Nobel prize-winning W.E. Moerner.

The dye absorbs light within the visible region, making it appropriate to fluoresce light. Shining it with UV radiation, specifically, triggers a photochemical reaction and forces it to open up and become fluorescent.

Turning off the UV light beam shuts down fluorescence, diminishes light scattering, and makes the reaction reversible — ideal for creating an animated 3-D image that turns on and off.

“Adding triethylamine to switch it off and on quickly was a key chemical discovery that we made,” Lippert said.

To produce a viewable image they still needed a setup to structure the light.

Structuring light in a table-top display
The researchers started with a custom-built, table-top, quartz glass imaging chamber 50 millimeters by 50 millimeters by 50 millimeters to house the photoswitch and to capture light.

Inside they deployed a liquid solvent, dichloromethane, as the matrix in which to dissolve the N-phenyl spirolactam rhodamine, the solid, white crystalline photoswitch dye.

Next they projected patterns into the chamber to structure light in two dimensions. They used an off-the-shelf Digital Light Processing (DLP) projector purchased at Best Buy for beaming visible light.

The DLP projector, which reflects visible light via an array of microscopically tiny mirrors on a semiconductor chip, projected a beam of green light in the shape of a square. For UV light, the researchers shined a series of UV light bars from a specially made 385-nanometer Light-Emitting Diode projector from the opposite side.

Where the light intersected and mixed in the chamber, there was displayed a pattern of two-dimensional squares stacked across the chamber. Optimized filter sets eliminated blue background light and allowed only red light to pass.

To get a static 3-D image, they patterned the light in both directions, with a triangle from the UV and a green triangle from the visible, yielding a pyramid at the intersection, Lippert said.

From there, one of the first animated 3-D images the researchers created was the SMU mascot, Peruna, a racing mustang.

“For Peruna — real-time 3-D animation — SMU undergraduate student Shreya Patel found a way to beam a UV light bar and keep it steady, then project with the green light a movie of the mustang running,” Lippert said.

So long Renaissance
Today’s 3-D images date to the Italian Renaissance and its leading architect and engineer.

“Brunelleschi during his work on the Baptistery of St. John was the first to use the mathematical representation of linear perspective that we now call 3-D. This is how artists used visual tricks to make a 2-D picture look 3-D,” Lippert said. “Parallel lines converge at a vanishing point and give a strong sense of 3-D. It’s a useful trick but it’s striking we’re still using a 500-year-old technique to display 3-D information.”

The SMU 3-D Light Pad technology, patented in 2016, has a number of advantages over contemporary attempts by others to create a volumetric display but that haven’t emerged as commercially viable.

Some of those have been bulky or difficult to align, while others use expensive rare earth metals, or rely on high-powered lasers that are both expensive and somewhat dangerous.

The SMU 3-D Light Pad uses lower light powers, which are not only cheaper but safer. The matrix for the display is also economical, and there are no moving parts to fabricate, maintain or break down.

Lippert and his team fabricated the SMU 3-D Light Pad for under $5,000 through a grant from the SMU University Research Council.

“For a really modest investment we’ve done something that can compete with more expensive $100,000 systems,” Lippert said. “We think we can optimize this and get it down to a couple thousand dollars or even lower.”

Next Gen: SMU 3-D Light Pad 2.0
The resolution quality of a 2-D digital photograph is stated in pixels. The more pixels, the sharper and higher-quality the image. Similarly, 3-D objects are measured in voxels — a pixel but with volume. The current 3-D Light Pad can generate more than 183,000 voxels, and simply scaling the volume size should increase the number of voxels into the millions – equal to the number of mirrors in the DLP micromirror arrays.

For their display, the SMU researchers wanted the highest resolution possible, measured in terms of the minimum spacing between any two of the bars. They achieved 200 microns, which compares favorably to 100 microns for a standard TV display or 200 microns for a projector.

The goal now is to move away from a liquid vat of solvent for the display to a solid cube table display. Optical polymer, for example, would weigh about the same as a TV set. Lippert also toys with the idea of an aerosol display.

The researchers hope to expand from a monochrome red image to true color, based on mixing red, green and blue light. They are working to optimize the optics, graphics engine, lenses, projector technology and photoswitch molecules.

“I think it’s a very fascinating area. Everything we see — all the color we see — arises from the interaction of light with matter,” Lippert said. “The molecules in an object are absorbing a wavelength of light and we see all the rest that’s reflected. So when we see blue, it’s because the object is absorbing all the red light. What’s more, it is actually photoswitch molecules in our eyes that start the process of translating different wavelengths of light into the conscious experience of color. That’s the fundamental chemistry and it builds our entire visual world. Being immersed in chemistry every day — that’s the filter I’m seeing everything through.”

The SMU discovery and new technology, Lippert said, speak to the power of encouraging young children.

“They’re not going to solve all the world’s problems when they’re seven years old,” he said. “But ideas get seeded and if they get nurtured as children grow up they can achieve things we never thought possible.” — Margaret Allen, SMU

Categories
Earth & Climate Energy & Matter Fossils & Ruins Researcher news SMU In The News

Dallas Innovates: SMU Researchers Find West Virginia Geothermal Spots

The heated energy sources were discovered in the Mountain State by examining previously overlooked oil and gas data.

Reporter Amy Wolff Sorter with Dallas Innovates reported on the research of the SMU Geothermal Lab, which has identified in West Virginia what may be the largest geothermal hot spot in the United States.

The Dallas Innovates article, “SMU Researchers Find West Virginia Geothermal Spots,” published May 26, 2017.

Read the full story.

EXCERPT:

By Amy Wolff Sorter
Dallas Innovates

The state of West Virginia has been home to coal-driven energy for nearly two centuries. Now, there could be another energy source directly under the Mountain State’s surface discovered by researchers at Southern Methodist University in Dallas.

The researchers, examining previously overlooked oil and gas data, located several hot patches of earth, some as hot as 392 degrees Fahrenheit. These hot patches are situated roughly three miles under the state’s surface. In fact, scientists believe West Virginia could be sitting on the largest geothermal hot spot in the United States.

Geothermal patches overlooked in data
SMU’s Geothermal Lab Coordinator Maria Richards told the Exponent Telegram in Clarksburg, West Virginia that the hot patches were discovered by studying previously overlooked oil and gas data.

“We were aware that there were hot springs along the faults in West Virginia, and there was a basic understanding that there could be some sort of higher elevated areas, but we had never had the resources to be able to go back out and look at the deeper data until we had this project from Google that allowed us to bring in the oil and gas data,” she said.

The hot-water reservoirs were once considered too deep for inexpensive production.

However, “because of oil and gas drilling and some of the newer technologies in terms of drilling and pumping, some new innovative ways of developing systems, we can now go into places where we can inject water or a fluid that will then bring out that heat,” Richards said.

Geothermal’s appeal is that it is emission-free. It also has a smaller footprint, as energy is generated from underground wells.

Additionally, this particular renewable energy can overlap with other forms of energy, such as coal.

SMU’s Richards said that hot fluid can be used to dry coal, which, in turn, helps it burn more efficiently. The cleaner the coal burns, the less coal is required to produce electricity.

“Rather than having to burn a fossil fuel to generate electricity to create heat, the goal is to use the heat from the earth to create that heat automatically without having to generate electricity,” Richards said.

Read the full story.

Categories
Earth & Climate Energy & Matter Learning & Education Researcher news SMU In The News

CTNewsJunkie.com: Ignoring Science At Our Own Peril

“A scientific theory is a very well-tested explanation, built from facts, confirmed hypotheses, and inferences.” — SMU physicist Stephen Sekula

An Op-Ed in the online Connecticut news outlet CTNewsJunkie.com tapped the expertise of SMU Associate Professor of Physics Stephen Sekula.

The writer of the piece, High School English teacher Barth Keck at Haddam-Killingworth High School, quoted the comments of Sekula, who spoke to Keck’s media literacy class.

The opinion piece, “Ignoring Science At Our Own Peril,” addressed the issue of science illiteracy. The editorial published April 14, 2017.

Sekula was among the SMU physicists at Geneva-based CERN — seat of the world’s largest collaborative physics experiment — in December 2011 who found hints of the long sought after Higgs boson, dubbed the fundamental “God” particle.

Sekula conducts research at the energy frontier through CERN’s ATLAS Experiment. He co-convened the ATLAS Higgs Subgroup 6: Beyond-the-Standard Model Higgs Physics from 2012-2013. He is involved in the search for additional Higgs bosons. He also is an authority on big data and high-performance computing.

Read the full Op-Ed.

EXCERPT:

By Barth Keck
CTNewsJunkie.com

Last week was a newsworthy week — at least for this high school English teacher.

In a story out of Hartford last Wednesday, the state Board of Education officially eliminated the requirement that standardized test scores be tied to teacher evaluations. The move, while controversial, was a common-sense decision that recognizes the many problems created by evaluations based on standardized tests. A newsworthy development, indeed, for anyone interested in education.

Even so, a more newsworthy event for me occurred on Tuesday when Southern Methodist University professor Stephen Sekula visited English and science classes at his alma mater and my workplace, Haddam-Killingworth High School. Speaking to my students in Media Literacy, Sekula explained in vivid detail how scientists rigorously and deliberately employ the scientific method in their never-ending search for answers. It is with similar vigilance, he explained, that individuals must consider the multitude of messages around them to become truly “media-literate.”

“A scientific theory is a very well-tested explanation, built from facts, confirmed hypotheses, and inferences,” according to the physics professor. “It is more powerful than a fact because it explains facts.”

Unfortunately, said Sekula, the word “theory” is often likened to “opinion” in public dialogue — as in “human-caused climate change is just a theory” — but there’s an essential difference between theory and opinion. Scientists know the difference, of course, but so should all citizens. Thus, a media-literate person sees a red flag whenever someone — a “pseudoscientist” — uses “theory” and “opinion” interchangeably.

“Pseudoscience readily admits opinions and equates that with the idea of scientific theory,” explained Sekula, “requiring no high quality evidence to make explanatory claims about the world.”

And there it was: the explanation for so much happening in the public sphere right now. Fake news, conspiracy theories, science-averse officials appointed to science-dependent federal agencies. Professor Sekula’s message could not be more timely and, therefore, newsworthy.

Read the full Op-Ed.

Categories
Earth & Climate Energy & Matter Learning & Education Researcher news SMU In The News

KDFW Fox 4: NASA discovers seven earth-like planets relatively near

A “major step forward” toward the goal of answering the very big question: Is there life on other worlds?

DFW Fox 4 TV reporter Steve Eagar expressed “nerd-level” excitement about NASA’s announcement Feb. 22 of the discovery of seven new Earth-like planets. Eagar interviewed SMU professor Robert Kehoe, who leads the SMU astronomy team from the Department of Physics.

NASA announced that the Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in an area called the habitable zone, where liquid water is most likely to exist on a rocky planet.

“This is a surprising jump in our ability to understand earth like planets,” Kehoe told Eagar.

Kehoe and the SMU astronomy team recently reported discovery of a rare star as big — or bigger — than the Earth’s sun that is expanding and contracting in a unique pattern in three different directions.

The star is one that pulsates and so is characterized by varying brightness over time. It’s situated 7,000 light years away from the Earth in the constellation Pegasus. Called a variable star, this particular star is one of only seven known stars of its kind in our Milky Way galaxy.

Watch the video interview on Fox 4.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Astronomy: High school students identify an ultra-rare star

This newly-discovered variable is one of only seven of its kind known in our galaxy.

Science journalist Alison Klesman with the online science news magazine Astronomy covered the discovery of a variable star by SMU professor Robert Kehoe and the astronomy team in the SMU Department of Physics.

A high school student in an SMU summer astronomy program made the initial discovery upon culling through archived star observation data recorded by the small but powerful ROTSE-I telescope formerly at Los Alamos National Laboratory in New Mexico.

Other authors on the study were SMU research astronomer Farley Ferrante, a member of the team, Plano Senior High School student Derek Horning, who first discovered the object in the ROTSE-I data, and Eric Guzman, a physics graduate from the University of Texas at Dallas who is entering SMU’s graduate program and who identified the star as pulsating.

The newest delta Scuti (SKOO-tee) star in our night sky is so rare it’s only one of seven identified by astronomers in the Milky Way. Discovered at SMU, the star — like our sun — is in the throes of stellar evolution, to conclude as a dying ember in millions of years. Until then, the exceptional star pulsates brightly, expanding and contracting from heating and cooling of hydrogen burning at its core.

The Astronomy article, “High school students identify an ultra-rare star,” published Feb. 15, 2017.

Read the full story.

EXCERPT:

By Alison Klesman
Astronomy

The stars shining in the night sky might seem steady and reliable, but in truth, they are constantly changing and evolving. Out of the 100 billion or so stars that inhabit the Milky Way, a little more than 400,900 are classified as variable, meaning they change in brightness over time.

Of those hundreds of thousands of variables catalogued in our galaxy, however, only seven belong to a class called Triple Mode high amplitude delta Scuti, or HADS(B), stars — and that seventh was just recently discovered by a high school student during a summer astronomy program at Southern Methodist University in Dallas.

The star, roughly the size of our Sun or possibly larger, is about 7,000 light-years away in the constellation Pegasus. It currently has only a catalog name: ROTSE1 J232056.45+345150.9. The name comes in part from the telescope used to discover it, the ROTSE-I telescope at Los Alamos National Laboratory in New Mexico.

While examining data from the telescope taken in September of 2000, Plano Senior High School student Derek Hornung noticed the star’s strange light curve, which shows the star’s brightness over time. A non-variable star’s light curve is simply a straight line, unchanging as the hours, days, and months go by. But a variable star exhibits periodic changes in brightness over the course of hours or days, creating a recognizable repeating pattern. Variable stars are classified by the patterns their light curves make, and named after the first star of each type discovered. Delta Scuti variables are thus named after the star delta Scuti.

But there’s more to this story, still. The star is not only a delta Scuti variable, of which there are thousands known, but it is also a rare type within the delta Scuti class, a HADS(B) star. HADS(B) stars show asymmetric light curves that change brightness quickly over time. These stars are pulsating in two modes, which means the star is expanding in two directions at once. There are only 114 HADS(B) stars currently known. Rarer still are Triple Mode HADS(B) stars, of which there were only six previously identified in the Milky way. Triple Mode HADS(B) stars pulsate in not two, but three directions at once. For ROTSE1 J232056.45+345150.9, this process repeats itself every 2.5 hours.

Read the full story.

Categories
Economics & Statistics Energy & Matter Feature Health & Medicine Researcher news SMU In The News

Huffington Post: A New Physics Discovery Could Make You A Faster Runner

It’s all about the force

Reporter Sarah DiGiullo with the online news magazine The Huffington Post covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Huffington Post article, “Researchers reveal the mechanics of running is simpler than thought – and it could revolutionize shoe design,” published Feb. 13, 2017.

Read the full story.

EXCERPT:

By Sarah DiGiullo
The Huffington Post

When it comes to race day, runners may have favorite moisture-wicking gear, a stopwatch and tunes to help get that coveted personal record.

But physicists say running at your top speed may actually be a lot simpler. It all comes down to the force of your foot striking the ground ― and that’s about it.

After studying the physics behind some of the world’s fastest runners, researchers came up with a new model they say could make anyone faster. It may help injured runners recover faster, too.

The researchers developed an equation that calculates two forces: The total force of the shin, ankle and foot striking the ground, and the total force of the rest of the body striking the ground. The method, which they detailed in an article published recently in the Journal of Experimental Biology, can predict how fast an athlete will run.

“We’ve known for quite some time that fast people are fast because they’re able to hit the ground harder in relation to how much they weigh,” explained the study’s co-author, Peter Weyand, director of the Locomotor Performance Laboratory at Southern Methodist University in Dallas.

But Weyand and his team were looking to better understand why it was that some people are able to hit the ground harder than others. The new equation makes the answer a lot clearer, with fewer measurements than previous models.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news

New delta Scuti: Rare pulsating star 7,000 light years away is 1 of only 7 in Milky Way

A star — as big as or bigger than our sun — in the Pegasus constellation is expanding and contracting in three different directions simultaneously on a scale of once every 2.5 hours, the result of heating and cooling of hydrogen fuel burning 28 million degrees Fahrenheit at its core

The newest delta Scuti (SKOO-tee) star in our night sky is so rare it’s only one of seven identified by astronomers in the Milky Way. Discovered at Southern Methodist University in Dallas, the star — like our sun — is in the throes of stellar evolution, to conclude as a dying ember in millions of years. Until then, the exceptional star pulsates brightly, expanding and contracting from heating and cooling of hydrogen burning at its core.

Astronomers are reporting a rare star as big — or bigger — than the Earth’s sun that is expanding and contracting in a unique pattern in three different directions.

The star is one that pulsates and so is characterized by varying brightness over time. It’s situated 7,000 light years away from the Earth in the constellation Pegasus, said astronomer Farley Ferrante, a member of the team that made the discovery at Southern Methodist University, Dallas.

Called a variable star, this particular star is one of only seven known stars of its kind in our Milky Way galaxy.

“It was challenging to identify it,” Ferrante said. “This is the first time we’d encountered this rare type.”

The Milky Way has more than 100 billion stars. But just over 400,900 are catalogued as variable stars. Of those, a mere seven — including the one identified at SMU — are the rare intrinsic variable star called a Triple Mode ‘high amplitude delta Scuti’ (pronounced SKOO-tee) or Triple Mode HADS(B), for short.

“The discovery of this object helps to flesh out the characteristics of this unique type of variable star. These and further measurements can be used to probe the way the pulsations happen,” said SMU’s Robert Kehoe, a professor in the Department of Physics who leads the SMU astronomy team. “Pulsating stars have also been important to improving our understanding of the expansion of the universe and its origins, which is another exciting piece of this puzzle.”

The star doesn’t yet have a common name, only an official designation based on the telescope that recorded it and its celestial coordinates. The star can be observed through a telescope, but identifying it was much more complicated.

A high school student in an SMU summer astronomy program made the initial discovery upon culling through archived star observation data recorded by the small but powerful ROTSE-I telescope formerly at Los Alamos National Laboratory in New Mexico.

Upon verification, the star was logged into the International Variable Star Index as ROTSE1 J232056.45+345150.9 by the American Association of Variable Star Observers at this link.

How in the universe was it discovered?
SMU’s astrophysicists discovered the variable star by analyzing light curve shape, a key identifier of star type. Light curves were created from archived data procured by ROTSE-I during multiple nights in September 2000. The telescope generates images of optical light from electrical signals based on the intensity of the source. Data representing light intensity versus time is plotted on a scale to create the light curves.

Plano Senior High School student Derek Hornung first discovered the object in the ROTSE-I data and prepared the initial light curves. From the light curves, the astronomers knew they had something special.

It became even more challenging to determine the specific kind of variable star. Then Eric Guzman, a physics graduate from the University of Texas at Dallas, who is entering SMU’s graduate program, solved the puzzle, identifying the star as pulsating.

“Light curve patterns are well established, and these standard shapes correspond to different types of stars,” Ferrante said. “In a particular field of the night sky under observation there may have been hundreds or even thousands of stars. So the software we use generates a light curve for each one, for one night. Then — and here’s the human part — we use our brain’s capacity for pattern recognition to find something that looks interesting and that has a variation. This allows the initial variable star candidate to be identified. From there, you look at data from several other nights. We combine all of those into one plot, as well as add data sets from other telescopes, and that’s the evidence for discerning what kind of variable star it is.”

