Categories
Health & Medicine Researcher news SMU In The News Subfeature Technology

Dallas Innovates: Gamers join scientific research to help end the COVID-19 threat

BALANCED Media|Technology and Complexity Gaming have launched a citizen science effort that will test drug compounds against coronavirus, helping SMU sift through possible treatments faster

Source: HEWMEN

DALLAS (SMU) – While medical professionals everywhere have been hard at work for months searching for a cure to the COVID-19 virus, an unlikely industry has emerged to join the fight: the video game community, Dallas Innovates’ Alex Edwards reports.

A new effort from BALANCED Media|Technology (BALANCED) and Complexity Gaming intends to garner spare computer processing power that could help find treatments for coronavirus. The two Dallas-based organizations are encouraging anyone that works with video games to donate to the citizen science/crowdsourcing initiative called #WeAreHEWMEN, Edwards explains.

The BALANCED’s HEWMAN app will use gamers’ processing power to go through more than 200,000 FDA medications and compounds, with help from SMU computational biologist John Wise. Using these 200,000 compounds, between 1.5 to 3 million virtual experiments will be run, simulating attempts to dock compounds to specific locations on the virus. By identifying the compounds with the highest probability of success at treating coronavirus, Wise, who works in SMU’s Drug Discovery, Design and Delivery, can test new treatments faster and therefore, potentially get a viable treatment to the market more quickly.

Read the story about this innovative collaboration here.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

 

 

Categories
Health & Medicine Mind & Brain

Psychological study teaching people to experience and recognize joy has been adapted for COVID-19

DALLAS (SMU) – SMU has adapted their study on a psychological condition known as anhedonia to reflect new restrictions in place because of the coronavirus pandemic.
 
Researchers at SMU and UCLA have been involved in a five-year study of a treatment for anhedonia – the inability to find pleasure in any aspect of life – since 2019. 
 
Psychology professors Alicia Meuret and Thomas Ritz at SMU and Michelle G. Craske at UCLA are studying the effectiveness of a type of cognitive behavioral therapy aimed at teaching people to seek out and recognize the positive aspects of life – increasing their sensitivity to reward. They will compare their results with a more traditional approach of treating the negative affect side of their problems.
 
But because millions of Americans have been asked to stay at home to keep from possibly spreading the COVID-19 virus, researchers have made some adjustments to how they are doing the study. 
 
For instance, instead of encouraging study participants to meet with friends in-person to increase feelings of joy and connectedness, the recommendation has been modified to arranging meetings online. Participants are also being given skills they can use to cope more effectively with COVID-19 worries about health and future, as well as how to generate feelings of gratitude and how to take other people’s viewpoint in account when thinking. And all sessions between participants and therapists are being done via telehealth instead of in person, because of the COVID-19 restrictions.
Researchers are still recruiting Dallas and Los Angeles residents to participate in the study. More information about the study is available here.
 
About SMU
SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.
 
Categories
Health & Medicine SMU In The News Subfeature

SMU Center for Family Counseling offers free remote services

DALLAS (SMU) – SMU’s Center for Family Counseling is now offering free telehealth counseling to anyone who needs it during the COVID-19 pandemic.

What started as a work-around to help the community during this period of mandatory social distancing has proved to be so successful that the center will continue offering remote counseling even after the staff returns to seeing patients in-person.

The clinic, associated with SMU’s Master’s in Counseling program, provides a variety of counseling services to adults, adolescents and children who are dealing with anxiety, depression, behavior difficulties, grief and loss, stress and parenting. Like many other businesses and clinics in Dallas, SMU’s Center for Family Counseling has temporarily closed its offices to limit the spread of COVID-19.

Clinic staff recognized, however, that because they were forced to close the clinic’s doors, there might be more people in need of mental health services related to isolation and other stay-at-home issues, said Clinic Director Terra Wagner.

“So we moved to offering services via Zoom,” Wagner said. “However, we plan to continue offering telehealth services, even when we return to seeing clients in person,” she said, explaining that they discovered they can serve more clients using a combination of telehealth and in-person appointments.

The Center for Family Counseling normally operates on a sliding scale fee system to accommodate low-income clients, with charges ranging from $5 to a maximum of $45 per session. All services will be free until further notice, Wagner said.

In addition to the telehealth counseling, five new remote support groups are also open for registration, free of charge: Adult Mindfulness Group, Adolescent Support Group, LGBTQ+ Parenting/Caregiver Support Group, LGBTQ+ Adolescent Support Group and LGBTQ+ Adult Support Group. These support groups started will meet via Zoom. Registration for all groups will remain open until groups end on May 7.

Counselors at the center are graduate students in the Master’s in Counseling program offered by SMU’s Simmons School of Education and Human Development. They have completed most of their coursework as well as clinical skills classes to prepare to work with clients under faculty supervision. The program is accredited by the Council for Accreditation of Counseling and Related Educational Programs.

The clinic helps address the national shortage of mental health professionals by training counselors and providing affordable services. According to a spring 2019 report by Mental Health Dallas, the state of Texas is home to the second highest number of areas in the United States with a mental health professional shortage.

Earlier this year, SMU relocated the Center for Family Counseling from Plano to a new Dallas location in Expressway Tower, 6116 N. Central Expressway, Suite 410. Services are offered Monday through Thursday from 11:30 a.m. to 7:30 p.m. To schedule an appointment, please call 214-768-6789. If the Center for Family Counseling can’t meet your needs, you will be referred to another provider.

 

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in eight degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

Categories
Health & Medicine Researcher news SMU In The News Subfeature

Drug oleandrin may be an effective new way to treat HTLV-1 virus, SMU study shows

An estimated 10 to 15 million people are infected with HTLV-1, which is a cousin of HIV

DALLAS (SMU) – A study led by SMU suggests that oleandrin – a drug derived from the Nerium oleander plant – could prevent the HTLV-1 virus from spreading by targeting a stage of the reproduction process that is not currently targeted by existing drugs.

That is significant because there is currently no cure or treatment for the virus – a lesser-known “cousin” of HIV that affects an estimated 10 to 15 million people worldwide.

“Our research findings suggest that oleandrin could possibly limit the transmission and spread of HTLV-1 by targeting a unique stage in the retroviral life cycle,” said Robert Harrod, associate professor and director of Graduate Studies in SMU’s Department of Biological Sciences. Harrod is a co-author of the study, published in the Journal of Antivirals & Antiretrovirals.

The human T-cell leukemia virus type-1, or HTLV-1, is a retrovirus that infects white blood cells known as T-cells and is usually transmitted in a similar manner to HIV-1 through a person’s blood or body fluid. Infected cells present within breast milk can also pass HTLV-1 from mother to infant through breastfeeding.

While HIV-1 kills the infected T-cells, HTLV-1 causes them to divide uncontrollably. This in turn can lead to the development of aggressive leukemia – a cancer of the white blood cells. People infected with HTLV-1 can also develop a progressive neurological disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a progressive inflammatory disease of the nervous system that can affect one’s ability to walk and may cause serious symptoms leading to coma and even death.

Retrovirus particles copy themselves within infected cells by transcribing their RNA into DNA after entering a cell, a process called the retroviral life cycle. The more virus-infected cells that are produced, the worse symptoms can get for people who are infected with HTLV-1.

The two lead authors, Tetiana Bowley and Lacin Yapindi, are Ph.D graduate students who worked with Harrod in his lab. Aditi Malu, who also worked in Harrod’s lab, graduated from SMU with a PhD in May. Together with collaborator Jagan Sastry at the University of Texas M.D. Anderson Cancer Center and Dr. Robert Newman at Phoenix Biotechnology, Inc., SMU researchers found that the botanical compound called oleandrin successfully interrupted part of the infection cycle for HTLV-1.

“As has been shown for HIV-1, treatment with oleandrin did not affect the ability of infected cells to produce and release new virus particles. However, the particles that were produced were defective, meaning they contained less envelope glycoprotein on their surface,” Harrod said. “This impaired their ability to form virological synapses for effective cell-to-cell virus transmission.”  

A so-called “envelope,” which forms the outer coat of the HTLV-1 particle and binds to the receptors on the surface of target cells, must be present in order for a virus-infected cell to fuse with the membrane of an uninfected T-cell, allowing the virus to enter the cell and spread the disease. Without it, the HTLV-1 retrovirus can’t successfully be passed to other cells.

“Oleandrin is unique in its ability to block the incorporation of the envelope glycoprotein into mature virus particles as they’re exiting an infected cell,” Harrod said.

The hope is that oleandrin, or a similar drug that targets the same part of the retrovirus infection cycle, could potentially prevent HTLV-1 from causing progressively worse clinical symptoms in people with an immune-driven condition like HAM/TSP where the body’s immune system causes tissue damage due to the misrecognition of replicating virus particles.

“If a drug, such as oleandrin, could prevent the spread of HTLV-1 particles within an infected HAM/TSP patient, it may become possible to dampen the neuroinflammatory response to alleviate the symptoms of disease,” Harrod said.

Harrod called the findings “exciting” because oleandrin targets a different mechanism of fighting the virus – one that hasn’t been the focus of other antiviral drugs that attack specific steps in the retroviral infection cycle. Those drugs, called highly-active antiretroviral therapies or HAART for short, have not been shown to be effective with HTLV-1.

In the study, to demonstrate that purified oleandrin or an N. oleander extract could inhibit the formation of HTLV-1 virological synapses, SMU researchers in Harrod’s lab labeled an HTLV-1-infected virus-producing cell-line with green fluorescent protein (GFP), so these cells could be easily identified by their ‘green’ fluorescence under a microscope. These cells were then placed in the same culture well as healthy T-cells. T-cells that became infected with HTLV-1 were easy to spot because researchers could see a junction between the two cells and then a red fluorescent signal showing up in the newly-infected T-cell.

Phoenix Biotechnology provided the purified oleandrin and Nerium oleander plant extract used in the study.

Dallas Voice covered the news here, as well as D CEO Healthcare and Medical XPress.

