SMU In The News Subfeature Technology

Software developed by SMU stops ransomware attacks

Ransomware attacks have become more common since COVID-19 pandemic

DALLAS (SMU) – Engineers from SMU’s Darwin Deason Institute for Cybersecurity have developed software that detects ransomware attacks before attackers can inflict catastrophic damage.

Ransomware — a type of malware infection that causes important data files to be locked and prevents users from accessing their important data until the hacker is paid — is crippling cities and businesses all over the world, and the number of ransomware attacks have increased since the start of the coronavirus pandemic. Attackers are also threatening to publicly release sensitive data if ransom isn’t paid. The FBI estimates that ransomware victims have paid hackers more than $140 million in the last six-and-a-half years.

Unlike existing methods, such as antivirus software or other intrusion detection systems, SMU’s new software works even if the ransomware is new and has not been used before.

SMU’s detection method is known as sensor-based ransomware detection because the software doesn’t rely on information from past ransomware infections to spot new ones on a computer. In contrast, existing technology needs signatures of past infections to do its job.

“With this software we are capable of detecting what’s called zero-day ransomware because it’s never been seen by the computer before,” said Mitch Thornton, executive director of the Deason Institute and professor of electrical and computer engineering in SMU’s Lyle School of Engineering. “Right now, there’s little protection for zero-day ransomware, but this new software spots zero-day ransomware more than 95 percent of the time.”

The new software also can scan a computer for ransomware much faster than existing software, said Mike Taylor, lead creator of the software and a Ph.D. student at SMU.

“The results of testing this technique indicate that rogue encryption processes can be detected within a very small fraction of the time required to completely lock down all of a user’s sensitive data files,” Taylor noted. “So the technique
detects instances of ransomware very quickly and well before extensive damage occurs to the victim’s computer files.”

Southern Methodist University (SMU) has filed a patent application for this technique with the U.S. Patent and Trademark Office.

Lyle Engineering students Taylor, a cybersecurity Ph.D. student, and Kaitlin N. Smith, a recent electrical engineering Ph.D. graduate, created the software, along with Thornton.

New software enables existing sensors to detect ransomware

“Ransomware is malware that enters a victim’s computer system and silently encrypts its stored files. It then alerts the user that they must pay a ransom, typically in a non-traceable currency such as bitcoin, in order to receive the key to decrypt their files,” Thornton explained. “It also tells the victim that if they do not pay the ransom within a certain time period, the key for decryption will be destroyed and thus, they will lose their data.”

SMU’s software functions by searching for small, yet distinguishable changes in certain sensors that are found inside computers to detect when unauthorized encryptions are taking place.

When attackers encrypt files, certain circuits inside the computer have specific types of power surges as files are scrambled. Computer sensors that measure temperature, power consumption, voltage levels, and other characteristics can detect these specific types of surges, SMU researchers found.

The SMU software monitors the sensors to look for the characteristic surges. And when a suspicious surge is detected, the software immediately alerts the computer to suspend or terminate the ransomware infection from completing the encryption process.

Use of the computer’s own devices to spot ransomware “is completely different than anything else that’s out there,” Taylor said.

About the Darwin Deason Institute for Cybersecurity
The mission of The Deason Institute, which is part of SMU’s Lyle School of Engineering, is to advance the science, policy, application and education of cyber security through basic and problem-driven, interdisciplinary research.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Health & Medicine Researcher news SMU In The News Subfeature Technology

Dallas Innovates: Gamers join scientific research to help end the COVID-19 threat

BALANCED Media|Technology and Complexity Gaming have launched a citizen science effort that will test drug compounds against coronavirus, helping SMU sift through possible treatments faster

Source: HEWMEN

DALLAS (SMU) – While medical professionals everywhere have been hard at work for months searching for a cure to the COVID-19 virus, an unlikely industry has emerged to join the fight: the video game community, Dallas Innovates’ Alex Edwards reports.

A new effort from BALANCED Media|Technology (BALANCED) and Complexity Gaming intends to garner spare computer processing power that could help find treatments for coronavirus. The two Dallas-based organizations are encouraging anyone that works with video games to donate to the citizen science/crowdsourcing initiative called #WeAreHEWMEN, Edwards explains.

The BALANCED’s HEWMAN app will use gamers’ processing power to go through more than 200,000 FDA medications and compounds, with help from SMU computational biologist John Wise. Using these 200,000 compounds, between 1.5 to 3 million virtual experiments will be run, simulating attempts to dock compounds to specific locations on the virus. By identifying the compounds with the highest probability of success at treating coronavirus, Wise, who works in SMU’s Drug Discovery, Design and Delivery, can test new treatments faster and therefore, potentially get a viable treatment to the market more quickly.

Read the story about this innovative collaboration here.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.