That was accomplished conclusively during the referee process with the Variable Star Index moderator.

The work to discover and analyze this rare variable star was carried out in conjunction with analyses by eight other high school students and two other undergraduates working on other variable candidates. The high school students were supported by SMU’s chapter of the Department of Energy/National Science Foundation QuarkNet program.

Heating and cooling, expanding and contracting
Of the stars that vary in brightness intrinsically, a large number exhibit amazingly regular oscillations in their brightness which is a sign of some pulsation phenomenon in the star, Ferrante said.

Pulsation results from expanding and contracting as the star ages and exhausts the hydrogen fuel at its core. As the hydrogen fuel burns hotter, the star expands, then cools, then gravity shrinks it back, and contraction heats it back up.

“I’m speaking very generally, because there’s a lot of nuance, but there’s this continual struggle between thermal expansion and gravitational contraction,” Ferrante said. “The star oscillates like a spring, but it always overshoots its equilibrium, doing that for many millions of years until it evolves into the next phase, where it burns helium in its core. And if it’s about the size and mass of the sun — then helium fusion and carbon is the end stage. And when helium is used up, we’re left with a dying ember called a white dwarf.”

Within the pulsating category is a class of stars called delta Scuti, of which there are thousands. They are named for a prototype star whose characteristic features — including short periods of pulsating on the scale of a few hours — are typical of the entire class.

Within delta Scuti is a subtype of which hundreds have been identified, called high amplitude delta Scuti, or HADS. Their brightness varies to a particularly large degree, registering more than 10 percent difference between their minimum and maximum brightness, indicating larger pulsations.

Common delta Scuti pulsate along the radius in a uniform contraction like blowing up a balloon. A smaller sub-category are the HADS, which show asymmetrical-like pulsating curves.

Within HADS, there’s the relatively rare subtype called HADS(B) , of which there are only 114 identified.

Star evolution — just a matter of time
A HADS(B) is distinguished by its two modes of oscillation — different parts of the star expanding at different rates in different directions but the ratio of those two periods is always the same.

For the SMU star, two modes of oscillation weren’t immediately obvious in its light curve.

“But we knew there was something going on because the light curve didn’t quite match known light curves of other delta Scuti’s and HADS’ objects we had studied. The light curves — when laid on top of each other — presented an asymmetry,” Ferrante said. “Ultimately the HADS(B) we discovered is even more unique than that though — it’s a Triple Mode HADS(B) and there were previously only six identified in the Milky Way. So it has three modes of oscillation, all three with a distinct period, overlapping, and happening simultaneously.”

So rare, in fact, there’s no name yet for this new category nor a separate registry designation for it. Guzman, the student researcher who analyzed and categorized the object, recalled how the mystery unfolded.

“When I began the analysis of the object, we had an initial idea of what type it could be,” Guzman said. “My task was to take the data and try to confirm the type by finding a second period that matched a known constant period ratio. After successfully finding the second mode, I noticed a third signal. After checking the results, I discovered the third signal coincided with what is predicted of a third pulsation mode.”

The SMU Triple Mode HADS(B) oscillates on a scale of 2.5 hours, so it will expand and contract 10 times in one Earth day. It and the other known six HADS(B)’s are in the same general region of the Milky Way galaxy, within a few thousand light years of one another.

“I’m sure there are more out there,” Ferrante said, “but they’re still rare, a small fraction.”

Red giant the final phase of star’s evolution
SMU’s Triple Mode HADS(B) is unstable and further along in its stellar evolution than our sun, which is about middle-aged and whose pulsating variations occur over a much longer period of time. SMU’s Triple Mode HADS(B) core temperature, heated from the burning of hydrogen fuel, is about 15 million Kelvin or 28 million degrees Fahrenheit.

Someday, millions of years from now, SMU’s Triple Mode HADS(B) will deplete the hydrogen fuel at its core, and expand into a red giant.

“Our sun might eventually experience this as well,” Ferrante said. “But Earth will be inhospitable long before then. We won’t be here to see it.”

Funding was through the Texas Space Grant Consortium, an affiliate of NASA; SMU Dedman College. Department of Energy/National Science Foundation QuarkNet program.

ROTSE-I began operating in late 1997, surveying the sky all night, every clear night of the year for three years. It was decommissioned in 2001 and replaced by ROTSE-III. SMU owns the ROTSE-IIIb telescope at McDonald Observatory, Fort Davis, Texas.

Categories
Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News

Dallas Innovates: SMU Study Finds Simpler Way to Explain Physics of Running

The research could have implications on shoe design, rehabilitation practices, and running performance.

Reporter Heather Noel with Dallas Innovates covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Dallas Innovates article, “SMU Study Finds Simpler Way to Explain Physics of Running,” published Feb. 2, 2017.

Read the full story.

EXCERPT:

By Heather Noel
Dallas Innovates

Understanding the physics of running all comes down to the motion of two body parts, according to researchers at Southern Methodist University.

Their findings published recently in the Journal of Experimental Biology, concluded that running can be explained in a lot simpler terms than scientists previously thought. After examining Olympic-caliber runners, they came up with a “two-mass model” that uses the lower leg that comes into contact with the ground and the sum total of the rest of the body to determine ground force.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” said Kenneth Clark, SMU grad and assistant professor in the Department of Kinesiology at West Chester University, in a release.

“This new simplified approach makes it possible to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.”

The research could have implications on shoe design, injury prevention, rehabilitation practices, and running performance.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground,” said Laurence Ryan, a physicist and research engineer at SMU’s Locomotor Performance Laboratory, in a release.

Read the full story.

Categories
Economics & Statistics Energy & Matter Health & Medicine Researcher news SMU In The News

Daily Mail: Researchers reveal the mechanics of running is simpler than thought – and it could revolutionise shoe design

New study: Pattern of force on the ground is due to the motion of two parts of the body

Reporter Stacy Liberatore with London’s Daily Mail newspaper covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Daily Mail article, “Researchers reveal the mechanics of running is simpler than thought – and it could revolutionise shoe design,” published Jan. 31, 2017.

Read the full story.

EXCERPT:

By Stacy Liberatore
Daily Mail

A study has found a new explanation for the basic mechanics of human running.

While observing Olympic-caliber sprinters, researchers discovered that a runner’s pattern of force application on the ground is due to the motion of just two parts of the body: the contacting leg and the rest of the body.

The new approach could help create new patterns to optimize the design of running shoes, orthoses and prosthetics, as experts are able to see exactly how a person runs.

The Southern Methodist University (SMU) researchers explained that the basic concept of their ‘two-mass model’ is relatively simple — a runner’s pattern of force application on the ground is due to the motion of two parts of the body: the lower portion of the leg that is contacting the ground, and the sum total of the rest of the body.

The force contributions of the two body parts are each predicted from their largely independent motions when they have foot-ground contact.

And then combined to predict the overall pattern.

The final prediction relies only upon classical physics and a characteristic link between the force and motion for the two body parts.

‘Our model inputs are limited to contact time on the ground, time in the air, and the motion of the ankle or lower limb.

‘From three basic stride variables we are able to predict the full pattern of ground-force application,’ said Laurence Ryan, who is a physicist and research engineer at SMU’s Locomotor Performance Laboratory.

‘The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates.’

Read the full story.

Categories
Energy & Matter Health & Medicine Researcher news Student researchers Subfeature

New study connects running motion to ground force, provides patterns for any runner

New approach simplifies the physics of running, enabling scientists to predict ground force patterns; applies to rehab, shoe design and athletic performance.

Researchers at Southern Methodist University, Dallas, have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground – during jogging, sprinting and at all speeds in between.

Researchers at Southern Methodist University in Dallas have developed a concise new explanation for the basic mechanics involved in human running.

The approach offers direct insight into the determinants of running performance and injuries, and could enable the use of individualized gait patterns to optimize the design of shoes, orthoses and prostheses according to biomechanics experts Kenneth Clark , Laurence Ryan and Peter Weyand, who authored the new study.

The ground force-time patterns determine the body’s motion coming out of each step and therefore directly determine running performance. The impact portion of the pattern is also believed to be a critical factor for running injuries.

“The human body is mechanically complex, but our new study indicates that the pattern of force on the ground can be accurately understood from the motion of just two body parts,” said Clark, first author on the study and currently an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Pennsylvania.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” Clark said. “This new simplified approach makes it possible to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.”

This new “two-mass model” from the SMU investigators substantially reduces the complexity of existing scientific explanations of the physics of running.

Existing explanations have generally relied upon relatively elaborate “multi-mass spring models” to explain the physics of running, but this approach is known to have significant limitations. These complex models were developed to evaluate rear-foot impacts at jogging speeds and only predict the early portion of the force pattern. In addition, they are less clearly linked to the human body itself. They typically divide the body into four or more masses and include numerous other variables that are hard to link to the actual parts of a human body.

The SMU model offers new insight by providing concise, accurate predictions of the ground force vs. time patterns throughout each instant of the contact period. It does so regardless of limb mechanics, foot-strike type and running speed.

“Our model inputs are limited to contact time on the ground, time in the air, and the motion of the ankle or lower limb. From three basic stride variables we are able to predict the full pattern of ground-force application,” said Ryan, who is a physicist and research engineer at SMU’s Locomotor Performance Laboratory.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground.” added Ryan.

Current methods for assessing patterns of ground force application require expensive in-ground force platforms or force treadmills. Additionally, the links between the motions of an athlete’s body parts and ground forces have previously been difficult to reduce to basic and accurate explanations.

The researchers describe their new two-mass model of the physics of running in the article, “A general relationship links gait mechanics and running ground reaction forces,” published in the Journal of Experimental Biology.

“From both a running performance and injury risk standpoint, many investigations over the last 15 years have focused on the link between limb motion and force application,” said Weyand, who is the director of SMU’s Locomotor Performance Laboratory. “We’re excited that this research can shed light on this basic relationship.”

Overall force-time pattern is the sum of two parts
Traditional scientific explanations of foot-ground forces have utilized different types of spring and mass models ranging from complex to very simple. However, the existing models have not been able to fully account for all of the variation present in the force-time patterns of different runners — particularly at speeds faster than jogging. Consequently, a comprehensive basis for assessing performance differences, injury risks and general running mechanics has not been previously available.

The SMU researchers explain that the basic concept of the new approach is relatively simple — a runner’s pattern of force application on the ground is due to the motion of two parts of the body: the lower portion of the leg that is contacting the ground, and the sum total of the rest of the body.

The force contributions of the two body parts are each predicted from their largely independent, respective motions during the foot-ground contact period. The two force contributions are then combined to predict the overall pattern. The final prediction relies only upon classical physics and a characteristic link between the force and motion for the two body parts.

New approach can be applied accurately and inexpensively
The application of the two-mass approach is direct and immediate.

“Scientists, clinicians and performance specialists can directly apply the new information using the predictive approach provided in the manuscript,” Clark said. “The new science is well-suited to assessing patterns of ground-force application by athletes on running tracks and in performance training centers.”

These capabilities have not been possible previously, much less in the inexpensive and accurate manner that the new approach allows for with existing technology.

“The only requirement is a quality high-speed camera or decent motion sensor and our force-motion algorithms,” Clark said. “It’s conceivable that even shoe stores would benefit by implementing basic treadmill assessments to guide footwear selection from customer’s gait mechanics using the approach.”

A critical breakthrough for the SMU researchers was recognition that the mass contribution of the lower leg did not vary for heel vs. forefoot strikes and was directly quantifiable. Their efforts lead them to recognize the initial force contribution results from the quick stopping of the lower part of the leg — the shin, ankle and foot — which all come down and stop together when the foot hits the ground.

Olympic sprinters were a clue to discovery
The SMU team discovered a general way to quantify the impact forces from the large impacts observed from Olympic-caliber sprinters. Like heel strikers, the patterns of Olympic sprinters exhibit a sharp rising edge peak that results from an abrupt deceleration of the foot and lower leg. However, sprinters accomplish this with forefoot impacts rather than the heel-first landing that most joggers use.

“The world-class sprinters gave us a big signal to figure out the critical determinants of the shape of the waveform,” said Weyand. “Without their big impact forces, we would probably have not been able to recognize that the ground-force patterns of all runners, regardless of their foot-strike mechanics and running speed, have two basic parts.”

When the researchers first began to analyze the seemingly complicated force waveform signals, they found that they were actually composed of two very simple overlapping waveforms, Ryan said.

“Our computer generated the best pattern predictions when the timing of the first waveform coincided with the high-speed video of the ankle stopping on impact. This was true to within a millisecond, every single time. And we did it hundreds of times,” he said. “So we knew we had a direct physical relationship between force and motion that provided a critical insight.”

New approach has potential to diagnose injury, rehab
The SMU team’s new concise waveforms potentially have diagnostic possibilities, Weyand said.

For example, a runner’s pre-injury waveforms could be compared to their post-injury and post-rehab waveforms.

“You could potentially identify the asymmetries of runners with tibial stress fractures, Achilles tendonitis or other injuries by comparing the force patterns of their injured and healthy legs,” he said.

And while medical images could suggest the injury has healed, their waveforms might tell a different story.

“The waveform patterns might show the athlete continues to run with less force on the injured limb. So it may offer an inexpensive diagnostic tool that was not previously available,” Weyand said.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Categories
Culture, Society & Family Energy & Matter Feature Researcher news SMU In The News

APS Physics: Viewpoint — Dark Matter Still at Large

“No dark matter particles have been observed by two of the world’s most sensitive direct-detection experiments, casting doubt on a favored dark matter model.” — Jodi Cooley

SMU physicist Jodi Cooley, an associate professor in the Department of Physics, writes in the latest issue of Physical Review Letters about the hunt by physicists worldwide for dark matter — the most elusive and abundant matter in our Universe.

Cooley is an expert in dark matter and a lead researcher on one of the key dark matter experiments in the world.

Cooley’s APS Physics article, “Viewpoint: Dark Matter Still at Large,” published Jan. 11, 2017.

The journal is that of the American Physical Society, a non-profit membership organization advancing knowledge of physics through its research journals, scientific meetings, education, outreach, advocacy and international activities. APS represents more than 53,000 members, including physicists in academia, national laboratories and industry in the United States and throughout the world.

Cooley’s current research interest is to improve our understanding of the universe by deciphering the nature of dark matter. The existence of dark matter was first postulated nearly 80 years ago. However, it wasn’t until the last decade that the revolution in precision cosmology revealed conclusively that about a quarter of our universe consisted of dark matter. Cooley and her colleagues operate sophisticated detectors in the Soudan Underground Laboratory in Minnesota. These detectors can distinguish between elusive dark matter particles and background particles that mimic dark matter interactions.

She received a B.S. degree in Applied Mathematics and Physics from the University of Wisconsin in Milwaukee in 1997. She earned her Masters in 2000 and her Ph.D. in 2003 at the University of Wisconsin-Madison for her research searching for neutrinos from diffuse astronomical sources with the AMANDA-II detector. Upon graduation she did postdoctoral studies at both MIT and Stanford University.

Cooley is a Principal Investigator on the SuperCDMS dark matter experiment and a Principal Investigator for the AARM collaboration, which aims to develop integrative tools for underground science. She has won numerous awards for her research including an Early Career Award from the National Science Foundation and the Ralph E. Powe Jr. Faculty Enhancement Award from the Oak Ridge Associated Universities.

She was named December 2012 Woman Physicist of the Month by the American Physical Societies Committee on the Status of Women and earned a 2012 HOPE (Honoring our Professor’s Excellence) by SMU. In 2015 she received the Rotunda Outstanding Professor Award.

Read the full article.

EXCERPT:

By Jodi Cooley
Southern Methodist University

Over 80 years ago astronomers and astrophysicists began to inventory the amount of matter in the Universe. In doing so, they stumbled into an incredible discovery: the motion of stars within galaxies, and of galaxies within galaxy clusters, could not be explained by the gravitational tug of visible matter alone [1]. So to rectify the situation, they suggested the presence of a large amount of invisible, or “dark,” matter. We now know that dark matter makes up 84% of the matter in the Universe [2], but its composition—the type of particle or particles it’s made from—remains a mystery. Researchers have pursued a myriad of theoretical candidates, but none of these “suspects” have been apprehended. The lack of detection has helped better define the parameters, such as masses and interaction strengths, that could characterize the particles. For the most compelling dark matter candidate, WIMPs, the viable parameter space has recently become smaller with the announcement in September 2016 by the PandaX-II Collaboration [3] and now by the Large Underground Xenon (LUX) Collaboration [4] that a search for the particles has come up empty.

Since physicists don’t know what dark matter is, they need a diverse portfolio of instruments and approaches to detect it. One technique is to try to make dark matter in an accelerator, such as the Large Hadron Collider at CERN, and then to look for its decay products with a particle detector. A second technique is to use instruments such as the Fermi Gamma-ray Space Telescope to observe dark matter interactions in and beyond our Galaxy. This approach is called “indirect detection” because what the telescope actually observes is the particles produced by a collision between dark matter particles. In the same way that forensic scientists rely on physical evidence to reverse-engineer a crime with no witnesses, scientists use the aftermath of these collisions to reconstruct the identities of the initial dark matter particles.

The third technique, and the one used in both the LUX and PandaX-II experiments, is known as “direct detection.” Here, a detector is constructed on Earth with a massive target to increase the odds of an interaction with the dark matter that exists in our Galaxy. In the case of LUX and PandaX-II, the dark matter particles leave behind traces of light that can be detected with sophisticated sensors. This is akin to having placed cameras at the scene of a crime, capturing the culprit in the act.

Read the full article.

Categories
Energy & Matter Health & Medicine Plants & Animals Researcher news SMU In The News

Dallas Innovates: SMU Chemists Find New Way to Break Carbon, Hydrogen Bond

The discovery could make it cheaper and easier to derive products from petroleum.

D Magazine’s Dallas Innovates has covered the latest research of SMU chemist Isaac Garcia-Bosch, who discovered a new way to crack the stubborn carbon-hydrogen bond, “Green chemistry: Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond.”

The article, “SMU Chemists Find New Way to Break Carbon, Hydrogen Bond,” published Jan. 6, 2017.

The Dallas Innovates article “SMU Chemists Find New Way to Break Carbon, Hydrogen Bond” notes that the new catalyst for breaking the tough molecular bond between carbon and hydrogen holds the promise of a cleaner, easier and cheaper way to derive products from petroleum.

An assistant professor, Garcia-Bosch is Harold A. Jeskey Endowed Chair in Chemistry.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Chemists at Southern Methodist University in Dallas have found a cheaper, cleaner method to break the stubborn molecular bond between carbon and hydrogen, a development that could lead to better ways to derive products from petroleum.

“Some of the most useful building blocks we have in the world are simple, plentiful hydrocarbons like methane, which we extract from the ground. They can be used as starting materials for complex chemical products such as plastics and pharmaceuticals,” Isaac Garcia-Bosch, Harold A. Jeskey Endowed Chair and assistant professor in the Department of Chemistry at SMU, told Eurekalert.org. “But the first step of the process is very, very difficult — breaking that carbon-hydrogen bond. The stronger the bond, the more difficult it is to oxidize.”

Oxidizing causes the molecule to undergo a reaction that combines with oxygen and breaks the carbon-hydrogen bonds, according to Eurekalert.

SMU chemists have been working on the project in collaboration with a team from the Johns Hopkins University.