 

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

 

 

 

 

 

Categories
Health & Medicine Researcher news SMU In The News Subfeature

Long exposure to protein inhibitor may be the key to more effective chemotherapy for treatment-resistant cancers, SMU finds

SMU researchers find success in treating drug-resistant prostate cancer cells in the lab

DALLAS (SMU) – Researchers at SMU’s Center for Drug Discovery, Design and Delivery (CD4) have succeeded in lab testing the use of chemotherapy with a specific protein inhibitor so that the chemotherapeutic medication is better absorbed by drug-resistant cancer cells without harming healthy cells. The approach could pave the way for a more effective way to treat cancers that are resistant to treatment.

A mix of drugs is frequently used to shrink cancer tumors or keep tumor cells from spreading to other parts of the body. But chemotherapy is so toxic that the mix often kills healthy cells, too, causing dreadful side effects for cancer patients. And eventually, many cancers learn how to resist chemotherapy, making it less effective over time.

“When multidrug resistance evolves, this leaves the patient with a very poor prognosis for survival and the oncologist with few, if any, effective tools, such as chemotherapy medicines, to treat what is very likely an aggressive and/or metastatic cancer at this point,” said John Wise, associate professor in the SMU Department of Biological Sciences and co-author of a study on the findings published Friday in PLOS One.

Much of the research led by CD4 director Pia Vogel and Wise is centered on a class of proteins called ABC transporters, a key factor in why many cancers resist chemotherapy.

Long exposure to P-gp inhibitor and chemotherapy decreased cancer cell survival, as assessed by colony formation. Credit: SMU

“These transporters are defensive proteins and are normally very, very good for us. They protect us from toxic chemicals by literally pumping them out of the cell, almost like a sump pump removes water from one’s cellar,” Vogel said.

But when someone has cancer, these proteins do more harm than good.

“One protein, P-glycoprotein, can pump nearly all chemotherapeutics out of the cancer cell, thereby making the cancer resistant to many drugs and untreatable,” Wise noted.

For this reason, SMU researchers tested the combination of using an inhibitor that temporarily shuts down P-glycoprotein’s ability to remove drugs from the cancer cells along with chemotherapeutics on prostate cancer cells grown in the lab, which have been shown to be resistant to multiple chemotherapeutic drugs.

The SMU team was able to show that if inhibitors of P-glycoprotein are used during and after the multidrug resistant cancer cells have been exposed to the chemotherapy drugs, then the cancer cells become much more sensitive to the chemotherapeutics.

The recipe for success was giving cancer cells a dose of both chemotherapy drugs and the P-gp inhibitor for two hours. Researchers then washed the prostate cancer cells to get rid of any residual chemotherapy drugs before giving the cells another dose of just P-gp inhibitor for 22 hours, lead author and SMU Ph.D. doctoral candidate Amila K. Nanayakkara explained.

Pia Vogel and John Wise

Prostate cancer cells that were given this treatment were shown to retain chemotherapy drugs at a much higher level compared to cancer cells not treated with the P-glycoprotein inhibitor. And after about 24 hours, much fewer of these cancer cells survived in this treatment compared to the cells which had not seen the inhibitor.

When the same tests were performed on normal noncancerous cells, “there was no sign of extra toxicity to the healthy cells using this method,” Wise added.

One issue, though, is how to duplicate this method in a patient’s body. “Once you’ve taken a chemotherapy drug, it’s not easy to remove it after just two hours,” said co-author Vogel, a professor in the SMU Department of Biological Sciences.

Still, the researchers argued that it is worth further research, because there are currently few options for cancer patients once their disease becomes resistant to multiple chemotherapies.

“Our paper shows these remarkable effects when the inhibitor is present during, and importantly, after exposure to chemotherapeutic,” Wise said. “And while ‘washing’ is not feasible in humans, the kidneys and other organs are in a sense doing the washing step for a patient. These organs are washing the chemotherapy from the bloodstream and therefore, out of cancer cells. So in that way, we think our preliminary cell culture studies may be translatable at least in principle to animals and people.”

News MedicalDallas Innovates and others wrote about the new research.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

 

 

Categories
Health & Medicine SMU In The News

KERA News: ‘Teaching joy’ is a new approach in the battle against anhedonia

DALLAS (SMU) – Anhedonia is a symptom of depression that strips people of their ability to feel joy.

Alicia Meuret and Thomas Ritz, professors at Southern Methodist University (SMU), talked to KERA News’ host of All Things Considered Justin Martin about why this psychological condition can be so devastating for people who have it.

Meuret, professor of psychology and director of SMU’s Anxiety and Depression Research Center, and Ritz, an SMU professor of psychology, have been part of a five-year study that aims to develop a more effective treatment for anhedonia.  UCLA is also part of that study.

Listen to KERA interview.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

 

Categories
Health & Medicine Researcher news Subfeature Videos

Virtual reality brings cervical cancer surgery training to physicians

Too often, women in developing countries die of cervical cancer because there aren’t enough surgeons trained to perform a lifesaving surgery.

But a low-cost surgery simulation developed by a team of SMU, UNC School of Medicine and King’s College London researchers has the potential to change that.

Using widely available technology and Oculus Rift hardware—similar to what is used in popular games like “Lone Echo”—the team created a virtual reality simulation that mirrors what a surgeon would see in real life while performing a radical hysterectomy to remove a woman’s uterus and other parts of her womb.

So surgeons in developing countries can more easily get training on the procedure, potentially saving women’s lives, said Dr. Eric G. Bing, who co-authored a study on the simulation and is a global health professor at Southern Methodist University (SMU).

Watch SMU’s Lifesaving VR video to learn more.

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news SMU In The News Subfeature

New psychological study: Teaching people to experience and recognize joy

DALLAS (SMU) – Researchers at SMU and UCLA are enrolling subjects for a five-year study of a treatment for a psychological condition known as anhedonia – the inability to find pleasure in any aspect of life. A grant of approximately $4 million from the National Institute of Mental Health will allow professors Alicia Meuret and Thomas Ritz at SMU and Michelle G. Craske at UCLA to study the effectiveness of their treatment in 168 people suffering from this very specific symptom.

Professor Alicia Meuret
Professor Alicia Meuret

“The goal of this novel therapeutic approach is to train people to develop psychological muscle memory – to learn again how to experience joy and identify that experience when it occurs,” said Meuret, professor of psychology and director of SMU’s Anxiety and Depression Research Center. “Anhedonia is an aspect of depression, but it also is a symptom that really reaches across psychiatric and non-psychiatric disorders. It’s the absence or the lack of experiencing rewards.”

People suffering from depression often report feeling down or blue, loss of appetite and having difficulty sleeping or concentrating, all described generally as “negative affect.” Meuret explained that there is another other side to depression – the reduction of all that is positive. This reveals itself in someone who says he or she is not especially anxious or depressed, but nothing gives them joy anymore.

“They don’t feel motivated to do anything, and when they do things that formerly gave them pleasure, they just don’t enjoy them anymore,” Meuret said. “We call that a deficit in the reward system – a reduction to reward sensitivity.”

Historically, treatments for affective disorders such as anxiety and depression have been aimed at reducing negative affect, Meuret said.  Over the next five years, Meuret, Ritz and Craske will treat 168 people using a type of cognitive behavioral therapy aimed at teaching people to seek out and recognize the positive aspects of life – increasing their sensitivity to reward. They will compare their results with a more traditional approach of treating the negative affect side of their problems.

Professor Thomas Ritz
Professor Thomas Ritz

The monitoring of treatment success will include simple biomarkers of enjoyment. “The heart beats faster in joy, something that has been shown to be absent in anhedonia,” said Ritz, an SMU professor of psychology who specializes in studying the relationship between biology and psychology in affective disorders and chronic disease. Other measures will capture immune activity, which is important as an indicator of long-term health.

Clinical psychology graduate students working on the project are Juliet Kroll, Divya Kumar, Natalie Tunnell, Anni Hasration, Andres Roques and Rebecca Kim, a recent SMU alumna, who will coordinate the day-to-day administration of the project.

Those interested in participating in the study may phone Rebecca Kim at 214-768-2188 or fill out the pre-screen form here.

The NIMH-funded study will follow the training framework of an SMU-UCLA pilot study conducted from 2014-2018:

  • The first half of the treatments are targeted at changing behavior, using strategies where the patient learns to seek out pleasant activities that they have previously enjoyed. Scheduled “homework” records that they list their mood before and after the activity, savoring the pleasurable moments in these activities. When resuming a session, the patient recalls the activity as if experiencing it in real time, such as, “I see Amy. I feel a connection with her. We walk on the street, and I can see the leaves changing.”
  • Cognitive training provides exercises that identify the positive aspects of various activities, taking responsibility for those activities and imagining what they would feel like.
  • The last module is compassion training, helping the patient to again learn to share love and kindness with another person, cultivating gratitude and generosity and learning to generate and savor positive feelings in the moment.

“Rather than saying to our patients, ‘Let me help you feel less bad,’ we are saying, ‘Let me help you re-learn how to feel good,” Meuret said.  “It’s very rewarding as a researcher psychologist that these patients can feel again – feel something positive.  I think there’s nothing worse than losing this sense of reward.”

Categories
Culture, Society & Family Feature Health & Medicine Researcher news Subfeature

Alcohol use may increase among Hispanic Americans as they become more ‘Americanized’

SMU professor Priscilla Lui and co-author find that ‘Americanization’ of alcohol use affects women more than men

DALLAS (SMU) – Higher rates of alcohol use and drinking consequences are found among Hispanic American adolescents and adults who are more “Americanized,” according to a new study authored by Southern Methodist University (SMU) professor Priscilla Lui and her colleague, Byron Zamboanga, at Smith College.

Using scientific research accumulated over the past 40 years, Lui and Zamboanga analyzed data from over 68,000 Hispanic Americans – including first-generation immigrants and native-born individuals. Lui’s research has found that people in this group who are more “Americanized” are more likely to:

  • be drinkers,
  • consume alcohol at greater intensity,
  • experience more negative consequences associated with alcohol use, and
  • affect women more than men.