SMU In The News Subfeature Technology

Cybersecurity matters more than ever during the COVID-19 pandemic

DALLAS (SMU)  The coronavirus pandemic isn’t just a serious threat to people’s health. It’s also giving cybercriminals the perfect opportunity to access your computer and potentially steal sensitive information, warns an SMU cybersecurity expert. 
Mitch Thorntonexecutive director of the Deason Institute for Cyber Security in SMU’s Lyle School of Engineering, said there are a number of factors that make cybersecurity especially important during this virus pandemic. 
“People are going to be spending more time on the Internet because many of us have been asked to do work from home to keep the virus from spreading,” he said.
That means more opportunities for people to download dangerous software that was created by hackers, whether by fake emails that look like they came from work or by bogus ads for online shopping, Thornton said. Employees may also be less familiar with the online software that allow them to communicate with their co-workers from home, increasing the chances they may be tricked by a hacker. 
“People are also going to be interested in reading about the virus, learning about new advances and monitoring where the new cases are happening,” Thornton said. “So the adversaries are likely going to be targeting web pages and emails that offer that kind of content.”
For instance, he said, sending very sensational and possibly untrue new stories can be used to get people’s attention, distract them and prompt them to click on malicious links more quickly. “Imposter emails from authorities and medical personnel will likely also be more prevalent,” Thornton said.
Additionally, several coronavirus-related schemes have emerged to trick the public into downloading software they shouldn’t. But Thornton said there are ways you can keep your computer safe:
  • When you look for information online about the coronavirus, be sure that the sources are trusted. And be on the lookout for websites and emails that are designed to look like legitimate sources but are actually malicious. For example, a website may use a name, look or feel of a legitimate government agency, but have one letter off or a different color from the real website. 
  • Avoid giving personal information online unless you are very familiar with the website. Hackers may try to get your information by creating fake charities asking for donations for COVID-19.    
  • If you’re doing video conferencing for work, take a look at the background that will be appearing behind you. There may be private information that your webcam can pick out, and you can’t be sure who may be watching.  
About SMU
SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.
Earth & Climate Researcher news SMU In The News Subfeature Technology

Wastewater leak in West Texas revealed by satellite radar imagery and sophisticated modeling

Leakage in Ken Regan field could have contaminated groundwater for livestock and irrigation between 2007 and 2011

DALLAS (SMU) – Geophysicists at SMU say that evidence of leak occurring in a West Texas wastewater disposal well between 2007 and 2011 should raise concerns about the current potential for contaminated groundwater and damage to surrounding infrastructure.

SMU geophysicist Zhong Lu and the rest of his team believe the leak happened at a wastewater disposal well in the Ken Regan field in northern Reeves County, which could have leaked toxic chemicals into the Rustler Aquifer. The same team of geophysicists at SMU has revealed that sinkholes are expanding and forming in West Texas at a startling rate.

a) Coverage of the ALOS PALSAR scenes used (white box). Black line shows the boundary of the Ken Regan field. Dark green line and light green line represent the boundaries of the Rustler Aquifer and Pecos Valley Aquifer in Texas, respectively. Red star represents the epicenter of the earthquake that occurred in May 2018. Blue circle represents the groundwater well for livestock drawing from the Rustler Aquifer in this area. Blue triangles are wells, which provide groundwater leveling records. (b) Vertical deformation (cm/yr) (in the red box in Fig. 1a) estimated from InSAR. Green circles with and without arrows indicate active injection/disposal wells in the Ken Regan field and oil production wells within 1.5 km from the deformation center during the research period, respectively. Purple circle represents the groundwater which provides groundwater quality records. Source: Zhong Lu

Wastewater is a byproduct of oil and gas production. Using a process called horizontal drilling, or “fracking,” companies pump vast quantities of water, sand and chemicals far down into the ground to help extract more natural gas and oil. With that gas and oil, however, come large amounts of wastewater that is injected deep into the earth through disposal wells.

Federal and state oil and gas regulations require wastewater to be disposed of at a deep depth, typically ranging from about 1,000 to 2,000 meters deep in this region, so it does not contaminate groundwater or drinking water. A small number of studies suggest that arsenic, benzene and other toxins potentially found in fracking fluids may pose serious risks to reproductive and development health.

Even though the leak is thought to have happened between 2007 and 2011, the finding is still potentially dangerous, said Weiyu Zheng, a Ph.D. student at SMU (Southern Methodist University) who led the research.

“The Rustler Aquifer, within the zone of the effective injection depth, is only used for irrigation and livestock but not drinking water due to high concentrations of dissolved solids. Wastewater leaked into this aquifer may possibly contaminate the freshwater sources,” Zheng explained.