According to the report, Garcia-Bosch and chemist Maxime A. Siegler, director of the X-Ray Crystallography facility at the Johns Hopkins University, used copper catalysts in conjunction with hydrogen peroxide to create the carbon-oxygen bonds.

Read the full story.

Categories
Earth & Climate Energy & Matter Feature Researcher news

Green chemistry: Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond

Chemists discover new way to crack the stubborn carbon-hydrogen bond that could allow industry to make petroleum-derived commercial products easier, cheaper and cleaner

A new catalyst for breaking the tough molecular bond between carbon and hydrogen holds the promise of a cleaner, easier and cheaper way to derive products from petroleum, says a researcher at Southern Methodist University, Dallas.

“Some of the most useful building blocks we have in the world are simple, plentiful hydrocarbons like methane, which we extract from the ground. They can be used as starting materials for complex chemical products such as plastics and pharmaceuticals,” said Isaac Garcia-Bosch, Harold A. Jeskey Endowed Chair assistant professor in the Department of Chemistry at SMU. “But the first step of the process is very, very difficult — breaking that carbon-hydrogen bond. The stronger the bond, the more difficult it is to oxidize.”

The chemical industry must break the tenacious bond between carbon and hydrogen molecules to synthesize oxidative products such as methanol and phenols. It’s called oxidizing because it causes the molecule to undergo a reaction in which it combines with oxygen, breaking C-H bonds and forming new carbon-oxygen bonds.

The conventional chemical recipe calls for inefficient and expensive oxidants to break the C-H bond. That process is costly, difficult and leaves behind dirty waste products.

Chemists at SMU, in collaboration with The Johns Hopkins University, have found a cheaper, cleaner way to crack the stubborn C-H bond.

Garcia-Bosch and chemist Maxime A. Siegler, director of the X-ray Crystallography Facility at The Johns Hopkins University, used copper catalysts that in combination with hydrogen peroxide (oxygen source) can convert C-H bonds to C-O bonds.

“This is a very important discovery because it’s the first time it’s been proven that copper can carry out this kind of oxidation outside of nature in an efficient way,” Garcia-Bosch said. “The prep is very simple, so labs anywhere can do it. Copper is relatively cheap compared to other metals such as palladium, gold or silver, and hydrogen peroxide is readily available, relatively cheap and very clean. One of the byproducts of oxidations with hydrogen peroxide (H2O2) is water (H2O), which is the cleanest waste product you could have.”

Additionally, the researchers found the right ligand — a nitrogen-based material that binds to the copper so that the oxidation process can occur with close to perfect efficiency.

It’s important to have the right ligand, the right amount of hydrogen peroxide, and the right metal in order to oxidize these challenging C-H bonds.

“We found that combination,” Garcia-Bosch said.

Chemistry is like a puzzle, where you build new molecules out of other molecules, he said.

In any one molecule there are many C-H bonds. For example in octanes, such as the ones found in gasoline, there’s a carbon chain of eight carbons with multiple C-H bonds with different chemical properties, Garcia-Bosch said, and from the oxidation of each of the C-H bonds, a different product results.

Chemists design catalysts that are capable of breaking and forming bonds in order to build complex chemical structures.

“Catalysts have to be able to select between different C-H bonds and form new carbon-oxygen, carbon-nitrogen or carbon-fluoride bonds, for example,” Garcia-Bosch said. “Biological processes use metals to do this all the time, for example in our bodies when our liver processes a pharmaceutical that we ingest using iron. Minerals such as iron, copper, manganese, calcium and potassium are critical for the natural catalytic process. For example, trees use manganese (photosynthesis) to transform water into the oxygen that we breathe”

Garcia-Bosch and Siegler reported their findings in the article “Copper-Catalyzed Oxidation of Alkanes with H2O2 under a Fenton-like Regime,” published in the international edition of the journal Angewandte Chemie.

First time for using copper for C-H oxidation
In organic chemistry, there aren’t many examples of copper as a catalyst for carbon-hydrogen oxidation. Most examples are based on iron.

“This is the first time in our field that we’ve used copper to do this C-H oxidation in a very efficient way,” Garcia-Bosch said.

“Copper is very versatile in nature,” he said. “With small changes in the environment of copper, you can do very diverse chemistry. That’s why we picked it.”

That environment is the ligand, which gives properties to the copper to spark the chemical reaction when the chemical ingredients are combined in a vial or round bottom flask.

The researchers discovered that these catalysts — copper in the form of a white salt and the ligand as an oil — can oxidize C-H bonds in a very efficient way in combination with hydrogen peroxide, a reduced form of oxygen that nature uses.

“You can find hydrogen peroxide anywhere, even at home in your medicine cabinet. So it’s a mild oxidant,” Garcia-Bosch said. “It’s convenient also, because it’s a liquid, rather than, say, a gas, which might require special storage. You mix everything together in a solvent and it reacts. It’s like making a soup, a recipe, then you analyze the result to see what you get.”

Using a gas chromatography instrument, the Garcia-Bosch and Siegler analyzed the final solution to observe the results of the reaction. That allowed them to quantify the amount of oxidation product that was formed during the reaction.

Next step — targeting a specific C-H bond
“We tested this catalytic system for different substrates and we saw that it’s not very selective,” Garcia-Bosch said. “That’s a problem. So if we have molecules that have many different C-H bonds, then it’s going to oxidize all of them in a non-selective manner. In our lab, we would like to find selective catalysts. That’s the next project.”

Garcia-Bosch holds the Harold A. Jeskey Endowed Chair in Chemistry. The research was funded through The Robert A. Welch Foundation (Grant N-1900).

Categories
Energy & Matter Health & Medicine Researcher news SMU In The News

KERA News: The Biomechanical Breakdown Of Back Flips On Pogo Sticks

KERA news reporter Courtney Collins tapped the expertise of SMU biomechanics expert Peter Weyand for a news story about the extreme pogo stick performers that have captivated fair goers this year at the Texas State Fair. Weyand explained the biomechanics of the high-flying backflips and stunts of the pogo stick gymnasts.

The article “The Biomechanical Breakdown Of Back Flips On Pogo Sticks” aired on Oct. 17, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Watch the video and listen to the broadcast.

EXCERPT:

By Courtney Collins
KERA News

There’s a lot to gawk at at the State Fair of Texas. A 55 foot tall cowboy, towering cones of cotton candy, flashing midway rides that defy gravity. This year, a handful of guys on pogo sticks do that too.

Three times a day, the Xpogo demo team does everything from back flips to 7-foot bounds over a limbo pole. It looks cool, sure. The biomechanical breakdown of what these athletes are actually doing is even cooler.
The Xpogo athletes can pull off tricks most of us would never attempt. Jumps with no hands, jumps with no feet. Black flips, front flips and sky-high leaps over obstacles.

Bryan Pognant has been involved in extreme pogo-sticking for 15 years. He says the key to getting tricks down isn’t strength, it’s…

“Balance, always balance,” he says. “We have 13 year olds jumping like 10 feet, and that’s only because they know how to balance.”

Watch Pognant perform a trick called the ‘no foot peg grab’ with scientific analysis from SMU professor of physiology and biomechanics Peter Weyand.

Watch the video and listen to the broadcast.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Plants & Animals Researcher news SMU In The News

Scientific American: The Secret to Human Speed — “To sprint like a pro, think like a piston.”

“Weyand has conducted what many researchers consider to be some of the best science to date on the biomechanics of sprinting and how these elite athletes achieve their record-breaking speeds.” — Scientific American

Peter Weyand, human speed, Scientific American, SMU, elite sprinters, speed, biomechanics

The work of SMU biomechanics researcher Peter G. Weyand is featured in the August 2016 issue of the science news magazine Scientific American.

Science writer and associate editor Dina Fine Maron reports on Weyand’s leading-edge research about the key to human speed for sprinters in the article “The Secret to Human Speed” and the video report “How Elite Sprinters Run So Fast.” Hint: “Think like a piston,” says Maron.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Watch the Scientific American video on “How Elite Sprinters Run So Fast” showing how SMU’s Weyand and his lab study the stride of Olympic athlete Mike Rodgers.

The full story is available from Scientific American behind a paywall.

EXCERPT:

By Dina Fine Marone
Scientific American

… Before (Weyand’s) investigations, the prevailing wisdom about great sprinters was that they are particularly adept at quickly repositioning their limbs for their next step while their feet are in the air … Weyand was the first to test this idea scientifically — and his findings indicate that it is wrong …

… In subsequent work, Weyand further determined that at top speeds the best runners landed with a peak force up to five times their body weight, compared with 3.5 times among the average runner … Recently Weyand’s team additionally figured out how the best sprinters are able to generate those higher forces — and in so doing forced a revision of another central tenet of the running world.

The full story is available from Scientific American behind a paywall.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

The Dallas Morning News: Scientists offer explanation on how oil and gas activity triggers North Texas earthquakes

Long-awaited study puts forth explanation for exponential increase in North Texas earthquakes, citing unprecedented wastewater injection into a geological formation above seismically active zones.

In an article contributed to The Dallas Morning News, science journalist Anna Kuchment covered the research of SMU seismologists on a possible explanation for the spate of earthquakes in North Texas in recent years.

The study, “Ellenburger wastewater injection and seismicity in North Texas,” posted online July 17 in the peer-reviewed journal Physics of the Earth and Planetary Interiors.

It is the first scientific work to offer an explanation for the Dallas and Irving quakes, Kuchment notes in her article, “Scientists offer possible explanation for how oil and gas activity may have triggered Dallas earthquakes.

Lead author of the study is SMU seismologist Matthew Hornbach.

Co-authors are SMU students and faculty Madeline Jones, Monique Scales, Heather DeShon, Beatrice Magnani, Brian Stump, Chris Hayward and Mary Layton, and University of Texas at Austin seismologist Cliff Frohlich.

Read the full story.

EXCERPT:

By Anna Kuchment
Dallas Morning News

In a long-awaited study, researchers have offered a possible explanation for how oil and gas activity may have triggered earthquakes in Dallas and Irving last year.

The disposal of wastewater from oil and gas production and hydraulic fracturing “plausibly” set off the tremors, which shook Dallas, Irving, Highland Park and other cities from April 2014 through January 2016, said Matthew Hornbach, the study’s lead author and professor of geophysics at Southern Methodist University.

While the quakes were too small to cause much damage to buildings, they spread alarm through a metro area unaccustomed to feeling the ground shift.

The quakes contributed to a tenfold increase in North Texas’ earthquake hazard level, prompted the Federal Emergency Management Agency to warn of stronger quakes that could cause billions of dollars of damage, and moved local emergency managers to begin preparing for worst-case scenarios.

The study, posted online this week in the peer-reviewed journal Physics of the Earth and Planetary Interiors, is the first scientific work to offer an explanation for the Dallas and Irving quakes. It also provides new evidence that other recent quakes in North Texas’ were likely induced by humans.

Such findings in recent years have prompted pushback from oil and gas companies. This week, through a trade group, they again came out swinging. Steve Everley, a spokesman for an arm of the Independent Petroleum Association of America, questioned the scientists’ work. “Were they looking for media attention?” Everley said in an email. “The authors’ willingness to shift assumptions to fit a particular narrative is concerning, to say the least.”

The state agency that regulates oil and gas, the Railroad Commission, said in a statement that it was reviewing the report “to fully understand its methodology and conclusions.”

Independent experts contacted by The Dallas Morning News praised the study, while cautioning that more work remains before the cause of the Dallas and Irving earthquakes can be firmly established.

“It’s the single best explanation for the increase in earthquakes within the Dallas-Fort Worth basin,” said Rall Walsh, a Ph.D. candidate in geophysics at Stanford University who studies human-triggered earthquakes.

Read the full story.

Categories
Energy & Matter Fossils & Ruins Researcher news SMU In The News

The Texas Tribune: Sinkhole Warnings Don’t Faze West Texas

If the hole dramatically expands, “Wink will have some beachfront property,” Keely jokes. “Somebody’s going to make a marina out of it.” — Winkler County Sheriff George Keely to The Texas Tribune.

Wink sinkholes

The Texas Tribune journalist Jim Malewitz covered the research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences at SMU. Malewitz’s article, “Sinkhole Warnings Don’t Faze West Texas,” published July 12, 2016.

The Dedman College geophysicists are co-authors of a new analysis using satellite radar images to reveal ground movement of two giant sinkholes near Wink, Texas. They found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

Lu is world-renowned for leading scientists in InSAR applications, short for a technique called interferometric synthetic aperture radar, to detect surface changes that aren’t visible to the naked eye. Lu is a member of the Science Definition Team for the dedicated U.S. and Indian NASA-ISRO InSAR mission, set for launch in 2020 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A. Sentinel-1A was launched in April 2014 as part of the European Union’s Copernicus program.

Lu and Kim reported the findings in the scientific journal Remote Sensing, in the article “Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR Interferometry.”

The research was supported by the U.S. Geological Survey Land Remote Sensing Program, the NASA Earth Surface & Interior Program, and the Shuler-Foscue Endowment at Southern Methodist University.

Read the full story.

EXCERPT:

By Jim Malewitz
The Texas Tribune

WINK — Sheriff George Keely’s truck bobbed as he cruised down a particularly warped and cracked stretch of county road.

“This is the road I don’t like to drive on if I don’t have to,” he said as brown-green West Texas scrubland reflected in the rearview mirror. The trip is riskier than he’d like.

But here was Keely — a few months away from retirement after more than 20 years as a Winkler County lawman, five of them as sheriff — again escorting a reporter and photographer across the unstable terrain toward the Wink Sinks, the community’s chasms of fascination and fear.

The two gaping sinkholes, which sit between the small towns of Wink and Kermit atop the largely tapped out Hendrick oilfield, aren’t new. Wink Sink No. 1 — more than a football field across and 100 feet deep when it collapsed — turned 36 years old last month. Its more massive cousin to the south, Wink Sink No.2, swallowed a water well, pipelines and surrounding desert back in 2002.

A recent study by two Southern Methodist University geophysicists has thrust the sinkholes back into conversations here and across the wider realm of social media.

The research, published last month in the peer-reviewed journal Remote Sensing, used satellite imagery to chart what other researchers and folks like Keely have noticed: the sinkholes keep growing, and land surrounding them is sinking — likely due to a mix of geology and human intervention.

The instability raises the possibility that more abysses could open without further notice, the SMU researchers suggested.

“A collapse could be catastrophic,” research scientist Jin-Woo Kim said in a statement upon the study’s release.

“I would be very concerned,” his partner Zhong Lu, a professor, said in an interview.

Those findings quickly garnered attention from news media across Texas and the U.S. and other websites. The headlines grew more alarming and less accurate as blogs and other websites aggregated and re-aggregated the news. (“Giant Sinkholes Threaten to Swallow Two Tiny West Texas Towns,” “Sinkholes May Take Texas Down”).

In Winkler County, the prognostications were greeted largely with a yawn.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Dallas Morning News: Fracking-related activities have caused majority of recent Texas earthquakes

A new study Texas seismology researchers finds that humans have been causing earthquakes not just in North Texas but throughout the state for nearly 100 years.

earthquake, causes, SMU, oil, fracking, seismology

Science journalist Anna Kuchment with The Dallas Morning News covered the research of SMU seismologists on the historical record of North Texas earthquakes and their causes.

The SMU seismology team on May 18 published online new evidence of human involvement in earthquakes since the 1920s in the journal Seismological Research Letters. The study found that human-caused earthquakes have been present since at least 1925, and widespread throughout the state. While they are tied to oil and gas operations, the specific production techniques behind these quakes have differed over the decades, according to Cliff Frohlich, Heather DeShon, Brian Stump, Chris Hayward, Mathew J. Hornbach and Jacob I. Walter.

Read the full story.

EXCERPT:

By Anna Kuchment
Dallas Morning News

Despite mounting evidence that oil and gas activity has triggered all of the recent earthquakes in Dallas and Fort Worth, Texas regulators have consistently questioned the link. Now a new study by University of Texas researchers argues that humans have been causing earthquakes not just in North Texas but throughout the state for nearly 100 years.

“The public thinks these started in 2008, but nothing could be further from the truth,” said Cliff Frohlich, a senior research scientist at UT-Austin and lead author of the new study.

The paper, to be published Wednesday in the journal Seismological Research Letters, concludes that activities associated with petroleum production “almost certainly” or “probably” set off 59 percent of earthquakes across the state between 1975 and 2015, including the recent earthquakes in Irving and Dallas. Another 28 percent were “possibly” triggered by oil and gas activities. Scientists deemed only 13 percent of the quakes to be natural.

A spokesperson for the Railroad Commission of Texas, which regulates the oil and gas industry, dismissed the study’s methods as “arbitrary,” but an expert at the U.S. Geological Survey said the study offers important new information that could affect the agency’s future threat assessments for Texas.

“The Commission will continue to use objective, credible scientific study as the basis for our regulatory and rulemaking functions,” Ramona Nye, a spokeswoman for the Railroad Commission, wrote in an email after she and her colleagues reviewed an embargoed copy of the paper. “However this new study acknowledges the basis for its conclusions are purely subjective in nature and in fact, admits its categorization of seismic events to be arbitrary.”

Frohlich and colleagues at UT and at Southern Methodist University argue in the paper that state regulators have been slow to acknowledge the link between industrial practices and ground shaking. Oklahoma, which experienced 890 earthquakes of magnitude 3 and above last year compared with Texas’ 21, has recognized the connection and ordered operators to slash the volume of wastewater from oil and gas production that they pump into wells. Studies by academic scientists and those at the USGS have shown that pressure from high-volume wastewater injections has disturbed faults in Oklahoma, Texas, Kansas, Arkansas and a handful of other states, creating earthquakes.

The Railroad Commission has taken some similar steps, Nye wrote. In November 2014 the commission tightened its rules for disposal wells. Since then, it has received 51 disposal well applications. Of these, 22 permits were issued with special conditions, such as requirements to reduce daily maximum injection volumes and pressure and to record volumes and pressures daily as opposed to monthly.

Following a 4-magnitude earthquake near Venus and Mansfield last year, the commission asked one operator to plug its well to a shallower depth, Nye added, presumably to lower the risk that it would disturb a deep fault. Texas’ man-made earthquakes date to the early days of the oil and gas industry, the new study reports.

The first man-made quake struck in 1925 in the Goose Creek oil field along the Gulf Coast east of Houston. Humble Oil, a precursor of Exxon, had extracted so much oil that the ground sank and caused houses to shake and dishes to crash to the floor.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news Technology

Study: Humans have been causing earthquakes in Texas since the 1920s

Since 2008 the rate of Texas earthquakes greater than magnitude 3 has increased from about two per year to 12 per year, say the authors.

Earthquakes triggered by human activity have been happening in Texas since at least 1925, and they have been widespread throughout the state ever since, according to a new historical review of the evidence publishing online May 18 in Seismological Research Letters.

The earthquakes are caused by oil and gas operations, but the specific production techniques behind these quakes have differed over the decades, according to Cliff Frohlich, the study’s lead author, and co-authors Heather DeShon, Brian Stump, Chris Hayward, Mathew J. Hornbach and Jacob I. Walter.

Frohlich is senior research scientist and associate director at the Institute for Geophysics at the University of Texas at Austin. DeShon, Stump, Hayward and Hornbach are seismologists in the Roy M. Huffington Department of Earth Sciences, Southern Methodist University, Dallas. Walter is at the University of Texas at Austin.

Frohlich said the evidence presented in the SRL paper should lay to rest the idea that there is no substantial proof for human-caused earthquakes in Texas, as some state officials have claimed as recently as 2015.