Hispanics are the largest ethnic group in the United States.  Similar results were found in the Asian ethnic group, which is the fastest-growing U.S. ethnic group.  Those who are considered acculturated or “Americanized” tend to have adapted to the political, cultural, or communal influences in the mainstream America, and assimilated to its customs and institutions.

“This research means that, for Asian and Hispanic men, being more ‘Americanized’ may not be associated with substantial changes in their drinking behaviors and consequences,” said Lui. “For Asian and Hispanic women, however, cumulative data show that there’s something about the American way of life that may be making them more likely to drink, and drink more intensely and hazardously.”

According to Lui, existing research has suggested two theories: “Either people are socialized to adopt more permissive and favorable drinking culture in the U.S., or their experiences with cultural stresses, such as the pressure to become ‘American’ or racial discrimination, are making people use alcohol to cope.”

Lui is currently conducting further studies to better test these two theories, and to understand risk and protective factors of alcohol use.

Associations between alcohol use and the acculturation process are a focus of Lui’s research in her Acculturation, Diversity, and Psychopathology Team (ADAPT), where she is the principal investigator.  Lui is an assistant professor in the Psychology Department in the Dedman College of Humanities & Sciences at SMU.

The study, “A Critical Review and Meta-Analysis of the Associations between Acculturation and Alcohol Use Outcomes among Hispanic Americans,” is published in the October issue of the journal Alcoholism: Clinical and Experimental Research.

The study by Lui and Zamboanga are being published just as new research from the medical journal, The BMJ, revealed that more Americans, particularly young people, are dying from liver disease and cirrhosis as a result of alcohol consumption.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty, and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities, and the world.

Categories
Feature Global Health & Medicine Mind & Brain Researcher news Subfeature

NIH Funds Collaborative Study of Cognitive Impairment in Older Asthma Patients

Led by SMU psychologist and UTSW psychiatrist, Dallas Asthma Brain and Cognition Study will use brain scans to explore relationship between inflammatory lung disease and brain function in older adults

DALLAS (SMU) – SMU psychologist Thomas Ritz and UT Southwestern Medical Center psychiatrist Sherwood Brown will lead a $2.6 million study funded over four years by the National Institutes of Health to explore the apparent connection between asthma and diminished cognitive function in middle-to-late-age adults.

The World Health Organization estimates that 235 million people suffer from asthma worldwide.

The study will build on the work Brown and Ritz have accomplished with a core group of researchers over a period of eight years. Their pilot data, gleaned from brain imaging and analysis of chemical changes, indicates that neurons in the hippocampus of young-to-middle-age adults with asthma are not as healthy as those in the control group without asthma. The hippocampus is that portion of the brain that controls long-term memory and spatial navigation.

“In our early study, we found that there were differences between healthy control participants and young-to-middle-age asthma patients in that the latter showed a slightly lower performance in cognitive tasks,” Ritz said. “We wonder how that looks in older age. When you have asthma for a lifetime, the burden of the disease may accumulate.”

The early findings also led his group to wonder if the impact on cognition is related to the severity of the disease.

“This all makes sense, but no one has looked specifically at how that relates to brain structure,” Ritz said.  “With this grant we will look at structures – the neurons and axons, the white and gray matter of the brain, how thick they are in various places. We look at what kind of chemicals have been accumulating, which are the byproducts of neural activity. We want to know how various areas of the brain function during cognitive tasks.”

The four-year project will allow researchers to study a sample of up to 200 participants who are between the ages of 40-69. In addition to Ritz and Brown, the research group includes Denise C. Park, director of research for the Center for Vital Longevity at the University of Texas at Dallas; Changho Choi, professor of radiology at UTSW; David Khan, professor of internal medicine at UTSW; Alicia E. Meuret, professor of clinical psychology at SMU, and David Rosenfield, associate professor of psychology at SMU.  SMU graduate students working on the grant are Juliet Kroll and Hannah Nordberg.

“This is how neuroimaging works today – it is a team sport,” Ritz said. “You cannot do it on your own. You have to strike up collaborations with various disciplines.  It’s very exciting because it is stimulating and interesting to collaborate with colleagues in different areas.”

The study, scheduled to run through May 31, 2022, will allow the research team to examine several possible factors that may impact cognition in people with asthma.

“Is it lack of oxygen?  That’s a very good question,” Ritz said. “But it cannot be the full story.  Real lack of oxygen only happens in severe asthma attacks and in most cases, people having an asthma attack are still well saturated with oxygen.

Carbon dioxide levels are often too low in asthma patients – but it is uncertain whether that is a .”

Another possibility, he said, is that the problems with disrupted sleep experienced by many people with asthma might relate to cognitive function.

“Just imagine you how you perform after lack of sleep,” Ritz said. “In the long run, we know sleep is important to the health of our brain. If over a lifetime you’ve had interruptions in sleep, it may impact your neural health.”

This research is being supported by the National Heart, Lung, And Blood Institute of the National Institutes of Health under grant number 1R01HL142775-01.

Categories
Feature Health & Medicine Mind & Brain Researcher news Videos

Mild problem-solving task improves brain function after a concussion, new study suggests

A simple cognitive task as early as four days after a brain injury activates the region that improves memory function, and may guard against developing depression or anxiety

Concern is growing about the danger of sports-related concussions and their long-term impact on athletes. But physicians and healthcare providers acknowledge that the science is evolving, leaving questions about rehabilitation and treatment options.

Currently, guidelines recommend that traumatic brain injury patients get plenty of rest and avoid physical and cognitive activity until symptoms subside.

But a new pilot study looking at athletes with concussions suggests total inactivity may not be the best way to recover after all, say scientists at Southern Methodist University, Dallas, where the research was conducted.

The study found that a simple cognitive task as early as four days after a brain injury activated the region that improves memory function and can guard against two hallmarks of concussion — depression and anxiety.

“Right now, if you have a concussion the directive is to have complete physical and cognitive rest, no activities, no social interaction, to let your brain rest and recover from the energy crisis as a result of the injury,” said SMU physiologist Sushmita Purkayastha, who led the research, which was funded by the Texas Institute for Brain Injury and Repair at UT Southwestern Medical Center, Dallas.

“But what we saw, the student athletes came in on approximately the third day of their concussion and the test was not stressful for them. None of the patients complained about any symptom aggravation as a result of the task. Their parasympathetic nervous system — which regulates automatic responses such as heart rate when the body is at rest — was activated, which is a good sign,” said Purkayastha, an assistant professor in the Department of Applied Physiology and Wellness.

The parasympathetic nervous system is associated with better memory function and implicated in better cardiovascular function. It also helps to regulates stress, depression and anxiety — and those are very common symptoms after a concussion.

“People in the absolute rest phase after concussion often experience depression,” Purkayastha added. “In the case of concussion, cutting people off from their social circle when we say ‘no screen time’ — particularly the young generation with their cell phones and iPads — they will just get more depressed and anxious. So maybe we need to rethink current rehabilitation strategy.”

The new study addresses the lack of research upon which to develop science- and data-based treatment for concussion. The findings emerged when the research team measured variations in heart rate variability among athletes with concussions while responding to simple problem-solving and decision-making tasks.

While we normally think of our heart rate as a steady phenomenon, in actuality the interval varies and is somewhat irregular — and that is desirable and healthy. High heart rate variability is an indicator of sound cardiovascular health. Higher levels of variability indicate that physiological processes are better controlled and functioning as they should, such as during stressful (both physical and challenging mental tasks) or emotional situations.

Concussed athletes normally have lowered heart rate variability.

For the new study, Purkayastha and her team administered a fairly simple cognitive task to athletes with concussions. During the task, the athletes recorded a significant increase in heart rate variability.

The study is the first of its kind to examine heart rate variability in college athletes with concussions during a cognitive task.

The findings suggest that a small measure of brain work could be beneficial, said co-investigator and neuro-rehabilitation specialist Kathleen R. Bell, a physician at UT Southwestern.

“This type of research will change fundamentally the way that patients with sports and other concussions are treated,” said Bell, who works with brain injury patients and is Chair of Physical Medicine and Rehabilitation at UT Southwestern. “Understanding the basic physiology of brain injury and repair is the key to enhancing recovery for our young people after concussion.”

The researchers reported their findings in the peer-reviewed Journal of Head Trauma Rehabilitation, in the article “Reduced resting and increased elevation of heart rate variability with cognitive task performance in concussed athletes.”

Co-authors from SMU Simmons School include Mu Huang and Justin Frantz; Peter F. Davis and Scott L. Davis, from SMU’s Department of Applied Physiology and Wellness; Gilbert Moralez, Texas Health Presbyterian Hospital, Dallas; and Tonia Sabo, UT Southwestern.

Concussion symptom improved with simple brain activity
Volunteer subjects for the study were 46 NCAA Division I and recreational athletes who participate in contact-collision sports. Of those, 23 had a physician-diagnosed sports-related concussion in accordance with NCAA diagnostic criteria. Each of them underwent the research testing within approximately three to four days after their injury.

Not surprisingly, compared to the athletes in the control group who didn’t have concussions, the athletes with concussions entered answers that were largely incorrect.

More importantly, though, the researchers observed a positive physiological response to the task in the form of increased heart rate variability, said Purkayastha.

“It’s true that the concussed group gave wrong answers for the most part. More important, however, is the fact that during the task their heart rate variability improved,” she said. “That was most likely due to the enhancement of their brain activity, which led to better regulation. It seems that engaging in a cognitive task is crucial for recovery.”

Heart rate variability is a normal physiological process of the heart. It makes possible a testing method as noninvasive as taking a patient’s blood pressure, pulse or temperature. In the clinical field, measuring heart rate variability is an increasingly common screening tool to see if involuntary responses in the body are functioning and being regulated properly by the autonomic nervous system.

The parasympathetic is blunted or dampened by concussion
Abnormal fluctuations in heart rate variability are associated with certain conditions before symptoms are otherwise noticeable.

Monitoring heart rate variability measures the normal synchronized contractions of the heart’s atriums and ventricles in response to natural electrical impulses that rhythmically move across the muscles of the heart.