“If I lived in this area, I would be a bit worried,” said Lu, professor of Shuler-Foscue Chair at SMU’s Roy M. Huffington Department of Earth Sciences and the corresponding researcher of the findings.

He also noted that leaking wastewater can do massive damage to surrounding infrastructure. For example, oil and gas pipelines can be fractured or damaged beneath the surface, and the resulting heaving ground can damage roads and put drivers at risk.     

SMU geophysicists say satellite radar imagery indicates a leak in the nearby disposal well happened because of changes shown to be happening in the nearby Ken Regan field: a large section of ground, five football fields in diameter and about 230 feet from the well, was raised nearly 17 centimeters between 2007 and 2011. In the geology world, this is called an uplift, and it usually happens where parts of the earth have been forced upward by underground pressure.

Lu said the most likely explanation for that uplift is that leakage was happening at the nearby well.

“We suspect that the wastewater was accumulated at a very shallow depth, which is quite dramatically different from what the report data says about that well,” he said.

Only one wastewater disposal well is located in close proximity to the uplifted area of the Ken Regan field. The company that owns it reported the injection of 1,040 meters of wastewater deep into the disposal well in Ken Regan. That well is no longer active.

But a combination of satellite images and models done by SMU show that water was likely escaping at a shallower level than the well was drilled for.

And the study, which was published in the Nature publication Scientific Reports, estimates that about 57 percent of the injected wastewater went to this shallower depth. At that shallower depth, the wastewater–which typically contains salt water and chemicals–could have mixed in with groundwater from the nearby Rustler Aquifer. Drinking water doesn’t come from the Rustler Aquifer, which spans seven counties. But the aquifer does eventually flow into the Pecos River, which is a drinking source.

The scientists made the discovery of the leak after analyzing radar satellite images from January 2007 to March 2011. These images were captured by a read-out radar instrument called Phased Array type L-band Synthetic Aperture Radar (PALSAR) mounted on the Advanced Land Observing Satellite, which was run by the Japan Aerospace Exploration Agency

With this technology called interferometric synthetic aperture radar, or InSAR for short, the satellite radar images allow scientists to detect changes that aren’t visible to the naked eye and that might otherwise go undetected. The satellite technology can capture ground deformation with a precision of sub-inches or better, at a spatial resolution of a few yards or better over thousands of miles, say the researchers.

Lu and his team also used data that oil and petroleum companies are required to report to the Railroad Commission of Texas (Texas RRC), as well as sophisticated hydrogeological models that mapped out the distribution and movement of water underground as well as rocks of the Earth’s crust.

“We utilized InSAR to detect the surface uplift and applied poroelastic finite element models to simulate displacement fields. The results indicate that the effective injection depth is much shallower than reported,” Zheng said. “The most reasonable explanation is that the well was experiencing leakage due to casing failures and/or sealing problem(s).”

“One issue is that the steel pipes can degrade as they age and/or wells may be inadequately managed. As a result, wastewater from failed parts can leak out,” said Jin-Woo Kim, research scientist with Lu’s SMU Radar Laboratory and a co-author of this study.

The combination of InSAR imagery and modeling done by SMU gave the scientists a clear picture of how the uplift area in Regan field developed.

Lu, who is world-renowned for leading scientists in using InSAR applications to detect surface changes, said these types of analysis are critical for the future of oil-producing West Texas.

“Our research that exploits remote sensing data and numerical models provides a clue as to understanding the subsurface hydrogeological process responding to the oil and gas activities. This kind of research can further be regarded as an indirect leakage monitoring method to supplement current infrequent leakage detection,” Zheng said.

“It’s very important to sustain the economy of the whole nation. But these operations require some checking to guarantee the operations are environmentally-compliant as well,” Lu said.

Co-author Dr. Syed Tabrez Ali from AIR-Worldwide in Boston also contributed to this study.

This research was sponsored by the NASA Earth Surface and Interior Program and the Schuler-Foscue endowment at SMU.

Previously, Kim and Lu used satellite radar imaging to find that two giant sinkholes near Wink, Texas—two counties over from the Ken Regan uplift—were likely just the tip of the iceberg of ground movement in West Texas. Indeed, they found evidence that large swaths of West Texas oil patch were heaving and sinking at alarming rates. Decades of oil production activities in West Texas appears to have destabilized localities in an area of about 4,000 square miles populated by small towns like Wink, roadways and a vast network of oil and gas pipelines and storage tanks.

Watch the WFAA Verify news segment. You can also hear a report on the study that was broadcast on Austin’s NPR KUT 90.5 below:


About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.