At the same time, he said, the study doesn’t single out any one or two industry practices that could be managed or avoided to stop these kinds of earthquakes from occurring. “I think we were all looking for what I call the silver bullet, supposing we can find out what kinds of practices were causing the induced earthquakes, to advise companies or regulators,” he notes. “But that silver bullet isn’t here.”

The researchers write in the article “A Historical Overview of Induced Earthquakes in Texas” that since 2008, the rate of Texas earthquakes greater than magnitude 3 has increased from about two per year to 12 per year. This change appears to stem from an increase in earthquakes occurring within 1-3 kilometers of petroleum production wastewater disposal wells where water is injected at a high monthly rate, they note.

Some of these more recent earthquakes include the Dallas-Fort Worth International Airport sequence between 2008 and 2013; the May 2012 Timpson earthquake; and the earthquake sequence near Azle that began in 2013.

The researchers suspected that induced seismicity might have a lengthy and geographically widespread history in Texas.

“For me, the surprise was that oil field practices have changed so much over the years, and that probably affects the kinds of earthquakes that were happening at each time,” Frohlich said.

In the 1920s and 1930s, for instance, “they’d find an oilfield, and hundreds of wells would be drilled, and they’d suck oil out of the ground as fast as they could, and there would be slumps” that shook the earth as the volume of oil underground was rapidly extracted, he said.

When those fields were mostly depleted, in the 1940s through the 1970s, petroleum operations “started being more aggressive about trying to drive oil by water flooding” and the huge amounts of water pumped into the ground contributed to seismic activity, said Frohlich.

In the past decade, enhanced oil and gas recovery methods have produced considerable amounts of wastewater that is disposed by injection back into the ground through special wells, triggering nearby earthquakes. Most earthquakes linked to this type of wastewater disposal in Texas are smaller (less than magnitude 3) than those in Oklahoma, the study concludes.

The difference may lie in the types of oil operations in each state, Frohlich said. The northeast Texas injection earthquakes occur near high-injection rate wells that dispose of water produced in hydrofracturing operations, while much of the Oklahoma wastewater is produced during conventional oil production and injected deep into the underlying sedimentary rock.

For the moment, there have been no magnitude 3 or larger Texas earthquakes that can be linked directly to the specific process of hydrofracturing or fracking itself, such as have been felt in Canada, the scientists concluded.

The researchers used a five-question test to identify induced earthquakes in the Texas historical records. The questions cover how close in time and space earthquakes and petroleum operations are, whether the earthquake center is at a relatively shallow depth (indicating a human rather than natural trigger); whether there are known or suspected faults nearby that might support an earthquake or ease the way for fluid movement, and whether published scientific reports support a human cause for the earthquake.

In 2015, the Texas legislature funded a program that would install 22 additional seismic monitoring stations to add to the state’s existing 17 permanent stations, with the hopes of building out a statewide monitoring network that could provide more consistent and objective data on induced earthquakes.

Seismological Research Letters is a publication of the Seismological Society of America. — Seismological Research Letters

Categories
Culture, Society & Family Energy & Matter Researcher news Student researchers

SMU physicists: CERN’s Large Hadron Collider is once again smashing protons, taking data

CERN’s Large Hadron Collider (LHC) and its experiments are back in action, now taking physics data for 2016 to get an improved understanding of fundamental physics.

Following its annual winter break, the most powerful collider in the world has been switched back on.

Geneva-based CERN’s Large Hadron Collider (LHC) — an accelerator complex and its experiments — has been fine-tuned using low-intensity beams and pilot proton collisions, and now the LHC and the experiments are ready to take an abundance of data.

The goal is to improve our understanding of fundamental physics, which ultimately in decades to come can drive innovation and inventions by researchers in other fields.

Scientists from SMU’s Department of Physics are among the several thousand physicists worldwide who contribute on the LHC research.

“All of us here hope that some of the early hints will be confirmed and an unexpected physics phenomenon will show up,” said Ryszard Stroynowski, SMU professor and a principal investigator on the LHC. “If something new does appear, we will try to contribute to the understanding of what it may be.”

SMU physicists work on the LHC’s ATLAS experiment. Run 1 of the Large Hadron Collider made headlines in 2012 when scientists observed in the data a new fundamental particle, the Higgs boson. The collider was then paused for an extensive upgrade and came back much more powerful than before. As part of Run 2, physicists on the Large Hadron Collider’s experiments are analyzing new proton collision data to unravel the structure of the Higgs.

The Higgs was the last piece of the puzzle for the Standard Model — a theory that offers the best description of the known fundamental particles and the forces that govern them. In 2016 the ATLAS and CMS collaborations of the LHC will study this boson in depth.

Over the next three to four months there is a need to verify the measurements of the Higgs properties taken in 2015 at lower energies with less data, Stroynowski said.

“We also must check all hints of possible deviations from the Standard Model seen in the earlier data — whether they were real effects or just statistical fluctuations,” he said. “In the long term, over the next one to two years, we’ll pursue studies of the Higgs decays to heavy b quarks leading to the understanding of how one Higgs particle interacts with other Higgs particles.”

In addition, the connection between the Higgs Boson and the bottom quark is an important relationship that is well-described in the Standard Model but poorly understood by experiments, said Stephen Sekula, SMU associate professor. The SMU ATLAS group will continue work started last year to study the connection, Sekula said.

“We will be focused on measuring this relationship in both Standard Model and Beyond-the-Standard Model contexts,” he said.

SMU physicists also study Higgs-boson interactions with the most massive known particle, the top-quark, said Robert Kehoe, SMU associate professor.

“This interaction is also not well-understood,” Kehoe said. “Our group continues to focus on the first direct measurement of the strength of this interaction, which may reveal whether the Higgs mechanism of the Standard Model is truly fundamental.”

All those measurements are key goals in the ATLAS Run 2 and beyond physics program, Sekula said. In addition, none of the ultimate physics goals can be achieved without faultless operation of the complex ATLAS detector, its software and data acquisition system.

“The SMU group maintains work on operations, improvements and maintenance of two components of ATLAS — the Liquid Argon Calorimeter and data acquisition trigger,” Stroynowski said.

Intensity of the beam to increase, supplying six times more proton collisions
Following a short commissioning period, the LHC operators will now increase the intensity of the beams so that the machine produces a larger number of collisions.

“The LHC is running extremely well,” said CERN Director for Accelerators and Technology, Frédérick Bordry. “We now have an ambitious goal for 2016, as we plan to deliver around six times more data than in 2015.”

The LHC’s collisions produce subatomic fireballs of energy, which morph into the fundamental building blocks of matter. The four particle detectors located on the LHC’s ring allow scientists to record and study the properties of these building blocks and look for new fundamental particles and forces.

This is the second year the LHC will run at a collision energy of 13 TeV. During the first phase of Run 2 in 2015, operators mastered steering the accelerator at this new higher energy by gradually increasing the intensity of the beams.

“The restart of the LHC always brings with it great emotion”, said Fabiola Gianotti, CERN Director General. “With the 2016 data the experiments will be able to perform improved measurements of the Higgs boson and other known particles and phenomena, and look for new physics with an increased discovery potential.”

New exploration can begin at higher energy, with much more data
Beams are made of “trains” of bunches, each containing around 100 billion protons, moving at almost the speed of light around the 27-kilometre ring of the LHC. These bunch trains circulate in opposite directions and cross each other at the center of experiments. Last year, operators increased the number of proton bunches up to 2,244 per beam, spaced at intervals of 25 nanoseconds. These enabled the ATLAS and CMS collaborations to study data from about 400 million million proton–proton collisions. In 2016 operators will increase the number of particles circulating in the machine and the squeezing of the beams in the collision regions. The LHC will generate up to 1 billion collisions per second in the experiments.

“In 2015 we opened the doors to a completely new landscape with unprecedented energy. Now we can begin to explore this landscape in depth,” said CERN Director for Research and Computing Eckhard Elsen.

Between 2010 and 2013 the LHC produced proton-proton collisions with 8 Tera-electronvolts of energy. In the spring of 2015, after a two-year shutdown, LHC operators ramped up the collision energy to 13 TeV. This increase in energy enables scientists to explore a new realm of physics that was previously inaccessible. Run II collisions also produce Higgs bosons — the groundbreaking particle discovered in LHC Run I — 25 percent faster than Run I collisions and increase the chances of finding new massive particles by more than 40 percent.

But there are still several questions that remain unanswered by the Standard Model, such as why nature prefers matter to antimatter, and what dark matter consists of, despite it potentially making up one quarter of our universe.

The huge amounts of data from the 2016 LHC run will enable physicists to challenge these and many other questions, to probe the Standard Model further and to possibly find clues about the physics that lies beyond it.

The physics run with protons will last six months. The machine will then be set up for a four-week run colliding protons with lead ions.

“We’re proud to support more than a thousand U.S. scientists and engineers who play integral parts in operating the detectors, analyzing the data, and developing tools and technologies to upgrade the LHC’s performance in this international endeavor,” said Jim Siegrist, Associate Director of Science for High Energy Physics in the U.S. Department of Energy’s Office of Science. “The LHC is the only place in the world where this kind of research can be performed, and we are a fully committed partner on the LHC experiments and the future development of the collider itself.”

The four largest LHC experimental collaborations, ALICE, ATLAS, CMS and LHCb, now start to collect and analyze the 2016 data. Their broad physics program will be complemented by the measurements of three smaller experiments — TOTEM, LHCf and MoEDAL — which focus with enhanced sensitivity on specific features of proton collisions. — SMU, CERN and Fermilab

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Dallas Morning News: Could Texas’ dirty coal power plants be replaced by geothermal systems?

“We all care about the earth,” said Maria Richards, SMU geothermal lab coordinator, in welcoming the attendees. “We are applying knowledge that is applying hope.”

geothermal map, SMU, Maria Richards, conference, Dallas

Biz Beat Blog reporter Jeffrey Weiss at The Dallas Morning News covered the 2016 SMU Geothermal Conference, “Power Plays: Geothermal Energy in Oil and Gas Fields.”

The conference was April 25-26 on the SMU campus in Dallas. The eighth international conference focused on using the oilfield as a base for alternative energy production through the capture of waste heat and fluids.

The geothermal technology that is the primary focus of the conference takes advantage of an existing resource frequently considered a nuisance – wastewater produced by oil and gas wells during extraction.

As a well ages it will typically produce more water and less oil or gas over time, which raises the cost of production. Where the produced wastewater is hot enough, and the water flow rate is sufficient, specially designed turbines can draw geothermal energy from the wastewater.

The SMU Geothermal Lab team members are leaders of academic data sources for exploration and assessment of existing and potential geothermal resources.

SMU scientists developed the Geothermal Map of North America and built one of the primary nodes of the National Geothermal Data System (NGDS) for temperature and oil/gas data. Their research efforts include over 50 years of continuous thermal data collection and is viewed by the community as an important first-stage resource used in determining the potential for geothermal energy production in the United States.

The SMU Geothermal Lab has been the recipient of approximately $10 million in research grants from a variety of sources, including the Department of Energy, the National Science Foundation, the Texas State Energy Conservation Office, Google.org and private industry.

Read the full story.

EXCERPT:

By Jeffrey Weiss
Dallas Morning News

For Texas electricity customers, geothermal energy is pretty much an afterthought. But some scientists — and even some people in the oil and gas business — say that heat from deep underground may become a significant source of power.

At least, that’s the message at a conference held today at Southern Methodist University, hosted by the school’s geothermal laboratory. The event pulled together an unusual mix: Academics, oil company bosses, people hawking heat-transfer equipment, geothermal experts and a few environmentalists.

This was the eighth such conference held at SMU since 2006. Those who have been to several agreed that the biggest difference over time is that the presentations have shifted from blue-sky theory to some data from working projects.

Perhaps the loudest applause for the day was when Will Gosnold of the University of North Dakota ended his talk about a demonstration project with a slide of an email saying it had started generating electricity today.

Another presenter suggested that geothermal power could be an economically sensible replacement for existing coal-fired power plants, particularly if the existing power plants and their transmission lines are near coal mines. That’s the case in Texas.

Susan Petty, president of Seattle-based AltaRock Energy, told the group that many older coal plants will be unable to meet clean-air requirements and will need replacing in the next few years. Waste water used in coal mines could be injected into wells where natural heat would make the water hot enough to drive geothermal power generators, she said.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Slideshows Student researchers Videos

Nearby massive star explosion 30 million years ago equaled brightness of 100 million suns

Analysis of exploding star’s light curve and color spectrum reveal spectacular demise of one of the closest supernova to Earth in recent years; its parent star was so big it’s radius was 200 times larger than our sun

A giant star that exploded 30 million years ago in a galaxy near Earth had a radius prior to going supernova that was 200 times larger than our sun, according to astrophysicists at Southern Methodist University, Dallas.

The sudden blast hurled material outward from the star at a speed of 10,000 kilometers a second. That’s equivalent to 36 million kilometers an hour or 22.4 million miles an hour, said SMU physicist Govinda Dhungana, lead author on the new analysis.

The comprehensive analysis of the exploding star’s light curve and color spectrum have revealed new information about the existence and sudden death of supernovae in general, many aspects of which have long baffled scientists.

“There are so many characteristics we can derive from the early data,” Dhungana said. “This was a big massive star, burning tremendous fuel. When it finally reached a point its core couldn’t support the gravitational pull inward, suddenly it collapsed and then exploded.”

The massive explosion was one of the closest to Earth in recent years, visible as a point of light in the night sky starting July 24, 2013, said Robert Kehoe, SMU physics professor, who leads SMU’s astrophysics team.

The explosion, termed by astronomers Supernova 2013ej, in a galaxy near our Milky Way was equal in energy output to the simultaneous brightness of 100 million of the Earth’s suns.

The star was one of billions in the spiral galaxy M74 in the constellation Pisces.

Considered close by supernova standards, SN 2013ej was in fact so far away that light from the explosion took 30 million years to reach Earth. At that distance, even such a large explosion was only visible by telescopes.

Dhungana and colleagues were able to explore SN 2013ej via a rare collection of extensive data from seven ground-based telescopes and NASA’s Swift satellite.

The data span a time period prior to appearance of the supernova in July 2013 until more than 450 days after.

The team measured the supernova’s evolving temperature, its mass, its radius, the abundance of a variety of chemical elements in its explosion and debris and its distance from Earth. They also estimated the time of the shock breakout, the bright flash from the shockwave of the explosion.

The star’s original mass was about 15 times that of our sun, Dhungana said. Its temperature was a hot 12,000 Kelvin (approximately 22,000 degrees Fahrenheit) on the tenth day after the explosion, steadily cooling until it reached 4,500 Kelvin after 50 days. The sun’s surface is 5,800 Kelvin, while the Earth’s core is estimated to be about 6,000 Kelvin.

The new measurements are published online here in the May 2016 issue of The Astrophysical Journal, “Extensive spectroscopy and photometry of the Type IIP Supernova 2013j.”

Shedding new light on supernovae, mysterious objects of our universe
Supernovae occur throughout the universe, but they are not fully understood. Scientists don’t directly observe the explosions but instead detect changes in emerging light as material is hurled from the exploding star in the seconds and days after the blast.

Telescopes such as SMU’s robotic ROTSE-IIIb telescope at McDonald Observatory in Texas, watch our sky and pick up the light as a point of brightening light. Others, such as the Hobby Eberly telescope, also at McDonald, observe a spectrum.

SN 2013ej is M74’s third supernova in just 10 years. That is quite frequent compared to our Milky Way, which has had a scant one supernova observed over the past 400 years. NASA estimates that the M74 galaxy consists of 100 billion stars.

M74 is one of only a few dozen galaxies first cataloged by the astronomer Charles Messier in the late 1700s. It has a spiral structure — also the Milky Way’s apparent shape — indicating it is still undergoing star formation, as opposed to being an elliptical galaxy in which new stars no longer form.

It’s possible that planets were orbiting SN 2013ej’s progenitor star prior to it going supernova, in which case those objects would have been obliterated by the blast, Kehoe said.

“If you were nearby, you wouldn’t know there was a problem beforehand, because at the surface you can’t see the core heating up and collapsing,” Kehoe said. “Then suddenly it explodes — and you’re toast.”

Distances to nearby galaxies help determine cosmic distance ladder
Scientists remain unsure whether supernovae leave behind a black hole or a neutron star like a giant atomic nucleus the size of a city.

“The core collapse and how it produces the explosion is particularly tricky,” Kehoe said. “Part of what makes SN 2013ej so interesting is that astronomers are able to compare a variety of models to better understand what is happening. Using some of this information, we are also able to calculate the distance to this object. This allows us a new type of object with which to study the larger universe, and maybe someday dark energy.”

Being 30 million light years away, SN 2013ej was a relatively nearby extragalactic event, according to Jozsef Vinko, astrophysicist at Konkoly Observatory and University of Szeged in Hungary.

“Distances to nearby galaxies play a significant role in establishing the so-called cosmic distance ladder, where each rung is a galaxy at a known distance.”

Vinko provided important data from telescopes at Konkoly Observatory and Hungary’s Baja Observatory and carried out distance measurement analysis on SN 2013ej.

“Nearby supernovae are especially important,” Vinko said. “Paradoxically, we know the distances to the nearest galaxies less certainly than to the more distant ones. In this particular case we were able to combine the extensive datasets of SN 2013ej with those of another supernova, SN 2002ap, both of which occurred in M74, to suppress the uncertainty of their common distance derived from those data.”

Supernova spectrum analysis is like taking a core sample
While stars appear to be static objects that exist indefinitely, in reality they are primarily a burning ball, fueled by the fusion of elements, including hydrogen and helium into heavier elements. As they exhaust lighter elements, they must contract in the core and heat up to burn heavier elements. Over time, they fuse the various chemical elements of the periodic table, proceeding from lightest to heaviest. Initially they fuse helium into carbon, nitrogen and oxygen. Those elements then fuel the fusion of progressively heavier elements such as sulfur, argon, chlorine and potassium.

“Studying the spectrum of a supernova over time is like taking a core sample,” Kehoe said. “The calcium in our bones, for example, was cooked in a star. A star’s nuclear fusion is always forging heavier and heavier elements. At the beginning of the universe there was only hydrogen and helium. The other elements were made in stars and in supernovae. The last product to get created is iron, which is an element that is so heavy it can’t be burned as fuel.”

Dhungana’s spectrum analysis of SN 2013ej revealed many elements, including hydrogen, helium, calcium, titanium, barium, sodium and iron.

“When we have as many spectra as we have for this supernova at different times,” Kehoe added, “we are able to look deeper and deeper into the original star, sort of like an X-ray or a CAT scan.”

SN 2013ej’s short-lived existence was just tens of millions of years
Analysis of SN 2013ej’s spectrum from ultraviolet through infrared indicates light from the explosion reached Earth July 23, 2013. It was discovered July 25, 2013 by the Katzman Automatic Imaging Telescope at California’s Lick Observatory. A look back at images captured by SMU’s ROTSE-IIIb showed that SMU’s robotic telescope detected the supernova several hours earlier, Dhungana said.

“These observations were able to show a rapidly brightening supernova that started just 20 hours beforehand,” he said. “The start of the supernova, termed ‘shock breakout,’ corresponds to the moment when the internal explosion crashes through the star’s outer layers.”

Like many others, SN 2013ej was a Type II supernova. That is a massive star still undergoing nuclear fusion. Once iron is fused, the fuel runs out, causing the core to collapse. Within a quarter second the star explodes.