After a concussion, an abnormal and unhealthy decline in heart rate variability is observed in the parasympathetic nervous system, a branch of the autonomic nervous system. The parasympathetic is in effect blunted or dampened after a concussion, said Purkayastha.

As expected, in the current study, heart rate variability was lower among the athletes with concussions than those without.

New findings add evidence suggesting experts rethink rehab
But that changed during the simple cognitive task. For the athletes with concussions, their heart rate variability increased, indicating the parasympathetic nervous system was activated by the task.

Heart rate variability between the concussed and the controls was comparable during the cognitive task, the researchers said in their study.

“This suggests that maybe we need to rethink rehabilitation after someone has a concussion,” Purkayastha said. — Margaret Allen, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Videos

People who deeply grasp the pain or happiness of others also process music differently in the brain

Higher empathy people appear to process music like a pleasurable proxy for a human encounter — in the brain regions for reward, social awareness and regulation of social emotions.

People with higher empathy differ from others in the way their brains process music, according to a study by researchers at Southern Methodist University, Dallas and UCLA.

The researchers found that compared to low empathy people, those with higher empathy process familiar music with greater involvement of the reward system of the brain, as well as in areas responsible for processing social information.

“High-empathy and low-empathy people share a lot in common when listening to music, including roughly equivalent involvement in the regions of the brain related to auditory, emotion, and sensory-motor processing,” said lead author Zachary Wallmark, an assistant professor in the SMU Meadows School of the Arts.

But there is at least one significant difference.

Highly empathic people process familiar music with greater involvement of the brain’s social circuitry, such as the areas activated when feeling empathy for others. They also seem to experience a greater degree of pleasure in listening, as indicated by increased activation of the reward system.

“This may indicate that music is being perceived weakly as a kind of social entity, as an imagined or virtual human presence,” Wallmark said.

Researchers in 2014 reported that about 20 percent of the population is highly empathic. These are people who are especially sensitive and respond strongly to social and emotional stimuli.

The SMU-UCLA study is the first to find evidence supporting a neural account of the music-empathy connection. Also, it is among the first to use functional magnetic resonance imaging (fMRI) to explore how empathy affects the way we perceive music.

The new study indicates that among higher-empathy people, at least, music is not solely a form of artistic expression.

“If music was not related to how we process the social world, then we likely would have seen no significant difference in the brain activation between high-empathy and low-empathy people,” said Wallmark, who is director of the MuSci Lab at SMU, an interdisciplinary research collective that studies — among other things — how music affects the brain.

“This tells us that over and above appreciating music as high art, music is about humans interacting with other humans and trying to understand and communicate with each other,” he said.

This may seem obvious.

“But in our culture we have a whole elaborate system of music education and music thinking that treats music as a sort of disembodied object of aesthetic contemplation,” Wallmark said. “In contrast, the results of our study help explain how music connects us to others. This could have implications for how we understand the function of music in our world, and possibly in our evolutionary past.”

The researchers reported their findings in the peer-reviewed journal Frontiers in Behavioral Neuroscience, in the article “Neurophysiological effects of trait empathy in music listening.”

The co-authors are Choi Deblieck, with the University of Leuven, Belgium, and Marco Iacoboni, UCLA. The research was carried out at the Ahmanson-Lovelace Brain Mapping Center at UCLA.

“The study shows on one hand the power of empathy in modulating music perception, a phenomenon that reminds us of the original roots of the concept of empathy — ‘feeling into’ a piece of art,” said senior author Marco Iacoboni, a neuroscientist at the UCLA Semel Institute for Neuroscience and Human Behavior.

“On the other hand,” Iacoboni said, “the study shows the power of music in triggering the same complex social processes at work in the brain that are at play during human social interactions.”

Comparison of brain scans showed distinctive differences based on empathy
Participants were 20 UCLA undergraduate students. They were each scanned in an MRI machine while listening to excerpts of music that were either familiar or unfamiliar to them, and that they either liked or disliked. The familiar music was selected by participants prior to the scan.

Afterward each person completed a standard questionnaire to assess individual differences in empathy — for example, frequently feeling sympathy for others in distress, or imagining oneself in another’s shoes.

The researchers then did controlled comparisons to see which areas of the brain during music listening are correlated with empathy.

Analysis of the brain scans showed that high empathizers experienced more activity in the dorsal striatum, part of the brain’s reward system, when listening to familiar music, whether they liked the music or not.

The reward system is related to pleasure and other positive emotions. Malfunction of the area can lead to addictive behaviors.

Empathic people process music with involvement of social cognitive circuitry
In addition, the brain scans of higher empathy people in the study also recorded greater activation in medial and lateral areas of the prefrontal cortex that are responsible for processing the social world, and in the temporoparietal junction, which is critical to analyzing and understanding others’ behaviors and intentions.

Typically, those areas of the brain are activated when people are interacting with, or thinking about, other people. Observing their correlation with empathy during music listening might indicate that music to these listeners functions as a proxy for a human encounter.

Beyond analysis of the brain scans, the researchers also looked at purely behavioral data — answers to a survey asking the listeners to rate the music afterward.

Those data also indicated that higher empathy people were more passionate in their musical likes and dislikes, such as showing a stronger preference for unfamiliar music.

Precise neurophysiological relationship between empathy and music is largely unexplored
A large body of research has focused on the cognitive neuroscience of empathy — how we understand and experience the thoughts and emotions of other people. Studies point to a number of areas of the prefrontal, insular, and cingulate cortices as being relevant to what brain scientists refer to as social cognition.

Studies have shown that activation of the social circuitry in the brain varies from individual to individual. People with more empathic personalities show increased activity in those areas when performing socially relevant tasks, including watching a needle penetrating skin, listening to non-verbal vocal sounds, observing emotional facial expressions, or seeing a loved one in pain.

In the field of music psychology, a number of recent studies have suggested that empathy is related to intensity of emotional responses to music, listening style, and musical preferences — for example, empathic people are more likely to enjoy sad music.

“This study contributes to a growing body of evidence,” Wallmark said, “that music processing may piggyback upon cognitive mechanisms that originally evolved to facilitate social interaction.” — Margaret Allen, SMU

Categories
Culture, Society & Family Feature Health & Medicine Researcher news SMU In The News Student researchers

SAPIENS: Why Aid Remains Out of Reach for Some Rohingya Refugees

Even with the right to health care secured, medical assistance is elusive for urban refugees in India.

The anthropology publication SAPIENS has published an article by SMU doctoral candidate Ashvina Patel.

SAPIENS is an editorially independent publication of the Wenner-Gren Foundation for Anthropological Research Inc., which is dedicated to popularizing anthropology to a broad audience.

The article, “Why Aid Remains Out of Reach for Some Rohingya Refugees,” published May 17, 2018.

The article resulted from Patel’s 11-month stay in New Delhi, India, in which she interviewed residents of three urban refugee settlements. The purpose was to understand how issues of geopolitics and domestic policy inform various types of human insecurity for refugees.

Patel is currently a visiting student fellow at Oxford University’s Refugee Studies Centre, where she is developing further publications on Rohingya refugee displacement.

She is a doctoral candidate in SMU’s Department of Anthropology. Patel holds an M.A. degree in Cultural Anthropology from SMU and an M.A. in Religion from University of Hawaii, Manoa. As a doctoral student, her research focuses on issues of human insecurity among Rohingya refugees in the context of American resettlement as well as within New Delhi, India as urban refugees. Her research work focuses specifically on defining the subjective experience of human insecurity and how various forms of insecurity are informed by statelessness.

Patel is a student of SMU anthropology professor Caroline Brettell, an internationally recognized immigration expert and Ruth Collins Altshuler Professor and Director of the Interdisciplinary Institute. Brettell is a member of the American Academy of Arts and Sciences.

A private operating foundation, Wenner-Gren is dedicated to the advancement of anthropology throughout the world. Located in New York City, it is one of the major funding sources for international anthropological research and is actively engaged with the anthropological community through its varied grant, fellowship, networking, conference and symposia programs.

It founded and continues to publish the international journal Current Anthropology, and disseminates the results of its symposia through open-access supplementary issues of this journal. The Foundation works to support all branches of anthropology and closely related disciplines concerned with human biological and cultural origins, development, and variation.

Read the full article.

EXCERPT:

From the field notes
of SMU PhD candidate Ashvina Patel

Ameena (a pseudonym) is a 25-year-old Rohingya refugee in New Delhi, India, who is seven months pregnant with twins. Her face is gaunt. Often there isn’t enough food at home for her family of five. Nestled among other shanty houses, her home is made of bamboo with scrap boards as paneling; a tattered piece of cloth serves as the front door. Recently, the monsoon rains caused her to slip and fall. Now one of the babies in her womb is not moving. She knows she needs to see a doctor, but she cannot afford one.

When Ameena fled acts of genocide perpetrated by her own government of Myanmar in 2012, she and her husband came to New Delhi. They both suffer from debilitating deformities due to polio, and they heard that the United Nations High Commissioner for Refugees (UNHCR) office in New Delhi was helping Rohingya refugees. The UNHCR partners with the Indian government to provide free aid to help people obtain an education, a livelihood, and health care.

But as Ameena and others would learn, being offered access to aid isn’t always enough. Barriers to procuring those free resources often leave urban refugees to fend for themselves; many find they have to negotiate a system that inadvertently creates obstacles to reaching that aid.

Having spent 11 months with the Rohingya community in India from 2015 to 2017, I repeatedly saw how aid missed its intended target. As the UNHCR creates solutions to challenges that refugees face, these solutions can also serve as a catalyst for new obstacles or deepen already existing insecurities by creating additional barriers that are financial, linguistic, cultural, or exploitative. The UNHCR does a lot of good, but the organization could do a better job addressing challenges refugees face in accessing the services to which they are permitted.

Read the full article.

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News Videos

Fox4WARD: Knowing how our partner is feeling

Fox 4 journalist Dan Godwin interviewed family psychologist Chrystyna D. Kouros, an associate professor in the SMU Department of Psychology, about her latest research on couples.