Learning & Education Researcher news SMU In The News Technology

SMU engineering and education professors receive NSF grant to research teaching computer science and computational thinking through community gaming

DALLAS (SMU) – The Lyle School of Engineering, Guildhall and the Simmons School of Education & Human Development at SMU will use a $1,521,615 grant from the National Science Foundation to research teaching computer science and computational thinking through the popular video game, Minecraft. Research will span the fields of game design, human computer interaction, machine learning, curriculum design and education assessment by integrating STEM+C (computing) based curriculum directly into Minecraft. The project will help advance knowledge in game-based learning by building on techniques and experiences from commercial game design. The game and infrastructure produced through the research will serve as a vital computing resource for middle and high school educators.

The grant, which was featured in Dallas Innovates, was awarded to Corey Clark, deputy director of research at SMU Guildhall and an assistant professor of Computer Science at Lyle, Eric Larson, associate professor in Computer Science at Lyle and Leanne Ketterlin Geller, professor and Texas Instrument Endowed Chair in Education at Simmons. Research begins this month with funding extending through 2022. Their aim is to create a more stable, ethical, and inclusive data science workforce by broadening the interest in data science to a more diverse population of K-12 students.

“We’re presented with the challenge of finding creative ways to positively impact student outcomes in STEM and the value it can provide in the learning experience,” said Ketterlin Geller. “We struggle with K-12 student engagement in math and science so this project is an optimal way to help us generate new interest while meeting our education goals and seeing students succeed and excel in these fields.”

“A key initiative of STEM+C is to cultivate the skills for the next generation of data scientists, information scientists, and engineers. Video games provide a technique to engage the next generation of students in a fun and intuitive manner,” said Clark. “Games are developed around fundamental activities, or gameplay atoms, which reflect the experiential learning process through a trial and error in-game conveyance/feedback loop.”

Research will integrate curriculum that aligns with education standards such as Common Core Standards in Mathematics (CCSS-M), Next Generation Science Standards (NGSS-2013), Computer Science Teachers Association (CSTA-2017), and California Computer Science Content Standards (CACS-CS 2019) into the successful loops found in Minecraft. These loops contain game mechanics that have shown to engage a large demographic of players across age, gender, race, and socio-economic factors. The project will integrate feedback from educational stakeholders, including teachers and students. Key outcomes from engaging in gameplay that are assessed include changes in students’ interest, attitudes, beliefs, and self-efficacy in STEM+C, engagement in collaborative open-ended solution making, and achievement in related computing and mathematics concepts. Molly Phillips, Lyle School of Engineering


About the Lyle School of Engineering

SMU’s Lyle School of Engineering, founded in 1925, is one of the oldest engineering schools in the Southwest. The school offers eight undergraduate and 29 graduate programs, including master’s and doctoral degrees, through the departments of Civil and Environmental Engineering; Computer Science; Electrical and Computer Engineering; Engineering Management, Information and Systems; and Mechanical Engineering. Lyle students participate in programs in the unique Deason Innovation Gym, providing the tools and space to work on immersion design projects and competitions to accelerate leadership development and the framework for innovation; the Hart Center for Engineering Leadership, helping students develop nontechnical skills to prepare them for leadership in diverse technical fields; the Caruth Institute for Engineering Education, developing new methodologies for incorporating engineering education into K-12 schools; the Linda and Mitch Hart Institute for Technology, Innovation and Entrepreneurship, combining the innovative forces of Lyle and the Cox School of Business to integrate their expertise, resources and guidance to develop technology prototypes and create viable business plans; and the Hunter and Stephanie Hunt Institute for Engineering and Humanity, combining technological innovation with business expertise to address global poverty.

About Guildhall

Since its genesis, SMU Guildhall has set the bar in game development education. Recognized as one of the best game design graduate programs in the world, SMU Guildhall works collaboratively across disciplines and industries to train the next generation of game developers. It’s long held a seat in the Top 10 rankings for game development programs across the world by the Princeton Review, sitting at Number 1 for the past two years. In addition to its Team Game Production curriculum, the Guildhall has been commended for the high quality of its faculty of industry veterans and professionals as well as its career services achievements. The program has graduated over 800 alumni, who now work at more than 270 video game studios and tech companies around the world. The program’s achievements can also be seen in its high-caliber game successes including record breaking downloads, awards, and contest wins. SMU Guildhall offers both a Master of Interactive Technology in Digital Game Development degree and a Professional Certificate of Interactive Technology in Digital Game Development, and it is the only program to offer specializations in all four cornerstones of game development — Art, Design, Production, and Programming. For more information, visit

About Simmons School of Education & Human Development

The Annette Caldwell Simmons School of Education and Human Development at SMU reflects the University’s vision of serving the most important educational needs of our city, region and nation, graduating students for successful careers in a variety of fields and providing educational opportunities beyond traditional degree programs. Recognized as a unique and transformative leader in education research, practice and policy, the School is committed to rigorous, research-driven programs that promote evidence-based, effective practices in education and human development.