Supernovae have death and birth written all over them
Massive stars typically have a shorter life span than smaller ones.

“SN 2013ej probably lived tens of millions of years,” Kehoe said. “In universe time, that’s the blink of an eye. It’s not very long-lived at all compared to our sun, which will live billions of years. Even though these stars are bigger and have a lot more fuel, they burn it really fast, so they just get hotter and hotter until they just gobble up the matter and burn it.”

For most of its brief life, SN 2013ej would probably have burned hydrogen, which then fused to helium, burning for a few hundred thousand years, then perhaps carbon and oxygen for a few hundred days, calcium for a few months and silicon for several days.

“Supernovae have death and birth written all over them,” Kehoe said. “Not only do they create the elements we are made of, but the shockwave that goes out from the explosion — that’s where our solar system comes from.”

Outflowing material slams into clouds of material in interstellar space, causing it to collapse and form a solar system.

“The heavy elements made in the supernova and its parent star are those which comprise the bulk of terrestrial planets, like Earth, and are necessary for life,” Kehoe said.

Besides physicists in the SMU Department of Physics, researchers on the project also included scientists from the University of Szeged, Szeged, Hungary; the University of Texas, Austin, Texas; Konkoly Observatory, Budapest, Hungary; and the University of California, Berkeley, Calif. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Learning & Education Technology

SMU “Power Plays” conference to promote development of oil and gas fields for geothermal energy production

“Power Plays,” on Dallas campus April 25-26, is SMU Geothermal Laboratory’s eighth international energy conference and workshop

SMU’s renowned SMU Geothermal Laboratory will host its eighth international energy conference April 25-26 on the Dallas campus, focused on using the oilfield as a base for alternative energy production through the capture of waste heat and fluids.

In addition to oil and gas field geothermal projects, experts will discuss coal plant conversion for geothermal production, the intersection of geothermal energy and desalination, and large-scale direct use of the energy source produced by the internal heat of the earth.

Power Plays” begins with an opening reception and poster session from 5:30 p.m. – 8 p.m. Monday, April 25, followed by a daylong program of speakers and presentations Tuesday, April 26. Conference details are available here. Walk-up registration is available at the conference site, the Collins Center at 3150 Binkley Avenue, Dallas, 75205.

The technology that is the primary focus of the conference takes advantage of an existing resource frequently considered a nuisance – wastewater produced by oil and gas wells during extraction. As a well ages it will typically produce more water and less oil or gas over time, which raises the cost of production. Where the produced wastewater is hot enough, and the water flow rate is sufficient, specially designed turbines can draw geothermal energy from the wastewater.

That “bonus” geothermal energy can be used to either generate electricity to operate the oil field equipment and lower the cost of production, sell the electricity directly to the power grid or — more likely — to nearby industry users seeking a highly secure electrical source.

“Initial demonstration projects have taught us a great deal about the complexities of transitioning an oil or gas well to geothermal energy production,” said Maria Richards, director of the SMU Geothermal Lab. “Collaboration continues between the oil and gas industry and the geothermal community, and this conference is the place to hear about the technology, business models and legislation that all play a role in developing geothermal resources. We are confident that geothermal energy production will one day be the norm for an aging oil and gas field.”

The appearance of AltaRock Energy’s Susan Petty to discuss “Transitioning Coal to Geothermal: Baseload Renewable Power With No CO2” will be the first examination of this type of geothermal production at the SMU conference, Richards said, adding that she is pleased to see geothermal technology being combined with other energy systems, from large scale solar operations to electricity generated by on-site flare gas.

“The small surface footprint of geothermal energy makes it a desirable player for developers looking to maximize all possible resources on their site,” Richards said.

SMU’s Geothermal Lab team members are leaders of academic data sources for exploration and assessment of existing and potential geothermal resources. SMU scientists developed the Geothermal Map of North America and built one of the primary nodes of the National Geothermal Data System (NGDS) for temperature and oil/gas data. Their research efforts include over 50 years of continuous thermal data collection and is viewed by the community as an important first-stage resource used in determining the potential for geothermal energy production in the United States.

The SMU Geothermal Lab has been the recipient of approximately $10 million in research grants from a variety of sources, including the Department of Energy, the National Science Foundation, the Texas State Energy Conservation Office, Google.org and private industry. — Kim Cobb

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Daily Mail: Earth’s moon threw a ‘wobbly’ after it formed: Lunar poles wandered 125 MILES as volcanic bubbles threw them off balance

327EC6E200000578-3506346-Scientists_say_they_have_discovered_evidence_that_the_Moon_s_axi-a-3_1458751653451

Science reporter Richard Gray with The Daily Mail covered the research of SMU planetary scientist and research assistant professor Matthew Siegler and a team of scientists who discovered the moon wandered off its axis billions of years ago due to a shift in its mass most likely caused by volcanic activity.

The article, “Earth’s moon threw a ‘wobbly’ after it formed: Lunar poles wandered 125 MILES as volcanic bubbles threw them off balance,” published March 23. A report on the discovery of the rare event was published today in Nature: that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Read the full story.

EXCERPT:

By Richard Gray
The Daily Mail

They are among the coldest places in the solar system, covered in deposits of ice that are thought to be billions of years old.

But the moon’s north and south poles may have shifted during its 4.53 billion-year history, according to evidence uncovered in a new study.

A team of astrophysicists claims to have found distinct matching patches of ice at either pole that indicate the tilt of the Earth’s satellite has changed as it has aged.

They said this may have occurred as the interior of the moon cooled and solidified, while other areas bubbled upwards, altering the spin of the rocky world.

The authors explained that volcanic activity in an area known as the Procellarum region around three billion years ago threw the entire moon off balance, causing it to shift its axis by around six degrees.

This caused the moon’s poles to move by around 125 miles (201km) over the course of a billion years.

Dr Matt Siegler, a planetary scientist at the Southern Methodist University in Dallas, who was part of the team to make the discovery, said: ‘Billions of years ago, heating within the Moon’s interior caused the face we see to shift upward as the pole physically changed positions.

‘It would be as if Earth’s axis relocated from Antarctica to Australia. As the pole moved, the Man on the Moon turned his nose up at the Earth,’ Siegler said.

Dr Siegler and his colleagues used data gathered by Nasa’s Lunar Reconnaissance Orbitor which has mapped the hydrogen deposits around the moon’s poles.

They found the polar hydrogen reserves, which are thought to be in the form of water ice in craters, are spread over distinct but matching patterns on either side of the moon.

The researchers said this suggests the lunar spin axis must have shifted, causing the polar regions to become displaced.
This left a permanent record painted out on the surface in ice.

Relatively few planetary bodies are thought to have shifted their axis after forming.

The Earth, Mars, Saturn’s moon Enceladus and Jupiter’s moon Europa are the only others known to have done so.

On Earth, polar wander is thought to have happened as the continental plates have shifted the mass of the planet while on Mars it occurred due to heavy volcanic region.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Wired: The Moon used to spin on a different axis

1-nasadatalead

Wired reporter Emily Reynolds covered the research of SMU planetary scientist and research assistant professor Matthew Siegler and a team of scientists who discovered the moon wandered off its axis billions of years ago due to a shift in its mass most likely caused by volcanic activity.

The article, “The Moon used to spin on a different axis,” published March 24. A report on the discovery of the rare event was published today in Nature: that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Read the full story.

EXCERPT:

By Emily Reynolds
Wired

The Moon used to “spin on a different axis” that was subject to “polar wander,” a new study into the satellite’s early history has said.

The Planetary Science Institute study, published in Nature, highlights two regions full of hydrogen deposits near the Moon’s two poles. This, it says, suggests the presence of ice — ice that only would have survived if it had remained in permanent shadow.

“If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed,” the researchers write.

The poles “wandered”, according to the team, because of volcanic activity in the area, which would have warmed. It also would have made them less dense, causing the “wandering” of the axes.

“The Moon has a single region of the crust where radioactive elements ended up as the Moon was forming,” said Matthew Siegler, lead author of the study. “This radioactive crust acted like an oven broiler heating the mantle below.”

“This giant blob of hot mantle was lighter than cold mantle elsewhere, causing the whole Moon to move.”

The shift probably happened over three billion years ago, the team say, and would have meant the Moon showed a completely different face. Overall, the Moon shifted around six degrees over one billion years. Only a few other planetary bodies have been said to shift their axes — Earth and Mars, as well as two moons of Saturn and Jupiter.

“The same face of the Moon has not always pointed towards Earth,” said Siegler. “As the axis moved, so did the face of the Man in the Moon. He sort of turned his nose up at the Earth.”

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Agence France-Presse in The Japan Times, Raw Story: Moon’s ‘wandering poles’ shifted long ago: study

moonpoles-afp-800x430

Agence France-Presse covered the research of SMU planetary scientist and research assistant professor Matthew Siegler and a team of scientists who discovered the moon wandered off its axis billions of years ago due to a shift in its mass most likely caused by volcanic activity.

The article, “Moon’s ‘wandering poles’ shifted long ago: study,” published March 24 at The Japan Times and Raw Story, among other news sites. A report on the discovery of the rare event was published today in Nature: that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Read the full story.

EXCERPT:

By Agence France Presse
Telltale patches of water ice on opposite ends of the Moon reveal that Earth’s orbiting companion once spun on a different axis, according to a study released Wednesday.

The six-degree tilt, which happened several billion years ago, was likely caused by an ancient volcanic formation on the near side of the Moon, said the study, published in Nature.

The data underlying this startling discovery has been in plain view for nearly two decades, but scientists had failed to connect the dots, one of the researchers told AFP.

“It was kind of hidden because of the way we plotted polar maps,” explained co-author James Keane, a researcher at the University of Arizona.

Two-dimensional representations create a subtle distortion, obscuring the fact that observed concentrations of ice near each pole were exactly 180 degrees apart — and thus on an axis running through the dead centre of the Moon.

“That is my pet hypothesis about why nobody thought about this before,” Keane said.

The man who finally put the top-and-bottom pieces of the lunar puzzle together was co-author Rich Miller of the University of Alabama.

Having located the largest concentrations of water ice near the current north and south poles by detecting hydrogen molecules — the “H” in “H2O” — he rotated a 3-D model to see how they would line up.

“He found a Sigma-8 correlation,” which means that the odds of it being a coincidence were about one-in-a-million, said Keane.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

The Washington Post: Volcanic activity may have shifted the moon’s axis

imrs.php

Reporter Rachel Feltman at The Washington Post covered the research of SMU planetary scientist and research assistant professor Matthew Siegler and a team of scientists who discovered the moon wandered off its axis billions of years ago due to a shift in its mass most likely caused by volcanic activity.

The article, “Volcanic activity may have shifted the moon’s axis,” published March 23. A report on the discovery of the rare event was published today in Nature: that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Read the full story.

EXCERPT:

By Rachel Feltman
The Washington Post

Lots of folks think of the moon as a dead rock that’s orbiting Earth unchanged. That’s untrue — the moon is shrinking and pulling away from us a little bit all the time. But a new study suggests that the moon may have had a much more radical change in its ancient history: The moon may once have spun on a different axis.

In a study published Wednesday in Nature, researchers point to hydrogen-filled deposits near the moon’s poles as evidence that the satellite’s axis — the imaginary line that crosses through it, around which it rotates — was once in a different spot.

These hydrogen deposits are thought to be ice that formed at the moon’s poles. But in addition to the ice expected on the moon’s current poles, scientists found deposits in a different spot — and these spots were directly across from each other. In other words, the ice patches seem to be sitting on areas formerly known as lunar poles. If that’s the case, the new axis is shifted by 5.5 degrees.

“It would be as if Earth’s axis relocated from Antarctica to Australia. As the pole moved, the Man on the Moon turned his nose up at the Earth,” study author Matt Siegler at Southern Methodist University said in a statement.

That’s cold, man on the moon. Real cold.

Scientists call this unusual phenomenon a “true polar wander.” Earth has experienced it several times, and slight axis shifts are common on our planet after earthquakes.

But why on Earth (or on moon, rather) did those poles wander? Volcanic activity may be to blame. A world’s axis is determined by its relative mass, with its lightest regions forming the poles. For the axis to shift so significantly, the mass would have to shift, too. Siegler and his colleagues think that volcanic activity melted some of the moon’s mantle about 3.5 billion years ago, creating a giant, hot blob that was lighter than the colder rock around it. As that magma gurgled around, it slowly shifted the moon’s axis about 125 miles.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Smithsonian: Ancient Volcanoes May Have Shifted the Moon’s Poles

moon_poles_shift.jpg__800x450_q85_crop_upscale

Science reporter Danny Lewis with Smithsonian covered the research of SMU planetary scientist and research assistant professor Matthew Siegler and a team of scientists who discovered the moon wandered off its axis billions of years ago due to a shift in its mass most likely caused by volcanic activity.

The article, “Ancient Volcanoes May Have Shifted the Moon’s Poles,” published March 24. A report on the discovery of the rare event was published today in Nature: that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Read the full story.

EXCERPT:

By Danny Lewis
Smithsonian

The moon may not have always spun at the same angle it does today. According to a new study, patches of water ice that formed in craters on opposite sides of the moon suggest that its axis may have shifted billions of years ago.

While the moon doesn’t have much in the way of geologic activity anymore, about three billion years ago it was pulsing with volcanic activity beneath its surface. A team of planetary scientists say that all that magma sloshing around in the moon may have shifted its axis, moving its poles about six degrees to where they are today, Dani Cooper reports for ABC Science.

“It would be as if Earth’s axis relocated from Antarctica to Australia,” lead author Matthew Siegler, a researcher at the Planetary Science Institute, says in a statement. “As the pole moved, the Man [in] the Moon turned his nose up at the Earth.”

Scientists have believed that the moon’s surface has patches of water ice in its shadowy regions since the 1990s, when NASA’s Lunar Prospector probe discovered traces of hydrogen. Lunar researchers have theorized that there are ice deposits still located in craters at the moon’s poles, which are permanently in shadow. However, according to the new study published in the journal Nature, when Siegler and his colleagues took a closer look at the poles they couldn’t find any traces of water ice. Because the ice should have accumulated over billions of years, Siegler suspects that some of the craters were at one time exposed to sunlight, Loren Grush reports for The Verge.

“The ice is like a vampire; as soon as it gets hit by sunlight, it poofs into smoke,” Siegler tells Grush.

Meanwhile, Siegler and his team noticed that the water ice at the moon’s modern poles appears to trail off in mirroring directions. Also, Siegler found that each pole had a hydrogen-rich region a short distance away, which could mark the moon’s original, or “paleopoles.” By calculating the geologic changes that it would take to shift the moon’s axis, Siegler pinpointed the shift to a part of the moon called the Procellarum region; the center of almost all of the moon’s volcanic activity, Cooper reports.

“It takes a huge change in the mass of the Moon to do that—something like a giant crater or volcano forming,” Siegler tells Cooper.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter

NASA data leads to rare discovery: Earth’s moon wandered off axis billions of years ago

Ancient lunar ice indicates the moon’s axis slowly shifted by 125 miles, or 6 degrees, over 1 billion years. Earth’s moon now a member of solar system’s exclusive “true polar wander” club, which includes just a handful of other planetary bodies.

A 3D cross section of the moon's INFO HERE and resulting lunar polar wander. (James Keane, U of Arizona)
A 3D cross section of the moon and resulting lunar polar wander. (James Keane, U of Arizona)

A new study published today in Nature reports discovery of a rare event — that Earth’s moon slowly moved from its original axis roughly 3 billion years ago.

Planetary scientist Matthew Siegler at Southern Methodist University, Dallas, and colleagues made the discovery while examining NASA data known to indicate lunar polar hydrogen. The hydrogen, detected by orbital instruments, is presumed to be in the form of ice hidden from the sun in craters surrounding the moon’s north and south poles. Exposure to direct sunlight causes ice to boil off into space, so this ice — perhaps billions of years old — is a very sensitive marker of the moon’s past orientation.

An odd offset of the ice from the moon’s current north and south poles was a tell-tale indicator to Siegler and prompted him to assemble a team of experts to take a closer look at the data from NASA’s Lunar Prospector and Lunar Reconnaissance Orbiter missions. Statistical analysis and modeling revealed the ice is offset at each pole by the same distance, but in exactly opposite directions.

This precise opposition indicates the moon’s axis — the imaginary pole that runs north to south through it’s middle, and around which the moon rotates — shifted at least six degrees, likely over the course of 1 billion years, said Siegler, a research assistant professor in SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College of Humanities and Sciences.

“This was such a surprising discovery. We tend to think that objects in the sky have always been the way we view them, but in this case the face that is so familiar to us — the Man on the Moon — changed,” said Siegler, who also is a scientist at the Planetary Science Institute, Tucson, Ariz.

“Billions of years ago, heating within the moon’s interior caused the face we see to shift upward as the pole physically changed positions,” he said. “It would be as if Earth’s axis relocated from Antarctica to Australia. As the pole moved, the Man on the Moon turned his nose up at the Earth.”

The discovery is reported today in an article in the scientific journal Nature, “Lunar true polar wander inferred from polar hydrogen,” at this link on the Nature web site: http://nature.com/articles/doi:10.1038/nature17166.

Siegler’s primary co-authors are astrophysicist Richard S. Miller, a professor at the University of Alabama Huntsville, and planetary dynamicist James T. Keane, a graduate student at the University of Arizona.

Very few planetary bodies known to permanently shift their axis
Planetary bodies settle into their axis based on their mass: A planet’s heavier spots lean it toward its equator, lighter spots toward the pole.

A new study published today in Nature reports Earth’s moon wandered off its original axis roughly 3 billion years ago. (James Keane, U of Arizona)
A new study published today in Nature reports Earth’s moon wandered off its original axis roughly 3 billion years ago. (James Keane, U of Arizona)

On the rare occasion mass shifts and causes a planet to relocate on its axis, scientists refer to the phenomenon as “true polar wander.”

Discovery of lunar polar wander gains the moon entry into an extremely exclusive club. The only other planetary bodies theorized to have permanently shifted location of their axis are Earth, Mars, Saturn’s moon Enceladus and Jupiter’s moon Europa.

What sets the moon apart is its polar ice, which appears to effectively “paint out” the path along which its poles moved.

Moon’s axis likely started relocating about 3 billion years ago
On Earth, polar wander is believed to have happened due to movement of the continental plates. Polar wander on Mars resulted from a heavy volcanic region. The moon’s change in mass was internal — the shift of a large, single mantle “plume.” Ancient volcanic activity some 3.5 billion years ago melted a portion of the moon’s mantle, causing it to bubble up toward its surface, like goo drifting upward in a lava lamp.

“The moon has a single region of the crust, a large basaltic plain called Procellarum, where radioactive elements ended up as the moon was forming,” Siegler said. “This radioactive crust acted like an oven broiler heating the mantle below.”

Some of the material melted, forming the dark patches we see at night, which are ancient lava, he said.

“This giant blob of hot mantle was lighter than cold mantle elsewhere,” Siegler said. “This change in mass caused Procellarum — and the whole moon — to move.”

The moon likely relocated its axis starting about 3 billion years ago or more, slowly moving over the course of a billion years, Siegler said, etching a path in its ice.

Over time, the axis shifted 125 miles or 200 kilometers — about half the distance from Dallas to Houston, or equal the distance from Washington D.C. to Philadelphia.

Neutrons can indicate the presence of water or ice
Polar wander explains why the moon appears to have lost much of its ice.