Lead author on the new study, Kouros and her co-author, relationship psychologist Lauren M. Papp at the University of Wisconsin-Madison, found that couples do poorly when it comes to knowing their partner is sad, lonely or feeling down.

Kouros and Papp reported their findings in the peer-reviewed journal Family Process, in the article “Couples’ Perceptions of Each Other’s Daily Affect: Empathic Accuracy, Assumed Similarity, and Indirect Accuracy.”

Godwin’s segment, “Knowing how our partner is feeling,” aired March 11 on Fox 4’s 10 p.m. Sunday news segment Fox4WARD.

Watch the full segment on Fox 4.

Categories
Culture, Society & Family Feature Health & Medicine

New study finds couples do poorly at knowing when their partner is sad or feeling down

Spouses are the primary source of social support to one another, so it’s important to their relationship they stay attuned to each other’s emotions.

How well do couples pick up on one another’s feelings? Pretty well, when the emotion is happiness, says a psychologist at Southern Methodist University, Dallas.

But a new study finds that couples do poorly when it comes to knowing their partner is sad, lonely or feeling down.

“We found that when it comes to the normal ebb and flow of daily emotions, couples aren’t picking up on those occasional changes in ‘soft negative’ emotions like sadness or feeling down,” said family psychologist Chrystyna D. Kouros, lead author on the study. “They might be missing important emotional clues.”

Even when a negative mood isn’t related to the relationship, it ultimately can be harmful to a couple, said Kouros, an associate professor in the SMU Department of Psychology. A spouse is usually the primary social supporter for a person.

“Failing to pick up on negative feelings one or two days is not a big deal,” she said. “But if this accumulates, then down the road it could become a problem for the relationship. It’s these missed opportunities to be offering support or talking it out that can compound over time to negatively affect a relationship.”

The finding is consistent with other research that has shown that couples tend to assume their partner feels the same way they are feeling, or thinks the same way they do, Kouros said.

But when it comes to sadness and loneliness, couples need to be on the look-out for tell-tale signs. Some people are better at this process of “empathic accuracy” — picking up on a partner’s emotions — than others.

“With empathic accuracy you’re relying on clues from your partner to figure out their mood,” Kouros said. “Assumed similarity, on the other hand, is when you just assume your partner feels the same way you do. Sometimes you might be right, because the two of you actually do feel the same, but not because you were really in tune with your partner.”

Co-author on the study is relationship psychologist Lauren M. Papp at the University of Wisconsin-Madison.

Kouros and Papp reported their findings in the peer-reviewed journal Family Process, in the article “Couples’ Perceptions of Each Other’s Daily Affect: Empathic Accuracy, Assumed Similarity, and Indirect Accuracy.”

Couples should assume less about one another, observe more
The problem isn’t one for which couples need to seek therapy, Kouros said. Instead, she advises couples to stop assuming they know what their partner is feeling. Also, pay more attention to your partner, and communicate more.

“I suggest couples put a little more effort into paying attention to their partner — be more mindful and in the moment when you are with your partner,” she said.

She cautions, however, against becoming annoying by constantly asking how the other is feeling, or if something is wrong.

“Obviously you could take it too far,” Kouros said. “If you sense that your partner’s mood is a little different than usual, you can just simply ask how their day was, or maybe you don’t even bring it up, you just say instead ‘Let me pick up dinner tonight’ or ‘I’ll put the kids to bed tonight.’”

Even so, partners shouldn’t assume their spouse is a mind-reader, expecting them to pick up on their emotions. “If there’s something you want to talk about, then communicate that. It’s a two-way street,” she said. “It’s not just your partner’s responsibility.”

Participants were 51 couples who completed daily diaries about their mood and the mood of their partner for seven consecutive nights. The study veers from conventional approaches to the topic, which have relied on interviewing couples in a lab setting about feelings related to conflicts in their relationship.

Kouros and Papp will also present the research findings March 23 at the 2018 biennial meeting of the Society for Research in Human Development. — Margaret Allen, SMU

Categories
Feature Health & Medicine Plants & Animals Researcher news

Study: Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure

Wet-lab experiments confirm the accuracy of an earlier computational discovery that three drug-like compounds successfully penetrate micro-tumors of advanced cancers to aid chemo in destroying the cancer.

Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers — ovarian, prostate and breast.

The molecules were first discovered computationally via high-performance supercomputing. Now their effectiveness against specific cancers has been confirmed via wet-lab experiments, said biochemistry professors Pia Vogel and John G. Wise, who led the study.

Wise and Vogel report the advancement in the Nature journal Scientific Reports.

The computational discovery was confirmed in the Wise-Vogel labs at SMU after aggressive micro-tumors cultured in the labs were treated with a solution carrying the molecules in combination with a classic chemotherapy drug. The chemotherapy drug by itself was not effective in treating the drug-resistant cancer.

“Nature designs all cells with survival mechanisms, and cancer cells are no exception,” said Vogel, a professor in the SMU Department of Biological Sciences and director of SMU’s Center for Drug Discovery, Design and Delivery. “So it was incredibly gratifying that we were able to identify molecules that can inhibit that mechanism in the cancer cells, thereby bolstering the effectiveness of chemotherapeutic drugs. We saw the drugs penetrate these resistant cancer cells and allow chemotherapy to destroy them. While this is far from being a developed drug that will be available on the market anytime soon, this success in the lab gives us hope for developing new drugs to fight cancer.”

The current battle to defeat cancer is thwarted by chemotherapy failure in advanced cancers. Cancer cells initially treated with chemotherapy drugs ultimately evolve to resist the drugs. That renders chemotherapy ineffective, allowing cancers to grow and spread.

Key to cancer cell resistance are often certain proteins typically found in all cells — cancerous or otherwise — that are outfitted with beneficial mechanisms that pump away toxins to ensure a cell’s continued survival. Nature has set it up that these pumps are prevalent throughout the body, with some areas naturally having more of the pumps than others.

“The cancer cell itself can use all these built-in defenses to protect it from the kinds of things we’re using to try to kill it with,” Wise said.

The most common of these beneficial defense mechanisms is a pump protein, P-glycoprotein or P-gp, as it’s called. Another is one seen in breast and many other cancers, called breast cancer resistance protein, BCRP. In the case of cancer cells on the first round of treatment, these pumps are typically not produced in high levels in the cells, which allows chemotherapy to enter most of the cells in the tumor. This often gives what looks like a good result.

Unfortunately, in the cancer cells that don’t die, the chemotherapeutic often changes the cell, which then adapts to protect itself by aggressively multiplying the production of its defensive pumps.

Upon subsequent rounds of chemo, the P-gp and BCRP pumping mechanisms have proliferated. They effectively resist the chemotherapy, which now is much less successful, or not successful at all.

“if enough of the pumps are present, the cancer isn’t treatable anymore,” said Wise, associate professor in the SMU Department of Biological Sciences. Researchers in the field have searched unsuccessfully for compounds to inhibit the pumps that could be used in the clinic as well.

The molecules that Wise and Vogel discovered stopped the pumps.

“They effectively bring the cancer cells back to a sensitivity as if they’d never seen chemotherapy before,” said Vogel. “And our data indicated the molecules aren’t cancer specific. They can be used to treat all kinds of cancers because they inhibit not just the P-gp pump, but also the breast cancer protein pump.”

To test the compounds, the researchers used amounts of chemotherapeutic that would not kill these multi-drug resistant cancers if the pumps were not blocked.

“We wanted to make sure when using these really aggressive cancers that if we do knock out the pump, that the chemotherapy goes in there and causes the cell to die, so it doesn’t just stop it temporarily,” Wise said. “We spent a fair amount of time proving that point. It turns out that when a cell dies it goes through very predictable morphological changes. The DNA gets chopped up into small pieces, and we can see that, and so the nucleus becomes fragmented, and we can see that. Under the microscope, with proper staining, you can actually see that these highly drug-resistant prostate cancer cells, for example, are dead.”

The Scientific Reports article, “Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells,” is available open access at this link.

Other co-authors are SMU Ph.D. doctoral candidate Amila K. Nanayakkara, and Courtney A. Follit and Gang Chen, all in the SMU Department of Biological Sciences; and Noelle S. Williams, Department of Biochemistry, UT Southwestern Medical Center, Dallas.

Getting at the heart of the problem
Unique to the experiment is that the molecules were also tested on three-dimensional micro-tumors. That is a departure from the usual cell-culture experiments, which are a two-dimensional film.

In two-dimensional experiments, every cell is exposed to the chemotherapeutic because the film is just one layer of cells thick. That method ignores one of the key challenges to reversing tumors — how to get drugs into the middle of a tumor, not just on its surface.

“We show that with the help of our inhibitor compounds, we actually make the tumor penetrable to chemotherapeutic,” Vogel said. “We can kill the cells in the middle of the tumor.”

A pathway to personalized medical treatments
Chemotherapy’s harmful side effects on non-cancerous organs is well-known. The discovery of molecules that target a specific pump may mitigate that problem.

A patient’s tumor can be sampled to see which pump is causing the drug resistance. Then the molecule that knocks out that specific pump can be added to the chemotherapy.

“That means you don’t open the door wide to toxins in the central nervous system,” Wise said. “That has some real implications for the future and for personalized medicine. In most of the previous clinical trials, inhibitors have opened the brain up to toxins. From what we can tell so far, our inhibitors do not increase the toxicity of chemotherapeutics in normal cells.”

An audacious discovery
P-gp is present in one form or another in everything that lives.

“It’s in your dog, it’s in your cat, it’s in yeast cells, it’s in bacteria, it’s everywhere,” Wise said. “Why is it everywhere? Because it’s a really wonderful solution to the problem of getting toxins out of a cell. P-gp is a tremendously sophisticated evolutionary solution to that problem. And as with most things in biology that work well, everybody gets it, because if you don’t have it, you didn’t survive.”

Biologists say that P-gp can pump out 95 of 100 chemotherapeutics, indicating it can grab almost any drug and throw it out of a cell.

“So there’s a certain audacity to say that we can use a computer and target one part of this protein — the motor — and totally avoid the part of the protein that has evolved to pump almost anything that looks like a drug out of the cell,” Wise said. “That’s an audacious claim and the findings surprised us.”

In their computational and wet-lab experiments, Wise and Vogel searched for molecules that inhibit ATP hydrolysis — the chemical energy reaction that powers the P-gp pump.

“We targeted the motor of the pump instead of the pump part of the pump because almost all the clinical trial failures in other studies were actually compounds that targeted the pump part of the pump — and they would just slow down the pumping of the chemotherapeutic,” Vogel said. “The time was ripe to do these structural models. We hypothesized that we could completely avoid the pumping mechanism and just target the motor.”

Computational method highly predictive
The wet-lab experiments confirmed the accuracy of the computational findings, Vogel said.

“The predictiveness of the computational methods was really high,” she said. “It completely exceeded my expectations. We had selected certain molecules that were predicted in those computational experiments to interact with the pump in certain ways and not in others, and we could show in our wet-lab experiments that the predictions were spot on.”

Fascinated by the novel approach to the research, the National Institute of General Medical Sciences funded much of the research.

Wise and Vogel tapped the high-performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. Wise sorted through 15 million commercially available drug-like compounds made publically available in digital form from the pharmacology database Zinc at the University of California, San Francisco.

Then, again using ManeFrame, Wise ran the compounds through a computer-generated model of P-gp. The virtual model, designed and built by Wise, is the first computational microscope of its kind to simulate the actual behavior of P-gp in the human body, including interactions with drug-like compounds while taking on different shapes. He reported the dynamic functioning of the model in 2015 in the journal Biochemistry in “Multiple drug transport pathways through human P-glycoprotein.”

Process of elimination finds needle in the haystack
Out of 15 million drug-like compounds that were virtually screened, the researchers found 180,000 that in the computer were predicted to interact strongly with the ATP harvesting power plant part of the pump motor. From those, Wise and Vogel eliminated the ones that interact well with the pump part. Roughly 0.15 percent survived — several hundred.

“So that tells you how promiscuous that binding site is for compounds,” Wise said.

From there, they bought and tested in the lab a number of the remaining molecules.

“It was a process of elimination,” Vogel said. “Of the first 38 we tested, we found four. And because of the computational approach we took, it made failure relatively cheap. This is proof of principle that at least in those cases the compounds behave exactly in the lab as predicted in the computer. Which thrills the heck out of me — I never, ever would have thought that.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. — Margaret Allen, SMU

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Videos

Daily Planet: Star Wars come to life in SMU chemist’s invention

Long ago, sort of, scenes from Star Wars triggered a child’s imagination, so that today it’s informed one of his research goals as a chemist.

Discover Canada’s science magazine show Daily Planet reported on the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. An economical method for shaping light into an infinite number of volumetric objects, the technology will be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

The Daily Planet segment aired Dec. 12, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Watch the full Dec. 12 show.

Categories
Health & Medicine Researcher news SMU In The News Videos

GAINcast Episode 89: How Speed Happens (with Peter Weyand)

“People recognize the power of science, in terms of testing and numbers. But unless you’re involved in it it’s hard to appreciate the creativity that is also part of the process.” — Peter Weyand

The founder of modern sports performance training, Vern Gambetta, interviewed SMU locomotion researcher Peter Weyand about human speed and performance for his GAINcast show.

The GAINcast name is an acronym for the internationally recognized Gambetta’s self-made sports performance education, outreach and training efforts, Gambetta Athletic Improvement Network.

Gambetta’s 60-minute interview with Weyand posted Nov. 2, 2017, “Gaincast Episode 89: How Speed Happens (with Peter Weyand).”

In it, Weyand touches on the experiences early in his career as a high school and college athlete playing basketball and running track that sparked his pursuit of a research and academic career in sports science and human performance.

As a high school coach, Weyand’s early interest intensified, leading him to pursue advanced degrees and a scientific career exploring the mechanics of human locomotion and speed, including at the University of Georgia and then at Harvard’s Concord Field Station.

During that time, Weyand worked with early pioneers in the biomechanics and human performance field, including renowned researcher Dick Taylor. At the field station in particular, Weyand credits Taylor with mentoring young researchers in aggressively and fearlessly digging into basic science questions surrounding mammalian locomotion.

“It was wide open, anything goes. It wasn’t these reductionist questions …. It was anything under the sun you could cook up. And there was an insistence on good scientific questions, and a real integrative perspective on all of it. Those were my formative scientific experiences. People recognize the power of science, in terms of testing and numbers. But unless you’re involved in it it’s hard to appreciate the creativity that is also part of the process. There’s an art of doing science and Dick was a master of that. And everybody that came through that field station under his training, which is really a who’s who in our field in many respects, learned that art from him.”

Weyand is an expert on human locomotion and the mechanics of running. Research from his SMU Locomotor Performance Laboratory in SMU’s Annette Caldwell Simmons School of Education and Human Development has produced ground-breaking scientific findings about the science of human speed.

The lab focuses on the mechanical basis of human performance and includes physicist and engineer Laurence Ryan, an expert in force and motion analysis.

The Weyand lab’s most recent research found that the world’s fastest sprinter, Usain Bolt, has an asymmetrical running gait, contrary to the common notions about coaching and training for speed. Bolt’s asymmetry was discovered using the lab’s two-mass model tool, which the researchers have described in the Journal of Experimental Biology, “A general relationship links gait mechanics and running ground reaction forces.” The model can assess the crucial early portion of foot-ground contact — the impact-phase force and time relationships — from motion data only.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness.

Listen to the podcast.

EXCERPT:

By Martin Bingisser
GAINcast

There are some basic questions out there that are difficult to answer, such as what limits human running speed. As technology advances, scientists can better study and start to answer this and other simple questions like what makes one athlete faster than another.

Dr. Peter Weyand has spent decades researching locomotion on both animals and humans. His work with elite sprinters has brought some interesting conclusions and is driving the field forward. On this episode of the GAINcast he joins us to discuss his research and its practical implications.

Listen to the podcast.

Categories
Culture, Society & Family Feature Health & Medicine Student researchers

Study: New simple method determines rate at which we burn calories walking uphill, downhill, and on level ground

New method uses three variables of speed, load carried and slope to improve on the accuracy of existing standards for predicting how much energy people require for walking — a method beneficial to many, including military strategists to model mission success

When military strategists plan a mission, one of many factors is the toll it takes on the Army’s foot soldiers.

A long march and heavy load drains energy. So military strategists are often concerned with the calories a soldier will burn, and the effect of metabolic stress on their overall physiological status, including body temperature, fuel needs and fatigue.

Now scientists at Southern Methodist University, Dallas, have discovered a new more accurate way to predict how much energy a soldier uses walking.

The method was developed with funding from the U.S. military. It significantly improves on two existing standards currently in use, and relies on just three readily available variables.

An accurate quantitative assessment tool is important because the rate at which people burn calories while walking can vary tenfold depending on how fast they walk, if they carry a load, and whether the walk is uphill, downhill or level.

“Our new method improves on the accuracy of the two leading standards that have been in use for nearly 50 years,” said exercise physiologist Lindsay W. Ludlow, an SMU post-doctoral fellow and lead author on the study. “Our model is fairly simple and improves predictions.”

The research is part of a larger load carriage initiative undertaken by the U.S. Army Medical Research and Materiel Command. The average load carried by light infantry foot soldiers in Afghanistan in April and May 2003 was 132 pounds, according to a U.S. Army Borden Institute report.

“Soldiers carry heavy loads, so quantitative information on the consequences of load is critical for many reasons, from planning a route to evaluating the likelihood of mission success,” said SMU biomechanist and physiologist Peter Weyand, @Dr_Weyand.

“The military uses a variety of approaches to model, predict and monitor foot-soldier status and performance, including having soldiers outfitted with wearable devices,” Weyand said. “There is a critical need with modern foot soldiers to understand performance from the perspective of how big a load they are carrying.”

Weyand is senior author on the research and directs the Locomotor Performance Laboratory in the SMU Simmons School of Education, where subjects for the study were tested.

The researchers call their new method the “Minimum Mechanics Model” to reflect that it requires only three basic and readily available inputs to deliver broad accurate predictions. They report their findings in “Walking economy is predictably determined by speed, grade and gravitational load” in the Journal of Applied Physiology.

The necessary variables are the walker’s speed, the grade or slope of the walking surface, and the total weight of the body plus any load the walker is carrying.

“That’s all it takes to accurately predict how much energy a walker burns,” Ludlow said.

While the measurement is a critical one for foot soldiers, it’s also useful for hikers, backpackers, mall-walkers and others who are calorie conscious and may rely on wearable electronic gadgets to track the calories they burn, she said.

Muscle and gait mechanics tightly coupled across speed, grade, load
Existing standards now in use rely on the same three variables, but differently, and with less accuracy and breadth.

The new theory is a departure from the prevailing view that the mechanics of walking are too complex to be both simple and accurate.

“Ultimately, we found that three remarkably simple mechanical variables can provide predictive accuracy across a broad range of conditions,” Ludlow said. “The accuracy achieved provides strong indirect evidence that the muscular activity determining calorie-burn rates during walking is tightly coupled to the speed, surface inclination and total weight terms in our model.”

By using two different sets of research subjects, the researchers independently evaluated their model’s ability to accurately predict the amount of energy burned.

“If muscle and gait mechanics were not tightly coupled across speed, grade and load, the level of predictive accuracy we achieved is unlikely,” Weyand said.

First generalized equation developed directly from a single, large database
The two existing equations that have been the working standards for nearly 50 years were necessarily based on just a few subjects and a limited number of data points.

One standard from the American College of Sports Medicine tested only speed and uphill grades, with its first formulation being based on data from only three individuals.

The other standard, commonly referred to as the Pandolf equation is used more frequently by the military and relies heavily on data from six soldiers combined with earlier experimental results.