Siegler compares true polar wander to holding a glass filled with water. Most planets are like a steady hand holding a glass, their axis doesn’t shift and the water stays put. A planet whose mass is changing is like a wobbly hand, causing its axis to shift and the water to spill out. Similarly, as Earth’s moon changed its axis, much of its ice ceased to be hidden from the sun and was lost.

Co-author Richard Miller mapped the moon’s remaining ice by using data from NASA’s Lunar Prospector mission, which orbited the moon from 1998 to 1999. The presence of ice is inferred by measuring the energy of neutrons emitted from the lunar surface. Instruments on NASA’s satellite, including a neutron spectrometer, measured neutrons liberated from the moon by a rain of stellar particles scientists call cosmic rays. Low energy neutrons indicate the presence of hydrogen, the dominant molecule in water and ice.

“The maps show four key features,” said Siegler and his colleagues. “First, the largest quantity of hydrogen is offset from the current rotation axis of the moon by roughly 5.5 degrees. Second, the hydrogen enhancements are of similar magnitude at both poles. Third, the asymmetric enhancements do not correlate with expectations from the current thermal or permanently shadowed environment. And lastly, and most significantly, the spatial distributions of polar hydrogen appear to be nearly antipodal.”

Lunar ice is ancient time capsule; may hold answers to deep mysteries
Siegler’s discovery opens the door to further discoveries around an even deeper question — the mystery of why there is water on the moon and on Earth. Scientific theory surrounding the formation of the solar system postulates water could not have formed much closer to the sun than Jupiter, Siegel said.

“We don’t know where the Earth’s water came from. It appears to have come from the outer solar system well after the Earth and moon formed,” he said. “Ice on other bodies, like the moon or Mercury, might give us a clue to its origin.”

The fact lunar ice correlates so well with true polar wander implies that it predates this motion, Siegler said, making the ice very ancient.

“The ice may be a time capsule from the same source that supplied the original water to Earth,” he said. “This is a record we don’t have on Earth. Earth has reworked itself so many times, there’s nothing that old left here. Ancient ice from the moon could provide answers to this deep mystery.”

Other co-authors on the scientific paper include Matthieu Laneuville, David A. Paige, Isamu Matsuyama, David J. Lawrence, Arlin Crotts and Michael J. Poston. — Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Events Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Student researchers Videos

SMU Research Day 2016: Students present their research to the SMU and Dallas community

Day of presenting in Hughes-Trigg Student Center allows students to discuss their research, identify potential collaborators, discover other perspectives.

SMU graduate and undergraduate students presented their research to the SMU community at the University’s Research Day 2016 on Feb. 10.

Sponsored by the SMU Office of Research and Graduate Studies, the research spanned more than 20 different fields from schools across campus.

The annual Research Day event fosters communication between students in different disciplines, gives students the opportunity to present their work in a professional setting, and allows students to share with their peers and industry professionals from the greater Dallas community the outstanding research conducted at SMU.

A cash prize of $250 was awarded to the best poster from each department or judging group.

View the list of student winners whose research was awarded a cash prize.

View highlights of the presentations.

Some highlights of the research:

  • Faris Altamimi, a student of Dr. Sevinc Sengor in Lyle School‘s Civil and Environmental Engineering Department, presented a study investigating experimental and modeling approaches for enhanced methane generation from municipal solid waste, while providing science-based solutions for cleaner, renewable sources of energy for the future.
  • Yongqiang Li and Xiaogai Li, students of Dr. Xin-Lin Gao in Lyle School’s Mechanical Engineering Department, are addressing the serious blunt trauma injury that soldiers on the battlefield suffer from ballistics impact to their helmets. The study simulated the ballistic performance of the Advanced Combat Helmet.
  • Audrey Reeves, Sara Merrikhihaghi and Kevin Bruemmer, students of Dr. Alexander Lippert, in the Chemistry Department of Dedman College, presented research on cell-permeable fluorescent probes in the imaging of enzymatic pathways in living cells, specifically the gaseous signaling molecule nitroxyl. Their research better understands nitroxyl’s role as an inhibitor of an enzyme that is key in the conversion of acetaldehyde to acetic acid.
  • Rose Ashraf, a student of Dr. George Holden in the Psychology Department of Dedman College, presented her research on harsh verbal discipline in the home and its prediction of child compliance. It was found permissive parents are least likely to elicit prolonged compliance.
  • Nicole Vu and Caitlin Rancher, students of Dr. Ernest N. Jouriles and Dr. Renee McDonald in the Psychology Department of Dedman College, presented research on children’s threat appraisals of interparental conflict and it’s relationship to child anxiety.

See the full catalog of participants and their abstracts.

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Events Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Student researchers

SMU 2015 research efforts broadly noted in a variety of ways for world-changing impact

SMU scientists and their research have a global reach that is frequently noted, beyond peer publications and media mentions.

By Margaret Allen
SMU News & Communications

It was a good year for SMU faculty and student research efforts. Here is a small sampling of public and published acknowledgements during 2015:

Simmons, Diego Roman, SMU, education

Hot topic merits open access
Taylor & Francis, publisher of the online journal Environmental Education Research, lifted its subscription-only requirement to meet demand for an article on how climate change is taught to middle-schoolers in California.

Co-author of the research was Diego Román, assistant professor in the Department of Teaching and Learning, Annette Caldwell Simmons School of Education and Human Development.

Román’s research revealed that California textbooks are teaching sixth graders that climate change is a controversial debate stemming from differing opinions, rather than a scientific conclusion based on rigorous scientific evidence.

The article, “Textbooks of doubt: Using systemic functional analysis to explore the framing of climate change in middle-school science textbooks,” published in September. The finding generated such strong interest that Taylor & Francis opened access to the article.

bichaw_v054i049.indd

Research makes the cover of Biochemistry
Drugs important in the battle against cancer were tested in a virtual lab by SMU biology professors to see how they would behave in the human cell.

A computer-generated composite image of the simulation made the Dec. 15 cover of the journal Biochemistry.

Scientific articles about discoveries from the simulation were also published in the peer review journals Biochemistry and in Pharmacology Research & Perspectives.

The researchers tested the drugs by simulating their interaction in a computer-generated model of one of the cell’s key molecular pumps — the protein P-glycoprotein, or P-gp. Outcomes of interest were then tested in the Wise-Vogel wet lab.

The ongoing research is the work of biochemists John Wise, associate professor, and Pia Vogel, professor and director of the SMU Center for Drug Discovery, Design and Delivery in Dedman College. Assisting them were a team of SMU graduate and undergraduate students.

The researchers developed the model to overcome the problem of relying on traditional static images for the structure of P-gp. The simulation makes it possible for researchers to dock nearly any drug in the protein and see how it behaves, then test those of interest in an actual lab.

To date, the researchers have run millions of compounds through the pump and have discovered some that are promising for development into pharmaceutical drugs to battle cancer.

Click here to read more about the research.

SMU, Simpson Rowe, sexual assault, video

Strong interest in research on sexual victimization
Teen girls were less likely to report being sexually victimized after learning to assertively resist unwanted sexual overtures and after practicing resistance in a realistic virtual environment, according to three professors from the SMU Department of Psychology.

The finding was reported in Behavior Therapy. The article was one of the psychology journal’s most heavily shared and mentioned articles across social media, blogs and news outlets during 2015, the publisher announced.

The study was the work of Dedman College faculty Lorelei Simpson Rowe, associate professor and Psychology Department graduate program co-director; Ernest Jouriles, professor; and Renee McDonald, SMU associate dean for research and academic affairs.

The journal’s publisher, Elsevier, temporarily has lifted its subscription requirement on the article, “Reducing Sexual Victimization Among Adolescent Girls: A Randomized Controlled Pilot Trial of My Voice, My Choice,” and has opened it to free access for three months.

Click here to read more about the research.

Consumers assume bigger price equals better quality
Even when competing firms can credibly disclose the positive attributes of their products to buyers, they may not do so.

Instead, they find it more lucrative to “signal” quality through the prices they charge, typically working on the assumption that shoppers think a high price indicates high quality. The resulting high prices hurt buyers, and may create a case for mandatory disclosure of quality through public policy.

That was a finding of the research of Dedman College’s Santanu Roy, professor, Department of Economics. Roy’s article about the research was published in February in one of the blue-ribbon journals, and the oldest, in the field, The Economic Journal.

Published by the U.K.’s Royal Economic Society, The Economic Journal is one of the founding journals of modern economics. The journal issued a media briefing about the paper, “Competition, Disclosure and Signaling,” typically reserved for academic papers of broad public interest.

The Journal of Physical Chemistry A

Chemistry research group edits special issue
Chemistry professors Dieter Cremer and Elfi Kraka, who lead SMU’s Computational and Theoretical Chemistry Group, were guest editors of a special issue of the prestigious Journal of Physical Chemistry. The issue published in March.

The Computational and Theoretical research group, called CATCO for short, is a union of computational and theoretical chemistry scientists at SMU. Their focus is research in computational chemistry, educating and training graduate and undergraduate students, disseminating and explaining results of their research to the broader public, and programming computers for the calculation of molecules and molecular aggregates.

The special issue of Physical Chemistry included 40 contributions from participants of a four-day conference in Dallas in March 2014 that was hosted by CATCO. The 25th Austin Symposium drew 108 participants from 22 different countries who, combined, presented eight plenary talks, 60 lectures and about 40 posters.

CATCO presented its research with contributions from Cremer and Kraka, as well as Marek Freindorf, research assistant professor; Wenli Zou, visiting professor; Robert Kalescky, post-doctoral fellow; and graduate students Alan Humason, Thomas Sexton, Dani Setlawan and Vytor Oliveira.

There have been more than 75 graduate students and research associates working in the CATCO group, which originally was formed at the University of Cologne, Germany, before moving to SMU in 2009.

519ca82d-6517-4df9-b5ac-26e5458882ef

Vertebrate paleontology recognized with proclamation
Dallas Mayor Mike Rawlings proclaimed Oct. 11-17, 2015 Vertebrate Paleontology week in Dallas on behalf of the Dallas City Council.

The proclamation honored the 75th Annual Meeting of the Society of Vertebrate Paleontology, which was jointly hosted by SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College and the Perot Museum of Science and Nature. The conference drew to Dallas some 1,200 scientists from around the world.

Making research presentations or presenting research posters were: faculty members Bonnie Jacobs, Louis Jacobs, Michael Polcyn, Neil Tabor and Dale Winkler; adjunct research assistant professor Alisa Winkler; research staff member Kurt Ferguson; post-doctoral researchers T. Scott Myers and Lauren Michael; and graduate students Matthew Clemens, John Graf, Gary Johnson and Kate Andrzejewski.

The host committee co-chairs were Anthony Fiorillo, adjunct research professor; and Louis Jacobs, professor. Committee members included Polcyn; Christopher Strganac, graduate student; Diana Vineyard, research associate; and research professor Dale Winkler.

KERA radio reporter Kat Chow filed a report from the conference, explaining to listeners the science of vertebrate paleontology, which exposes the past, present and future of life on earth by studying fossils of animals that had backbones.

SMU earthquake scientists rock scientific journal

Modelled pressure changes caused by injection and production. (Nature Communications/SMU)
Modelled pressure changes caused by injection and production. (Nature Communications/SMU)

Findings by the SMU earthquake team reverberated across the nation with publication of their scientific article in the prestigious British interdisciplinary journal Nature, ranked as one of the world’s most cited scientific journals.

The article reported that the SMU-led seismology team found that high volumes of wastewater injection combined with saltwater extraction from natural gas wells is the most likely cause of unusually frequent earthquakes occurring in the Dallas-Fort Worth area near the small community of Azle.

The research was the work of Dedman College faculty Matthew Hornbach, associate professor of geophysics; Heather DeShon, associate professor of geophysics; Brian Stump, SMU Albritton Chair in Earth Sciences; Chris Hayward, research staff and director geophysics research program; and Beatrice Magnani, associate professor of geophysics.

The article, “Causal factors for seismicity near Azle, Texas,” published online in late April. Already the article has been downloaded nearly 6,000 times, and heavily shared on both social and conventional media. The article has achieved a ranking of 270, which puts it in the 99th percentile of 144,972 tracked articles of a similar age in all journals, and 98th percentile of 626 tracked articles of a similar age in Nature.

It has a very high impact factor for an article of its age,” said Robert Gregory, professor and chair, SMU Earth Sciences Department.

The scientific article also was entered into the record for public hearings both at the Texas Railroad Commission and the Texas House Subcommittee on Seismic Activity.

Researchers settle long-debated heritage question of “The Ancient One”

The skull of Kennewick Man and a sculpted bust by StudioEIS based on forensic facial reconstruction by sculptor Amanda Danning. (Credit: Brittany Tatchell)
The skull of Kennewick Man and a sculpted bust by StudioEIS based on forensic facial reconstruction by sculptor Amanda Danning. (Credit: Brittany Tatchell)

The research of Dedman College anthropologist and Henderson-Morrison Professor of Prehistory David Meltzer played a role in settling the long-debated and highly controversial heritage of “Kennewick Man.”

Also known as “The Ancient One,” the 8,400-year-old male skeleton discovered in Washington state has been the subject of debate for nearly two decades. Argument over his ancestry has gained him notoriety in high-profile newspaper and magazine articles, as well as making him the subject of intense scholarly study.

Officially the jurisdiction of the U.S. Army Corps of Engineers, Kennewick Man was discovered in 1996 and radiocarbon dated to 8500 years ago.

Because of his cranial shape and size he was declared not Native American but instead ‘Caucasoid,’ implying a very different population had once been in the Americas, one that was unrelated to contemporary Native Americans.

But Native Americans long have claimed Kennewick Man as theirs and had asked for repatriation of his remains for burial according to their customs.

Meltzer, collaborating with his geneticist colleague Eske Willerslev and his team at the Centre for GeoGenetics at the University of Copenhagen, in June reported the results of their analysis of the DNA of Kennewick in the prestigious British journal Nature in the scientific paper “The ancestry and affiliations of Kennewick Man.”

The results were announced at a news conference, settling the question based on first-ever DNA evidence: Kennewick Man is Native American.

The announcement garnered national and international media attention, and propelled a new push to return the skeleton to a coalition of Columbia Basin tribes. Sen. Patty Murray (D-WA) introduced the Bring the Ancient One Home Act of 2015 and Washington Gov. Jay Inslee has offered state assistance for returning the remains to Native Tribes.

Science named the Kennewick work one of its nine runners-up in the highly esteemed magazine’s annual “Breakthrough of the Year” competition.

The research article has been viewed more than 60,000 times. It has achieved a ranking of 665, which puts it in the 99th percentile of 169,466 tracked articles of a similar age in all journals, and in the 94th percentile of 958 tracked articles of a similar age in Nature.

In “Kennewick Man: coming to closure,” an article in the December issue of Antiquity, a journal of Cambridge University Press, Meltzer noted that the DNA merely confirmed what the tribes had known all along: “We are him, he is us,” said one tribal spokesman. Meltzer concludes: “We presented the DNA evidence. The tribal members gave it meaning.”

Click here to read more about the research.

Prehistoric vacuum cleaner captures singular award

Paleontologists Louis L. Jacobs, SMU, and Anthony Fiorillo, Perot Museum, have identified a new species of marine mammal from bones recovered from Unalaska, an Aleutian island in the North Pacific. (Hillsman Jackson, SMU)
Paleontologists Louis L. Jacobs, SMU, and Anthony Fiorillo, Perot Museum, have identified a new species of marine mammal from bones recovered from Unalaska, an Aleutian island in the North Pacific. (Hillsman Jackson, SMU)

Science writer Laura Geggel with Live Science named a new species of extinct marine mammal identified by two SMU paleontologists among “The 10 Strangest Animal Discoveries of 2015.”

The new species, dubbed a prehistoric hoover by London’s Daily Mail online news site, was identified by SMU paleontologist Louis L. Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences, Dedman College of Humanities and Sciences, and paleontologist and SMU adjunct research professor Anthony Fiorillo, vice president of research and collections and chief curator at the Perot Museum of Nature and Science.

Jacobs and Fiorillo co-authored a study about the identification of new fossils from the oddball creature Desmostylia, discovered in the same waters where the popular “Deadliest Catch” TV show is filmed. The hippo-like creature ate like a vacuum cleaner and is a new genus and species of the only order of marine mammals ever to go extinct — surviving a mere 23 million years.

Desmostylians, every single species combined, lived in an interval between 33 million and 10 million years ago. Their strange columnar teeth and odd style of eating don’t occur in any other animal, Jacobs said.

SMU campus hosted the world’s premier physicists

The SMU Department of Physics hosted the “23rd International Workshop on Deep Inelastic Scattering and Related Subjects” from April 27-May 1, 2015. Deep Inelastic Scattering is the process of probing the quantum particles that make up our universe.

As noted by the CERN Courier — the news magazine of the CERN Laboratory in Geneva, which hosts the Large Hadron Collider, the world’s largest science experiment — more than 250 scientists from 30 countries presented more than 200 talks on a multitude of subjects relevant to experimental and theoretical research. SMU physicists presented at the conference.

The SMU organizing committee was led by Fred Olness, professor and chair of the SMU Department of Physics in Dedman College, who also gave opening and closing remarks at the conference. The committee consisted of other SMU faculty, including Jodi Cooley, associate professor; Simon Dalley, senior lecturer; Robert Kehoe, professor; Pavel Nadolsky, associate professor, who also presented progress on experiments at CERN’s Large Hadron Collider; Randy Scalise, senior lecturer; and Stephen Sekula, associate professor.

Sekula also organized a series of short talks for the public about physics and the big questions that face us as we try to understand our universe.

Click here to read more about the research.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Science Insider: Does North Korea really have an H-bomb?

Science Insider, the online news site for the American Association for the Advancement of Science, quoted SMU seismologist Brian Stump, saying seismic data confirms that an earthquake in North Korea was triggered by an explosion there Jan. 5.

Richard Stone, who covers international news for Science, quoted Stump in a Jan. 6 article, “Does North Korea really have an H-bomb?

Stump’s work in detecting ground motion from explosions has for more than 20 years proved invaluable to the United States government in ensuring that the world’s nuclear powers abide by their agreements related to underground nuclear testing. He served as scientific adviser to the U.S. delegation to the Conference on Disarmament from 1994 through 1996 and continues to be called upon frequently to assist the U.S. government in the interpretation of seismic and acoustic data.

In 2014 he was named an American Association for the Advancement of Science (AAAS) Fellow for distinguished contributions to his field, particularly in the area of seismic monitoring in support of the Comprehensive Nuclear-Test-Ban Treaty.

AAAS is the world’s largest general scientific society and publisher of the journal Science. Stump is Albritton Chair of Geological Sciences in the Roy M. Huffington Department of Earth Sciences in SMU’s Dedman College.

Read the full story.

EXCERPT:

By Richard Stone
Science Insider

North Korea claims to have detonated its first hydrogen bomb yesterday. But experts are skeptical that the pariah state detonated—not an ordinary atomic device—but a much more powerful “H-bomb of justice,” as state media is now calling it. So what kind of device did the reclusive regime test? And how can nuclear jockeys make such a determination from afar?