In contrast, the generalized equation from SMU was derived from what is believed to be the largest database available for human walking metabolism.

The SMU study tested 32 adult subjects individually under 90 different speed-grade and load conditions on treadmills at the SMU Locomotor Performance Laboratory, @LocomotorLabSMU.

“The leading standardized equations included only level and uphill inclinations,” Weyand said. “We felt it was important to also provide downhill capabilities since soldiers in the field will encounter negative inclines as frequently as positive ones.”

Subjects fast prior to measuring their resting metabolic rates
Another key element of the SMU lab’s Minimum Mechanics Model is the quantitative treatment of resting metabolic rate.

“To obtain true resting metabolic rate, we had subjects fast for 8 to 12 hours prior to measuring their resting metabolic rates in the early morning,” Ludlow said. “Once at the lab, they laid down for an hour while the researchers measured their resting metabolic rate.”

In separate test sessions, the subjects walked on the treadmill for dozens of trials lasting five minutes each, wearing a mouthpiece and nose clip. In the last two minutes of each trial, the researchers measured steady-state rates of oxygen uptake to determine the rate at which each subject was burning energy.

Adults in one group of 20 subjects were each measured walking without a load at speeds of 0.4 meters per second, 0.7 meters per second, 1 meter per second, 1.3 meters per second and 1.6 meters per second on six different gradients: downhill grades of minus six degrees and minus three degrees; level ground; and uphill at inclines of three degrees, six degrees and nine degrees.

Adults in a second group of 20 were each tested at speeds of 0.6 meters per second, 1 meter per second and 1.4 meters per second on the same six gradients, but they carried loads that were 18 percent of body weight, and 31 percent of body weight.

Walking metabolic rates increased in proportion to increased load
As expected, walking metabolic rates increased in direct proportion to the increase in load, and largely in accordance with support force requirements across both speed and grade, said Weyand and Ludlow.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development. He also is lead scientist for the biomechanics and modeling portion of the Sub-2-Hour marathon project, an international research consortium based in the United Kingdom. — Margaret Allen, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News

Sapiens: Can Medical Anthropology Solve the Diabetes Dilemma?

As the number of sufferers continues to rise, some researchers are moving in new directions to figure out how culture and lifestyle shape disease outcomes.

Sapiens reporter Kate Ruder covered the research of SMU anthropologist Carolyn Smith-Morris, who has studied diabetes among Arizona’s Pima Indians for more than 15 years.

Smith-Morris wrote about what she learned from her research in her 2006 book, “Diabetes Among the Pima: Stories of Survival.”

The Pima have the highest prevalence of diabetes ever recorded, although the disease is alarmingly on the increase throughout the United States. In an effort to understand the rise of the disease, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) from 1965 to 2007 focused on the Pima to carry out the largest continuous study of diabetes in Native Americans. Researchers examined the environmental and genetic triggers of the disorder, management of the disease, and the treatment of thousands of Pimas.

Smith-Morris is a medical anthropologist and associate professor in the SMU Anthropology Department in Dedman College. Her research addresses chronic disease, particularly diabetes, through ethnographic and mixed methodologies. She has conducted ethnographic research among the Gila River (Akimel O’odham) Indian Community of Southern Arizona, Mexicans and Mexican immigrants to the U.S. and veterans with spinal cord injuries.

The Sapiens article, “Can Medical Anthropology Solve the Diabetes Dilemma?” published Aug. 22, 2017.

Read the full story.

EXCERPT:

By Kate Ruder
Sapiens

Mary (a pseudonym) was 18 years old and halfway through her second pregnancy when anthropologist Carolyn Smith-Morris met her 10 years ago. Mary, a Pima Indian, was living with her boyfriend, brother, parents, and 9-month-old baby in southern Arizona. She had been diagnosed with gestational diabetes during both of her pregnancies, but she didn’t consider herself diabetic because her diabetes had gone away after her first birth. Perhaps her diagnosis was even a mistake, she felt. Mary often missed her prenatal appointments, because she didn’t have a ride to the hospital from her remote home on the reservation. She considered diabetes testing a “personal thing,” so she didn’t discuss it with her family.

As Smith-Morris’ research revealed, Mary’s story was not unique among Pima women. Many had diabetes, but they didn’t understand the risks. These women’s narratives have helped to explain, in part, why diabetes has been so prevalent in this corner of the world. An astonishing half of all adult Pimas have diabetes.

Medical anthropologists like Smith-Morris are helping the biomedical community untangle the social roots of diabetes and understand how and why the disease is exploding in the United States. Smith-Morris, based out of Southern Methodist University in Dallas, Texas, has been working on this cause for over 15 years—from a decade spent among the Pimas, to a new study sponsored by Google aiming to prevent diabetes-related blindness. Anthropology, she says, provides the most holistic perspective of this complex problem: “Anthropology seems to me the only discipline that allows you to look both closely at disease … and from the bird’s eye perspective.”

More than 30 million people in the United States are estimated to have diabetes, and it’s on the rise. If trends continue, 1 out of every 3 American adults could have diabetes by 2050, according to the Centers for Disease Control and Prevention.

The condition involves insulin, a hormone that regulates the way the body uses food for energy. In type 1 diabetes, the body stops making insulin entirely; those affected need daily insulin injections to survive. In type 2 diabetes, which accounts for the vast majority of cases, change is more gradual.The body slowly makes less insulin and becomes less sensitive to it over the years. Gestational diabetes, which strikes during pregnancy, can give mothers a dangerous condition called preeclampsia, which is related to high blood pressure and can harm both mothers and babies. Women with gestational diabetes are more than seven times likelier to later develop type 2 diabetes than women who do not have the condition in pregnancy, and their children are at higher risk of obesity and diabetes. If left untreated, diabetes can cause heart disease, kidney failure, foot problems that can lead to amputation, and blindness.

The preventative measures for type 2 and gestational diabetes are seemingly straightforward: eat healthy foods, lose weight, and exercise. Treatment for both can include taking medications. Yet prevention, lifestyle, and treatment cannot entirely solve the problem; family history, ethnicity, and other factors play a critical role in a person’s susceptibility to type 2 and gestational diabetes. Both forms of diabetes continue to plague Americans, particularly certain groups, including Native Americans. “My interest in diabetes grew out of an interest in Indigenous groups,” says Smith-Morris. “I took on diabetes because it was important to them.”

From 1965 to 2007, the Pimas of Arizona were the focus of the largest continuous study of diabetes in Native Americans. Conducted by researchers from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), it examined the environmental and genetic triggers of the disorder, management of the disease, and the treatment of thousands of Pimas. It also documented that they had the highest prevalence of diabetes ever recorded. The pivotal work told researchers much of what they know about diabetes today, including that obesity is a significant risk factor, and that a mother’s diabetes during pregnancy can pass risk along to her children.

The political and economic contributors to the Pima people’s health problems have long been well-known: Their traditional farming practices collapsed during the late 1800s and early 1900s when non-Native settlers upstream diverted essential water resources, contributing to poverty, sedentariness, and a lack of fresh food. Yet Smith-Morris felt something integral was missing from this picture: the Pimas’ stories.

Read the full story.

Categories
Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Quartz: The science explaining how Usain Bolt became the fastest human in the world

The health and science reporter for Quartz magazine, Katherine Ellen Foley, covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about how world championship sprinter Usain Bolt runs so fast.

The article, “The science explaining how Usain Bolt became the fastest human in the world,” published Aug. 2, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, an expert on human locomotion and the mechanics of running, is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Katherine Ellen Foley
Quartz

Eight years ago, Usain Bolt made history in less than 10 seconds at the International Association of Athletics Federations World Championship in Berlin, Germany.

The Jamaican sprinter set the world record for the 100-meter dash, clocking in at 9.58 seconds. Since then, no one (not even Bolt himself) has been able to best that time. On Saturday, August 5, Bolt will once more run the 100-meter dash at the IAAF World Championship (assuming he makes it through the qualifying race on August 4). This will be his last race; Bolt is set to retire after this running season (there’s some speculation he may still race in the 2020 Olympics, although as of now Bolt has said he doesn’t want to).

There’s no such thing as a perfect human running machine. But Bolt comes close—thanks to a combination of having all the advantages of a natural-born sprinter and putting in the effort needed to minimize any of his disadvantages.

Broadly speaking, Bolt has the unique muscular build shared by most of the very best sprinters. All human muscles are made of a mix of slow- and fast-twitch fibers—as well as some that are undifferentiated, and will become slow- or fast-twitch depending on how we use them most often. Slow-twitch fibers are built for efficiency and use oxygen to generate energy from sugar. They’re most effective for activities sustained over a long period of time, like distance running. Fast-twitch muscle fibers are used to generate huge amounts of force, but they don’t use oxygen and as a result can’t carry us far. Training can help shape undifferentiated fibers into either slow- or fast-twitch, but for the most part the best runners were born with an imbalance of one or the other. Elite marathoners have way more slow-twitch fibers, and sprinters like Bolt have an abundance of fast-twitch ones.

The best sprinters also run with a different form than the rest of us. It’s not that they move their legs significantly faster; it’s that they hit the ground harder (paywall). Most of the force sprinters generate is directed straight into the ground for vertical movement; only about 5% is used to propel them forward, Peter Weyand, a physiologist studying human speed at Southern Methodist University in Texas, told Popular Science in 2013. The more force a sprinter can pack into the ground with a quick foot strike, the faster he or she goes.

In a 2010 study, Weyand’s lab conducted an experiment where subjects jogged, ran, and hopped on one foot on a treadmill. They found that the most force came from hopping, thanks to the leg’s longer airtime. The researchers then calculated that if a runner were to generate the maximum hopping force possible with each step, he or she’d be able to reach a speed of 19.3 meters per second (63.3 feet per second)—which would make for a 5.18 second 100-meter dash.

This is just a fun theoretical experiment; it’s impossible to actually sprint and jump straight up and down at the same time. But it appears Bolt generates a powerful punch to the track—maybe the most powerful ever.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News Student researchers

How Stuff Works: Scientists Discover Something Mind-blowing About How Usain Bolt Runs

Journalist Patrick J. Kiger with the news site How Stuff Works covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s asymmetrical running gait.