There’s no doubt that North Korea detonated something near where it conducted nuclear tests in 2006, 2009, and 2013. Seismic stations yesterday recorded a magnitude-5.1 earthquake with a waveform nearly identical to those registered after North Korea’s earlier tests, supporting its claim. The waveform confirms that an explosion triggered yesterday’s earthquake, says Brian Stump, a seismologist at Southern Methodist University in Dallas, Texas. “It could be a chemical or nuclear explosion, but because of the magnitude it is likely a nuclear explosion,” he says. Researchers are now “chewing through the waveforms” registered by seismometers in the region “to see what’s different from 2013,” says Andy Frassetto, a seismologist with the Incorporated Research Institutions for Seismology consortium in Washington, D.C.

The estimated magnitude of yesterday’s detonation, 7 to 10 kilotons, equates to a small fission bomb. Compared to standard H-bombs, which get most of their ferocity from fusing hydrogen, that’s downright puny. The most powerful H-bomb ever tested had a yield of 50 megatons, around 2000 times more powerful than the 21-kiloton bomb dropped on Nagasaki at the end of World War II.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Dallas Morning News: Mounting evidence suggests Dallas quakes are induced by human activity

Evidence that human activity is behind the Dallas quakes includes a new analysis showing that the faults beneath Dallas and Fort Worth had been dormant for hundreds of millions of years until 2008.

SMU seismologists presented new earthquake findings at the American Geophysical Union annual meeting. (Credit: DMN)
SMU seismologists presented new earthquake findings at the American Geophysical Union annual meeting. (Credit: DMN)

Science journalist Anna Kuchment with The Dallas Morning News covered the comments of SMU seismologists Heather DeShon and Beatrice Magnani speaking during the annual American Geophysical Union meeting in San Francisco, Calif. DeShon and Magnani presented their latest research on North Texas ground shaking.

The SMU seismology team, which includes DeShon and Magnani, published new evidence of human involvement in earthquakes in Nature Communications in April 2015. Their data showed that large volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes near Azle, Texas, from late 2013 through spring 2014.

The Dallas Morning News article published Dec. 16, 2015.

Read the full story.

EXCERPT:

By Anna Kuchment
The Dallas Morning News

Scientists presented new evidence this week suggesting that all five North Texas earthquake sequences, including those in Dallas, have been triggered by humans.

Until now, researchers have not commented on the cause of the Dallas-Irving quakes or the 4-magnitude quake that struck Venus, 30 miles south of Dallas, in May.

While scientists believe that high-volume injection wells may have triggered the quakes in Venus, they have not yet worked out a specific mechanism behind the Dallas and Irving quakes.

“We don’t think they’re natural,” SMU seismologist Heather DeShon told The Dallas Morning News. “But we don’t understand the subsurface physics surrounding the Irving earthquake sequence, so we’re still considering all causes.”

DeShon’s comments came during the annual American Geophysical Union meeting in San Francisco, where she and her colleagues presented their latest research on North Texas ground shaking. The research has not yet been independently vetted and published.

“Any discussion of causation for the Dallas-area quakes is premature, and more speculative than scientific,” said Steve Everley, a senior advisor for Energy In Depth, a program of the Independent Petroleum Association of America. “But the SMU team has helped advance our understanding of the conditions that can ultimately lead to induced seismicity, so we’re eager to see what they will publish about the seismic events near Dallas.”

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Energy & Matter

Top Quark: Precise particle measurement improves subatomic tool probing mysteries of universe

In post-Big Bang world, nature’s top quark — a key component of matter — is a highly sensitive probe that physicists use to evaluate competing theories about quantum interactions

Physicists at Southern Methodist University, Dallas, have achieved a new precise measurement of a key subatomic particle, opening the door to better understanding some of the deepest mysteries of our universe.

The researchers calculated the new measurement for a critical characteristic — mass — of the top quark.

Quarks make up the protons and neutrons that comprise almost all visible matter. Physicists have known the top quark’s mass was large, but encountered great difficulty trying to clearly determine it.

The newly calculated measurement of the top quark will help guide physicists in formulating new theories, said Robert Kehoe, a professor in SMU’s Department of Physics. Kehoe leads the SMU group that performed the measurement.

Top quark’s mass matters ultimately because the particle is a highly sensitive probe and key tool to evaluate competing theories about the nature of matter and the fate of the universe.

Physicists for two decades have worked to improve measurement of the top quark’s mass and narrow its value.

“Top” bears on newest fundamental particle, the Higgs boson
The new value from SMU confirms the validity of recent measurements by other physicists, said Kehoe.

But it also adds growing uncertainty about aspects of physics’ Standard Model.

The Standard Model is the collection of theories physicists have derived — and continually revise — to explain the universe and how the tiniest building blocks of our universe interact with one another. Problems with the Standard Model remain to be solved. For example, gravity has not yet been successfully integrated into the framework.

The Standard Model holds that the top quark — known familiarly as “top” — is central in two of the four fundamental forces in our universe — the electroweak force, by which particles gain mass, and the strong force, which governs how quarks interact. The electroweak force governs common phenomena like light, electricity and magnetism. The strong force governs atomic nuclei and their structure, in addition to the particles that quarks comprise, like protons and neutrons in the nucleus.

The top plays a role with the newest fundamental particle in physics, the Higgs boson, in seeing if the electroweak theory holds water.

Some scientists think the top quark may be special because its mass can verify or jeopardize the electroweak theory. If jeopardized, that opens the door to what physicists refer to as “new physics” — theories about particles and our universe that go beyond the Standard Model.

Other scientists theorize the top quark might also be key to the unification of the electromagnetic and weak interactions of protons, neutrons and quarks.

In addition, as the only quark that can be observed directly, the top quark tests the Standard Model’s strong force theory.

“So the top quark is really pushing both theories,” Kehoe said. “The top mass is particularly interesting because its measurement is getting to the point now where we are pushing even beyond the level that the theorists understand.”

He added, “Our experimental errors, or uncertainties, are so small, that it really forces theorists to try hard to understand the impact of the quark’s mass. We need to observe the Higgs interacting with the top directly and we need to measure both particles more precisely.”

The new measurement results were presented in August and September at the Third Annual Conference on Large Hadron Collider Physics, St. Petersburg, Russia, and at the 8th International Workshop on Top Quark Physics, Ischia, Italy.

“The public perception, with discovery of the Higgs, is ‘Ok, it’s done,’” Kehoe said. “But it’s not done. This is really just the beginning and the top quark is a key tool for figuring out the missing pieces of the puzzle.”

The results were made public by DZero, a collaborative experiment of more than 500 physicists from around the world. The measurement is described in “Precise measurement of the top quark mass in dilepton decays with optimized neutrino weighting” and is available online at arxiv.org/abs/1508.03322.

SMU measurement achieves surprising level of precision
To narrow the top quark measurement, SMU doctoral researcher Huanzhao Liu took a standard methodology for measuring the top quark and improved the accuracy of some parameters. He also improved calibration of an analysis of top quark data.

“Liu achieved a surprising level of precision,” Kehoe said. “And his new method for optimizing analysis is also applicable to analyses of other particle data besides the top quark, making the methodology useful within the field of particle physics as a whole.”

The SMU optimization could be used to more precisely understand the Higgs boson, which explains why matter has mass, said Liu.

The Higgs was observed for the first time in 2012, and physicists keenly want to understand its nature.

“This methodology has its advantages — including understanding Higgs interactions with other particles — and we hope that others use it,” said Liu. “With it we achieved 20-percent improvement in the measurement. Here’s how I think of it myself — everybody likes a $199 iPhone with contract. If someday Apple tells us they will reduce the price by 20 percent, how would we all feel to get the lower price?”

Another optimization employed by Liu improved the calibration precision by four times, Kehoe said.

Shower of Top quarks post Big Bang
Top quarks, which rarely occur now, were much more common right after the Big Bang 13.8 billion years ago. However, top is the only quark, of six different kinds, that can be observed directly. For that reason, experimental physicists focus on the characteristics of top quarks to better understand the quarks in everyday matter.

To study the top, physicists generate them in particle accelerators, such as the Tevatron, a powerful U.S. Department of Energy particle accelerator operated by Fermi National Laboratory in Illinois, or the Large Hadron Collider in Switzerland, a project of the European Organization for Nuclear Research, CERN.

SMU’s measurement draws on top quark data gathered by DZero that was produced from proton-antiproton collisions at the Tevatron, which Fermilab shut down in 2011.

The new measurement is the most precise of its kind from the Tevatron, and is competitive with comparable measurements from the Large Hadron Collider.

Critical question: Universe isn’t necessarily stable at all energies
“The ability to measure the top quark mass precisely is fortuitous because it, together with the Higgs boson mass, tells us whether the universe is stable or not,” Kehoe said. “That has emerged as one of today’s most important questions.”

A stable universe is one in a low energy state where particles and forces interact and behave according to theoretical predictions forever. That’s in contrast to metastable, or unstable, meaning a higher energy state in which things eventually change, or change suddenly and unpredictably, and that could result in the universe collapsing. The Higgs and top quark are the two most important parameters for determining an answer to that question, Kehoe said.

Recent measurements of the Higgs and top quark indicate they describe a universe that is not necessarily stable at all energies.

“We want a theory — Standard Model or otherwise — that can predict physical processes at all energies,” Kehoe said. “But the measurements now are such that it looks like we may be over the border of a stable universe. We’re metastable, meaning there’s a gray area, that it’s stable in some energies, but not in others.”

Are we facing imminent doom? Will the universe collapse?
That disparity between theory and observation indicates the Standard Model theory has been outpaced by new measurements of the Higgs and top quark.

“It’s going to take some work for theorists to explain this,” Kehoe said, adding it’s a challenge physicists relish, as evidenced by their preoccupation with “new physics” and the possibilities the Higgs and Top quark create.

“I attended two conferences recently,” Kehoe said, “and there’s argument about exactly what it means, so that could be interesting.”

So are we in trouble?

“Not immediately,” Kehoe said. “The energies at which metastability would kick in are so high that particle interactions in our universe almost never reach that level. In any case, a metastable universe would likely not change for many billions of years.”

Top quark — a window into other quarks
As the only quark that can be observed, the top quark pops in and out of existence fleetingly in protons, making it possible for physicists to test and define its properties directly.

“To me it’s like fireworks,” Liu said. “They shoot into the sky and explode into smaller pieces, and those smaller pieces continue exploding. That sort of describes how the top quark decays into other particles.”

By measuring the particles to which the top quark decays, scientists capture a measure of the top quark, Liu explained

But study of the top is still an exotic field, Kehoe said. “For years top quarks were treated as a construct and not a real thing. Now they are real and still fairly new — and it’s really important we understand their properties fully.” — Margaret Allen

Categories
Earth & Climate Energy & Matter Videos

Fermilab experiment observes change in neutrinos from one type to another over 500 miles

Scientists have sorted through millions of cosmic ray strikes and zeroed in on neutrino interactions in their quest to learn more about the abundant yet mysterious particles that flit through ordinary matter as though it isn’t there.

Initial data from a new U.S.–based physics experiment indicates scientists are a step closer to understanding neutrinos, the second most abundant particle in the universe.

Neutrinos are little understood, but indications are they hold clues to why matter overwhelmingly survived after the Big Bang instead of just energy in the form of light.

The first data from NOvA, the experiment in northern Minnesota, indicates that NOvA’s massive particle detector — designed to observe and measure the behavior of neutrinos — is functioning as planned.

“In the 18 or so months the experiment has been up and running we’ve analyzed about 8 percent of the data we anticipate collecting over the life of the experiment,” said physicist Thomas Coan, Southern Methodist University, Dallas.

Coan, a professor in SMU’s Department of Physics, is a principal investigator on NOvA, a collaboration of the U.S. Department of Energy’s Fermi National Laboratory. “So we’re really just at the beginning. But it’s a great start, and it’s gratifying that the beginning has begun so well.”

More than 200 scientists from the U.S. and six other countries make up the collaboration.

Specifically, they predict that the experiment’s data will tell them the relative weight of the three different types or “flavors” of neutrinos, as well as reveal whether neutrinos and antineutrinos interact in the same way.

Answers to those questions will add information to theories of matter’s existence and why it wasn’t annihilated during the Big Bang, Coan said.

The completed NOvA far detector in Ash River, Minnesota, stands 50 feet tall, 50 feet wide and 200 feet long. The pivoting machine that was used to move each block of the detector into place now serves as the capstone on the end of the completed structure. Photo: Fermilab
The completed NOvA far detector in Ash River, Minnesota, stands 50 feet tall, 50 feet wide and 200 feet long. The pivoting machine that was used to move each block of the detector into place now serves as the capstone on the end of the completed structure. Photo: Fermilab

“If we want to understand the universe on a large scale, we have to understand how neutrinos behave,” he said. “Experimental observations from NOvA will be an important input into the overarching theory.”

Neutrinos flit through ordinary matter almost as if it weren’t there, so it takes a massive detector to capture evidence of their behavior. Coan likens NOvA to a gigantic pixel camera with its honeycomb array of thousands of plastic tubes encasing highly purified mineral oil.

Neutrinos are not observed directly, so scientists only see the tracks of their rare interactions with atoms. An accelerator at Fermilab in Illinois shoots a neutrino beam, observed first by a near detector there, then by a far detector some 500 miles away in Minnesota.

The far detector, or “pixel camera,” is 50 feet tall by 50 feet wide and 200 feet long.

Oscillating neutrinos change from one “type” to another: electron, muon or tau
As the neutrinos travel they change from one type or “flavor” to another. That “oscillation” confirms the NOvA detector is functioning as designed.

The first NOvA results were released this week at the American Physical Society’s Division of Particles and Fields conference in Ann Arbor, Mich.

[/fusion_builder_column][fusion_builder_column type=”1_1″ background_position=”left top” background_color=”” border_size=”” border_color=”” border_style=”solid” spacing=”yes” background_image=”” background_repeat=”no-repeat” padding=”” margin_top=”0px” margin_bottom=”0px” class=”” id=”” animation_type=”” animation_speed=”0.3″ animation_direction=”left” hide_on_mobile=”no” center_content=”no” min_height=”none”]

A graphic representation of one of the first neutrino interactions captured at the NOvA far detector in northern Minnesota. The dotted red line represents the neutrino beam, generated at Fermilab in Illinois and sent through 500 miles of earth to the far detector. The image on the left is a simplified 3-D view of the detector, the top right view shows the interaction from the top of the detector, and the bottom right view shows the interaction from the side of the detector. Illustration: Fermilab
A graphic representation of one of the first neutrino interactions captured at the NOvA far detector in northern Minnesota. The dotted red line represents the neutrino beam, generated at Fermilab in Illinois and sent through 500 miles of earth to the far detector. The image on the left is a simplified 3-D view of the detector, the top right view shows the interaction from the top of the detector, and the bottom right view shows the interaction from the side of the detector. Illustration: Fermilab

The results were culled by scientists who sorted through millions of cosmic ray strikes to zero-in on neutrino interactions.

“People are ecstatic to see our first observation of neutrino oscillations,” said NOvA co-spokesperson Peter Shanahan, Fermilab. “For all the people who worked over the course of a decade on the designing, building, commissioning, and operating this experiment, it’s beyond gratifying.”

Researchers have collected data aggressively since February 2014, recording neutrino interactions in the 14,000-ton far detector in Ash River, Minnesota, while construction was still underway. This allowed the collaboration to gather data while testing systems before starting operations with the complete detector in November 2014, shortly after the experiment was completed on time and under budget. NOvA construction and operations are supported by the DOE’s Office of Science.

The neutrino beam generated at Fermilab passes through the underground near detector, which measures the beam’s neutrino composition before it leaves the Fermilab site.

The particles then travel more than 500 miles straight through the earth, changing types along the way. About once per second, Fermilab’s accelerator sends trillions of neutrinos to Minnesota, but the elusive neutrinos interact so rarely that only a few will register at the far detector.

Neutrino-atom interaction releases a signature trail of particles and light
The beam fires neutrinos every 1.5 seconds, but only for 10 microseconds, Coan said. Including downtime for maintenance, neutrinos are produced two minutes total over the course of a year.

“We could make the detector out of iron or granite to get more target atoms and have more interactions, but we’d never be able to observe the interactions in iron and granite,” Coan said. “So the detector has to be transparent somehow, a sort of camera. Those two goals are somewhat contradictory. So it takes some cleverness to figure out how to have a massive detector and still see events in it.”

When a neutrino bumps into an atom in the NOvA detector, it releases a signature trail of particles and light depending on which type it is: an electron, muon or tau neutrino. The beam originating at Fermilab is made almost entirely of one type – muon neutrinos – and scientists can measure how many of those muon neutrinos disappear over their journey and reappear as electron neutrinos.

If oscillations had not occurred, experimenters predicted they would see 201 muon neutrinos arrive at the NOvA far detector in the data collected; instead, they saw a mere 33, proof that the muon neutrinos were disappearing as they transformed into the two other flavors

Similarly, if oscillations had not occurred scientists expected to see only one electron neutrino appearance, due to background interactions, but the collaboration saw six such events, which is evidence that some of the missing muon neutrinos had turned into electron neutrinos.

NOvA observations are nearly equivalent results to those at world’s other neutrino experiments
Similar long-distance experiments such as T2K in Japan and MINOS at Fermilab have seen these muon neutrino-to-electron neutrino oscillations before. NOvA, which will take data for at least six years, is seeing nearly equivalent results in a shorter time frame, something that bodes well for the experiment’s ambitious goal of measuring neutrino properties that have eluded other experiments so far.

“One of the reasons we’ve made such excellent progress is because of the impressive Fermilab neutrino beam and accelerator team,” said NOvA co-spokesperson Mark Messier of Indiana University. “Having a beam of that power running so efficiently gives us a real competitive edge and allows us to gather data quickly.”

Fermilab’s flagship accelerator recently set a high-energy neutrino beam world record when it reached 521 kilowatts, and the laboratory is working on improving the neutrino beam even further for projects such as NOvA and the upcoming Deep Underground Neutrino Experiment. Researchers expect to reach 700 kilowatts early next calendar year, accumulating a slew of neutrino interactions and tripling the amount of data recorded by year’s end.

Most abundant massive particle in the universe is still poorly understood
Neutrinos are the most abundant massive particle in the universe, but are still poorly understood. While researchers know that neutrinos come in three types, they don’t know which is the heaviest and which is the lightest. Figuring out this ordering — one of the goals of the NOvA experiment — would be a great litmus test for theories about how the neutrino gets its mass.

While the famed Higgs boson helps explain how some particles obtain their masses, scientists don’t know yet how the Higgs is connected to neutrinos, if at all.

The measurement of the neutrino mass hierarchy is also crucial information for neutrino experiments trying to see if the neutrino is its own antiparticle.

Like T2K, NOvA can also run in antineutrino mode, opening a window to see whether neutrinos and antineutrinos are fundamentally different. An asymmetry early in the universe’s history could have tipped the cosmic balance in favor of matter, making the world we see today possible. Soon, scientists will be able to combine the neutrino results obtained by T2K, MINOS and NOvA, yielding more precise answers about scientists’ most pressing neutrino questions.

“The rapid success of the NOvA team demonstrates a commitment and talent for taking on complex projects to answer the biggest questions in particle physics,” said Fermilab Director Nigel Lockyer. “We’re glad that the detectors are functioning beautifully and providing quality data that will expand our understanding of the subatomic realm.”

The NOvA collaboration comprises 210 scientists and engineers from 39 institutions in the United States, Brazil, the Czech Republic, Greece, India, Russia and the United Kingdom. — Fermi National Laboratory, SMU

NOvA stands for NuMI Off-Axis Electron Neutrino Appearance. NuMI is itself an acronym, standing for Neutrinos from the Main Injector, Fermilab’s flagship accelerator. The Fermilab Accelerator Complex is an Office of Science User Facility.

For more information, visit the NOvA web site.
Watch live particle events recorded by the NOvA experiment.
Learn how the NOvA detector sees neutrinos.
Follow the experiment on Facebook and Twitter, @novaexperiment.

Follow SMUResearch.com on Twitter, @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Ill., and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at www.fnal.gov, and follow Fermilab on Twitter at @Fermilab.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Fossils & Ruins Learning & Education Researcher news

SMU conference promotes technology, economics of geothermal production in oil and gas fields

“Power Plays” workshop, in Dallas May 19-20, is SMU Geothermal Laboratory’s seventh international energy conference and workshop

Southern Methodist University’s renowned SMU Geothermal Laboratory will host its seventh international energy conference and workshop on the SMU campus May 19-20. The conference is designed to promote transition of oil and gas fields to electricity-producing geothermal systems by harnessing waste heat and fluids from both active and abandoned fields.

More than 200 professionals – ranging from members of the oil and gas service industry, reservoir engineers, to geothermal energy entrepreneurs, to lawyers – are expected to attend “SMU Power Plays: Geothermal Energy in Oil and Gas Fields” Topics of discussion will include:

  • Power generation from flare gas
  • Power generation from waste-heat and geothermal fluids
  • Research updates on induced seismicity, as well as onshore and offshore thermal maturation
  • Play Fairway Analysis – a subsurface mapping technique used to identify prospective geothermal resources
  • Technology updates
  • Researchers from SMU’s Roy M. Huffington Department of Earth Sciences will present results from their Fall 2014 Eastern North American Margin Community Seismic Experiment (ENAM CSE) research. In addition, equipment such as one-well systems, desalination and other new technologies will be explored. SMU geothermal conference remains open and walk-up attendees will be accommodated.

    SMU has been at the forefront of geothermal energy research for more than 45 years, and the Geothermal Laboratory’s mapping of North American geothermal resources is considered the baseline for U.S. geothermal energy exploration. Geothermal Laboratory Coordinator Maria Richards and Emeritus Professor David Blackwell have seen interest in geothermal energy wax and wane with the price of oil and natural gas.

    But Richards believes current low oil prices will drive more interest in geothermal development, encouraging oil and gas producers to use geothermal production from existing oil and gas fields as they try to keep them cost-effective for petroleum production at 2015 prices.

    The technology that will be examined at the conference is relatively straight-forward: Sedimentary basins drilled for oil and gas production leave behind reservoir pathways that can later be used for heat extraction. Fluids moving through those hot reservoir pathways capture heat, which at the surface can be turned into electricity, or used downhole to replace pumping needs. In addition, the existing surface equipment used in active oil and gas fields generates heat, which also can be tapped to produce electricity and mitigate the cost of production.

    “Oil and gas drilling rig counts are down,” Richards said. “The industry has tightened its work force and honed its expertise. The opportunity to produce a new revenue stream during an economically challenging period, through the addition of relatively simple technology at the wellhead, may be the best chance we’ve had in years to gain operators’ attention.”

    Featured speakers include Jim Wicklund, managing director for equity research at Credit Suisse, who will speak on “Volatile Economics in the Oil Field,” and Holly Thomas and Tim Reinhardt from the U.S. Department of Energy’s Geothermal Technologies Office. STW Water Process & Technology, a water reclamation and oilfield services company, will have desalination equipment on-site for attendees to understand size and scaling capacity of water purification for oil field operators.

    Information and registration is available at www.smu.edu/geothermal. — Kimberly Cobb

    Follow SMUResearch.com on twitter at @smuresearch.

    SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

    SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

    Categories
    Culture, Society & Family Earth & Climate Energy & Matter Researcher news

    SMU seismology team to cooperate with state, federal scientists in study of May 7 Venus, Texas earthquake

    Scientists had been observing smaller quakes in area; SMU seismology team has developed expertise to deploy instruments, analyze and sharedata

    hl1-irving-earthquake-e1430691958311

    SMU’s seismology team was not surprised by the magnitude 4.0 earthquake that occurred near Venus, Texas, Thursday evening, having been aware of multiple smaller earthquakes identified by the United States Geological Survey (USGS) in the area in recent months. They are recommending a regional monitoring network.

    “We emphasized to the House Committee on Energy Resources the need for a permanent regional network, supplemented by portable instruments, that we can deploy in a time-sensitive manner when earthquakes occur,” said Matthew Hornbach, SMU associate professor of geophysics.

    “The seismology team at SMU has developed the expertise to deploy these instruments, analyze and share that data,” said Brian Stump, SMU Albritton Chair of Geological Sciences. “We are committed to cooperate, as resources allow, with both state and federal agencies in addressing these issues,” Stump said.

    Currently SMU has 26 seismic instruments deployed in North Texas, split between an area near Azle, Texas, SMU, earthquakes, seismology that experienced a series of earthquakes from late 2013 through spring 2014, and along a fault straddling the Irving-Dallas, Texas, earthquakes, SMU, seismology line where earthquakes have been occurring near the site of the old Texas Stadium.

    “We are in the process of determining what resources might be available so that we can respond to the largest earthquake now felt in North Texas,” said Heather DeShon, SMU associate professor of geophysics. Previous SMU deployments have relied heavily on loaned monitoring equipment from the USGS and the academic consortium known as IRIS – Incorporated Research Institutions for Seismology. “We are still in the process of determining how many instruments might be available for this purpose in light of ongoing earthquake activity around the world, such as the recent earthquake in Nepal,” DeShon said.

    The magnitude 4.0 earthquake (M4) recorded by the USGS in Venus at 5:58 p.m. Thursday is part of a series of smaller earthquakes the SMU team has been following in the Midlothian area. The National Earthquake Information Center (NEIC) has reported seven earthquakes within 10 kilometers of the USGS location for the May 7 Venus earthquake, with three of them (including the most recent) occurring at or above magnitude 3. There have been 23 earthquakes recorded within 20 kilometers of the Venus location, since 2009, with five of them registering higher than an M3.

    SMU first started studying earthquakes in Johnson County for a series of earthquakes occurring in Cleburne in 2009, culminating in the peer reviewed “Analysis of the Cleburne, Texas, Earthquake Sequence from June 2009 to June 2010 (doi: 10.1785/0120120336 Bulletin of the Seismological Society of America October 2013). The SMU team also is watching with interest an additional area of seismicity (based on USGS locations) near Mineral Wells.

    “I don’t think any of us was surprised by Thursday’s event,” DeShon said. “There have been a series of magnitude 3 and greater earthquakes in the Johnson County area. If you have movement on a fault and change the stresses, you increase the likelihood of additional earthquakes. In other words, one earthquake frequently leads to another.”

    The SMU team noted that the USGS web site for the event contains an analysis of the data that estimates fault motion striking from the northeast to the southwest – consistent with other earthquake sequences SMU has studied in North Texas.

    “This illustrates that we all need to think about the possibility of larger earthquakes in the region where we live,” Stump said. — Kimberly Cobb

    Categories
    Earth & Climate Energy & Matter Fossils & Ruins Researcher news

    James Brooks awarded high honor from American Association of Petroleum Geologists

    Huffington Department of Earth Sciences Professor Emeritus Brooks receives the AAPG’s Presidential Award for Exemplary Service

    James Brooks, vice chair of the board of trustees for the Institute for the Study of Earth and Man.
    James Brooks, vice chair of the board of trustees for the Institute for the Study of Earth and Man.

    James E. Brooks, provost emeritus and professor emeritus in the Roy M. Huffington Department of Earth Sciences at SMU, has been recognized with one of the highest honors of the American Association of Petroleum Geologists, AAPG.

    Brooks has received the 2015 AAPG Presidential Award for Exemplary Service.

    AAPG President Randi Martinsen bestowed the honor upon Brooks “for a lifetime of inspired and dedicated service to his profession and community, and for the education of hundreds of students for whom he has served as an outstanding teacher, wise mentor and genuine friend.”

    The SMU AAPG Student Chapter presented Brooks with the AAPG Presidential Award for Exemplary Service at a ceremony May 4, 2015 in Heroy Hall on the SMU campus.

    “Uncharacteristically, I have not prepared extensive remarks,” said Brooks, drawing laughter from the students, colleagues, family and friends on hand to celebrate with him. “I’m very, very appreciative. If you’ve spent your life in teaching, there’s something special about being appreciated by your students.”

    Brooks reminded those gathered for the reception, “If you have any untoward stories about the honoree, just keep ’em to yourself.”

    AAPG is the premier organization for U.S. petroleum geologists. It is one of the world’s largest professional geological societies with more than 36,000 members.

    “You can’t help but be considerably humbled,” Brooks said of the award. “AAPG is a big, important organization on a worldwide basis. It only gives out one of these a year. Whether I merited it or not, I do appreciate it.”

    An AAPG member, Brooks is an expert in North American and Middle Eastern stratigraphy and geomorphology. He’s been at SMU for 60 years as a professor, department chair, dean of the Dedman College of Humanities and Sciences, university provost, interim University president and as chairman of the Institute for the Study of Earth and Man (ISEM) in SMU’s Department of Earth Sciences.

    Brooks was 26 when he started on the faculty at SMU, and ended staying his entire career.

    “There was more opportunity and more fun here than at other jobs,” Brooks said. “This was a place you could make things happen. The University wasn’t locked into a set pattern. You had an opportunity to shape the future.”

    Officially retired, he remains on the department staff in various roles, including as president emeritus and vice chair of the board of trustees for ISEM.

    “He is a beloved teacher, mentor, role model, counselor and principal professor of dozens of M.S. theses and Ph.D. dissertations,” said former AAPG President James Gibbs. “He has been very supportive of petroleum geology science and business.”

    In announcing the award, the AAPG commended Brooks — an AAPG member — for his inspired and dedicated service to his profession, community and students.

    “I’ve known Jim for 40 years, and he is a man whose character, accomplishments and modesty I greatly admire,” said past AAPG president Marlan W. Downey.

    “An extraordinary number of distinguished people have passed under Jim’s wings at SMU and ISEM in Dallas and have been influenced by him,” Downey said. “Jim is one of the ‘good guys.’”

    Among the many awards recognizing Brooks for his service to the field of geology, in 1966 he was named a Fellow with the American Association for the Advancement of Science (AAAS). Fellows are cited for distinguished contributions to their field that advance science or its application. AAAS Fellow is an honor bestowed upon members by their peers. — AAPG and SMU

    Follow SMUResearch.com on twitter at @smuresearch.

    SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

    SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

    Categories
    Energy & Matter Events Researcher news Slideshows

    1st proton collisions at the world’s largest science experiment expected to start the first or second week of June

    “No significant signs of new physics with the present data yet but it takes only one significant deviation in the data to change everything.” — Albert De Roeck, CERN

    First collisions of protons at the world’s largest science experiment are expected to start the first or second week of June, according to a senior research scientist with CERN’s Large Hadron Collider in Geneva.

    “It will be about another six weeks to commission the machine, and many things can still happen on the way,” said physicist Albert De Roeck, a staff member at CERN and a professor at the University of Antwerp, Belgium and UC Davis, California. De Roeck is a leading scientist on CMS, one of the Large Hadron Collider’s key experiments.

    The LHC in early April was restarted for its second three-year run after a two-year pause to upgrade the machine to operate at higher energies. At higher energy, physicists worldwide expect to see new discoveries about the laws that govern our natural universe.

    17 million-year-old whale fossil provides 1st exact date for East Africa’s puzzling uplift
    SMU analysis of recent North Texas earthquake sequence reveals geologic fault, epicenters in Irving and West Dallas
    Bitcoin scams steal at least $11 million in virtual deposits from unsuspecting customers
    Teen girls report less sexual victimization after virtual reality assertiveness training
    SMU, Meltzer, women, body image
    supervolcano, fossil, Italy, James Quick, Sesia Valley

    De Roeck made the comments Monday while speaking during an international meeting of more than 250 physicists from 30 countries on the campus of Southern Methodist University, Dallas.

    “There are no significant signs of new physics yet,” De Roeck said of the data from the first run, adding however that especially SUSY diehards — physicists who predict the existence of a unique new theory of space and time called SuperSymmetry — maintain hopes of seeing evidence soon of that theory.

    De Roeck in fact has high expectations for the possibility of new discoveries that could change the current accepted theory of physical reality, the Standard Model.

    “It will take only one significant deviation in the data to change everything,” De Roeck said. “The upgraded machine works. Now we have to get to the real operation for physics.”

    “Unidentified Lying Object” not a problem — remains stable
    But work remains to be done. One issue the accelerator physicists remain cautiously aware of, he said, is an “Unidentified Lying Object” in the beam pipe of the LHC’s 17-mile underground tunnel, a vacuum tube where proton beams collide and scatter particles that scientists then analyze for keys to unlock the mysteries of the Big Bang and the cosmos.

    Because the proton beam is sensitive to the geometry of the environment and can be easily blocked, the beam pipe must be free of even the tiniest amount of debris. Even something as large as a nitrogen particle could disrupt the beam. Because the beam pipe is a sealed vacuum it’s impossible to know what the “object” is.

    “The unidentified lying object turns out not to be a problem for the operation, it’s just something to keep an eye on,” De Roeck said. “It’s in the vacuum tube and it’s not a problem if it doesn’t move and remains stable.”

    The world’s largest particle accelerator, the Large Hadron Collider made headlines when its global collaboration of thousands of scientists in 2012 observed a new fundamental particle, the Higgs boson. After that, the collider was paused for the extensive upgrade. Much more powerful than before, as part of Run 2 physicists on the Large Hadron Collider’s experiments are analyzing new proton collision data to unravel the structure of the Higgs.

    The Large Hadron Collider straddles the border between France and Switzerland. Its first run began in 2009, led by CERN, the European Organization for Nuclear Research, in Geneva, through an international consortium of thousands of scientists.

    Particle discoveries unlock mysteries of cosmos, pave way for new technology
    The workshop in Dallas, the “2015 International Workshop on Deep-Inelastic Scattering,” draws the world’s leading scientists each year to an international city for nuts and bolts talks that drive the world’s leading-edge physics experiments, such as the Large Hadron Collider.

    Going into the second run, De Roeck said physicists will continue to look for anomalies, unexpected decay modes or couplings, multi-Higgs production, or larger decay rates than expected, among other things.

    Particle discoveries by physicists resolve mysteries, such as questions surrounding Dark Matter and Dark Energy, and the earliest moments of the Big Bang. But particle discoveries also are ultimately applied to other fields to improve everyday life, such as medical technologies like MRIs and PET scans, which diagnose and treat cancer.

    For example, proton therapy is the newest non-invasive, precision scalpel in the fight against cancer, with new centers opening all over the world.

    Hosted by the SMU Department of Physics in Dedman College, the Dallas meeting of physicists began Monday, April 27, 2015, and runs through Friday, May 1, 2015.

    The workshop is sponsored by SMU, U.S. Department of Energy’s Office of Science, CERN, National Science Foundation, Fermi National Accelerator Laboratory, Brookhaven National Laboratory, DESY national research center and Thomas Jefferson National Accelerator Facility. — Margaret Allen

    Follow SMUResearch.com on twitter at @smuresearch.

    SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

    SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

    Categories
    Earth & Climate Energy & Matter Researcher news SMU In The News

    WFAA 8 ABC: Geologists release details of Azle earthquakes study

    Injecting fluids into the ground or extracting them has long been known to cause quakes, but rarely — if ever — have the two been caught acting in concert.

    WFAA 8 ABC news reporter Byron Harris reported on the SMU-led team of seismologists whose recent study found that large volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes near Azle, Texas, from late 2013 through spring 2014.

    The study published in Nature Communications.

    WFAA aired their segment, Geologists release details of Azle earthquakes study, April, 21, 2015.

    Read the full story.

    EXCERPT:

    By Byron Harris
    WFAA 8 ABC

    The seismology team led by SMU that has been researching local earthquakes believes it’s found a cause for the ones that hit Azle a couple of years ago.

    “Causal Factors for Seismicity near Azle, Texas” was published in Nature Communications. A press release about the findings of the study was released on Tuesday.

    It states that the team at SMU found “high volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes.”

    Oil and gas drilling takes water out of the ground as a product of energy production. And that water is pumped back into the ground in wastewater injection wells. SMU geologists measured those activities, centered around the Newark East Gas Field north and east of Azle.

    They found 70 energy-producing wells in the field, and two adjacent wastewater injection wells. Increased levels of water injection and withdrawal corresponded with the earthquakes, the report says.

    The quakes hit Azle between late 2013 and spring of 2014. The town saw seven quakes of magnitude 3.0 or higher in that period. A 3D model was developed to investigate two intersecting faults and estimate stress changes.

    Read the full story.

    Follow SMUResearch.com on twitter at @smuresearch.

    SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

    SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

    Categories
    Earth & Climate Energy & Matter Researcher news SMU In The News

    Dallas Morning News: Azle earthquakes likely caused by oil and gas operations, study says

    Injecting fluids into the ground or extracting them has long been known to cause quakes, but rarely — if ever — have the two been caught acting in concert.

    A sign marks the entrance to an EnerVest wellsite in Parker County. SMU researchers detemined that an EnerVest wastewater well was one of two such sites exerting the greatest pressure on the fault where earthquakes occurred starting in November 2013. Workers buried about 120 million gallons of fluid at the site between October 2010 and September 2013. (DMN)
    A sign marks the entrance to an EnerVest wellsite in Parker County. SMU researchers detemined that an EnerVest wastewater well was one of two such sites exerting the greatest pressure on the fault where earthquakes occurred starting in November 2013. Workers buried about 120 million gallons of fluid at the site between October 2010 and September 2013. (DMN)

    Science journalist Anna Kuchment with The Dallas Morning News covered the research of an SMU-led team of seismologists whose recent study found that large volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes near Azle, Texas, from late 2013 through spring 2014.

    The study published in Nature Communications.

    The Dallas Morning News article published April, 21, 2015.

    Read the full story.

    EXCERPT:

    By Anna Kuchment
    The Dallas Morning News

    Oil and gas operations are the most likely cause of dozens of earthquakes that began rattling the North Texas towns of Azle and Reno in November 2013, a group of scientists has concluded.

    The study, led by researchers at SMU and published Tuesday in the journal Nature Communications, presents some of the most conclusive evidence yet that humans are shifting faults below Dallas-Fort Worth that have not budged in hundreds of millions of years.

    While experts have not yet determined what’s causing the shaking in Dallas and Irving, the new paper previews aspects of that study and includes suggestions that will help speed research.

    “It’s certainly one of the best cases in the literature,” said Art McGarr of the U.S. Geological Survey’s Earthquake Hazards Program in Menlo Park, Calif.

    The new findings contradict statements by the Railroad Commission of Texas that there are no definitive links between oil and gas activity and earthquakes in the state.

    Shown an embargoed version of the paper, the commission’s staff seismologist Craig Pearson wrote in a statement that “the study raises many questions with regard to its methodology, the information used and conclusions it reaches.” But he declined to answer specific questions before meeting with the paper’s authors. The Railroad Commission regulates the oil and gas industry.

    The Azle study is the result of a yearlong collaboration involving 11 researchers at SMU, the University of Texas at Austin, and the U.S. Geological Survey and was reviewed by independent experts before publication.

    The scientists zeroed in on an unusual mechanism behind the quakes: workers pushing liquid into the ground on one side of a fault and sucking gas and groundwater from the other