The article, “Scientists Discover Something Mind-blowing About How Usain Bolt Runs,” published Aug. 2, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who leads the lab and its researchers, he is an expert on human locomotion and the mechanics of running. He is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Patrick J. Kiger
How Stuff Works

Jamaican sprinter Usain Bolt is the world record-holder in both the 100- and 200-meter, and winner of those events in the last three Summer Olympics. Bolt can hit a top speed of around 27 mph (43.5 kph), and has clearly established himself as the greatest sprinter of all time. But there’s something curious about his legs, and the way he uses them.

As the athlete prepares to run in his final world championship meet in London’s 2017 World Athletics Championships, taking place Aug. 4-13 and less than three weeks before Bolt’s 31st birthday, scientists are still trying to figure out just how the fastest human on the planet manages to achieve such incredible speed. Researchers at the Southern Methodist University (SMU) Locomotor Performance Laboratory don’t quite have the answer yet — but they’ve made a surprising discovery.

The researchers analyzed video footage of Bolt and other sprinters from the 2011 Diamond League race at the World Athletics Championships in Monaco. They also used a “two mass model” analysis tool they developed, which allows them to study the physical forces that a runner creates — without actually bringing Bolt into a lab and putting him on a treadmill. They found that Bolt had an uneven, assymetrical stride, which is something that scientists might have expected to slow him down.

When he runs, Bolt’s right leg strikes the ground with 13 percent more peak force than does his left leg, and with each stride, his left leg stays in contact with the track about 14 percent longer than the right. The researchers findings have been published in a new study in the Journal of Experimental Biology.

Bolt’s asymmetrical stride is probably due to his anatomy. As he recounted in his autobiography “The Fastest Man Alive: The True Story of Usain Bolt,” Bolt discovered as an adult that he has scoliosis, a condition in which his spine curves slightly to the left, which has forced his hips out of alignment so that his right leg is a half-inch (1.2 centimeters) shorter than the left. Bolt has written that he feels awkward standing still, and leans to the right because it feels uncomfortable to stand and place pressure on his left leg. Sitting in the same position for too long gives him backaches.

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News Student researchers Subfeature

Slate: Making the Perfect Sprinter More Perfect

How Usain Bolt could have run even faster.

Slate online magazine journalist Adam Willis covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about the world’s fastest sprinter, Usain Bolt, and whether he could possibly run even faster with different form.

The article, “Making the Perfect Sprinter More Perfect,” published Aug. 4, 2017.

Weyand, who leads the SMU Locomotor Performance Laboratory, is an expert on human locomotion and the mechanics of running. In his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. Called the two-mass model, the work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

His lab also reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand also has been widely interviewed in years past on the controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

The researchers described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

Read the full story.

EXCERPT:

By Adam Willis
Slate

Usain Bolt is the only person to win both the 100 and 200 meters at three Olympic games. He is also the only person to do this at two Olympic games. Bolt has broken five individual outdoor track and field world records, three of them his own. He has run three of the five fastest 100-meter races and four of the six fastest 200-meter races in history. As Bolt gets set for the World Athletics Championships in London, the final meet of his beyond-illustrious career, we should be grateful for all the memorable moments the world’s fastest man has given us. We should also be ingrates and ask: Could he have run faster?

Bolt has an uncanny knack for making the incredibly difficult look easy—like Muhammad Ali coming off the ropes, like Westley fencing with his left hand, like James Joyce writing Ulysses from Paris. It’s only natural to wonder, then, if he could have done more. His midrace celebrations, his apparent aversion for practice and affinity for parties, his less than sensible diet—he reportedly ate 1,000 Chicken McNuggets in 10 days during the Beijing Olympics—all suggest history’s greatest sprinter might’ve had a little bit more in the tank.

After Bolt breezed to a 9.69 world record in the 100 meters at the 2008 Olympics, jogging and chest thumping across the finish line just days before his 22nd birthday, his coach Glen Mills made headlines with his claim that Bolt would have hit 9.52, at worst, if he had just run through the line. Scientists took on the task of projecting the time that might have been, with most concluding that 9.52 was, at best, a slight exaggeration. Bolt, though, made that claim look less sensational when he tore through his own world records at the world championships in Berlin a year later, posting 9.58 in the 100 and 19.19 in the 200. Still, Bolt would never reach the 9.52 that Mills estimated, nor, for that matter, the 9.4 that he himself predicted. He would never best those world records that he set in Berlin, when he was not yet 23 years old.

“We haven’t seen the 2009 Bolt since 2009,” says Peter Weyand, the director of the Locomotor Performance Laboratory at Southern Methodist University and a leading expert on the science of sprinting. When I asked Weyand about Bolt’s early peak, he told me that, although 22 or 23 is not an unusual age for a sprinter to top out, he would have predicted more after Bolt’s 2009 performances.

While recent research from Weyand’s lab concluded that Bolt’s stride is abnormally asymmetric, Weyand says it’s unlikely this asymmetry held Bolt back in any way. He does point, however, to several aspects of Bolt’s form that are considered unorthodox and potentially suboptimal.

Read the full story.

Categories
Energy & Matter Feature Health & Medicine Learning & Education Plants & Animals Researcher news SMU In The News Student researchers Technology Videos

The New York Times: Something Strange in Usain Bolt’s Stride

Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.

The New York Times reporter Jeré Longman covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s apparent asymmetrical running stride.

The article, “Something Strange in Usain Bolt’s Stride,” published July 20, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the running controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

They described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

The New York Times subscribers or readers with remaining limited free access can read the full story.

EXCERPT:

By Jeré Longman
The New York Times

DALLAS — Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-meter race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 meters and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers here at Southern Methodist University, among the leading experts on the biomechanics of sprinting, said they found something unexpected during video examination of Bolt’s stride: His right leg appears to strike the track with about 13 percent more peak force than his left leg. And with each stride, his left leg remains on the ground about 14 percent longer than his right leg.

This runs counter to conventional wisdom, based on limited science, that an uneven stride tends to slow a runner down.

So the research team at S.M.U.’s Locomotor Performance Laboratory is considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 meters and 4×100-meter relay next month at the world track and field championships in London.

Among those questions: Does evenness of stride matter for speed? Did Bolt optimize this irregularity to become the fastest human? Or, with a more balanced stride during his prime, could he have run even faster than 9.58 seconds at 100 meters and 19.19 seconds at 200 meters?

“That’s the million-dollar question,” said Peter Weyand, director of the S.M.U. lab.

The S.M.U. study of Bolt, led by Andrew Udofa, a doctoral researcher, is not yet complete. And the effect of asymmetrical strides on speed is still not well understood. But rather than being detrimental for Bolt, the consequences of an uneven stride may actually be beneficial, Weyand said.

It could be that Bolt has naturally settled into his stride to accommodate the effects of scoliosis. The condition curved his spine to the right and made his right leg half an inch shorter than his left, according to his autobiography.

Initial findings from the study were presented last month at an international conference on biomechanics in Cologne, Germany. Most elite sprinters have relatively even strides, but not all. The extent of Bolt’s variability appears to be unusual, Weyand said.

“Our working idea is that he’s probably optimized his speed, and that asymmetry reflects that,” Weyand said. “In other words, correcting his asymmetry would not speed him up and might even slow him down. If he were to run symmetrically, it could be an unnatural gait for him.”

Antti Mero, an exercise physiologist at the University of Jyvaskyla in Finland, who has researched Bolt’s fastest races, said he was intrigued by the S.M.U. findings.

The New York Times subscribers or readers with remaining limited free access can read the full story.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Cosmos: Painting with light in three dimensions

A new technique uses photoswitch molecules to create three-dimensional images from pure light.

Australia’s quarterly science magazine Cosmos covered the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

Cosmos reporter Joel F. Hooper wrote about the new technology in “Painting with light in three dimensions,” which published online July 14, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Read the full story.

EXCERPT:

By Joel F. Hooper
Cosmos

Those of us who grew up watching science fiction movies and TV shows imagined our futures to be filled with marvellous gadgets, but we’ve sometimes been disappointed when science fails to deliver. We can’t take a weekend trip to Mars yet, and we’re still waiting for hoverboards that actually hover.

But in the case of 3-D image projection, the technology used by R2D2 in Star Wars is making its way into reality. Using advances in fluorescent molecules that can be switched on by UV light, scientists at Southern Methodist University in Dallas have created a method for producing images and animations by structuring light in 3-dimentions.

The technology uses a solution of fluorescent molecules called rhodamines, which have the potential to emit visible light when they are excited by a light beam of the right wavelength. But these molecules are usually in an inactive state, and must be “switched on” by UV light before they can become emitters. When a UV light or visible light beam alone shines through the solution, the rhodamines to not emit light. But where these two beams intersect, the emitting molecules are both switched on and excited, and can produce a small glowing 3D pixel, known as a voxel.

When a number of voxels are produced at once, using two projectors positioned at 90° to a flask containing a solution of the fluorescent molecules, a 3D image is produced.

“Our idea was to use chemistry and special photoswitch molecules to make a 3D display that delivers a 360-degree view,” says Alexander Lippert, lead author of the study. “It’s not a hologram, it’s really three-dimensionally structured light.”

Read the full story.

Categories
Culture, Society & Family Energy & Matter Feature Health & Medicine Learning & Education Researcher news Student researchers Technology

Better than Star Wars: Chemistry discovery yields 3-D table-top objects crafted from light

Photoswitch chemistry allows construction of light shapes into structures that have volume and are viewable from 360 degrees, making them useful for biomedical imaging, teaching, engineering, TV, movies, video games and more

A scientist’s dream of 3-D projections like those he saw years ago in a Star Wars movie has led to new technology for making animated 3-D table-top objects by structuring light.

The new technology uses photoswitch molecules to bring to life 3-D light structures that are viewable from 360 degrees, says chemist Alexander Lippert, Southern Methodist University, Dallas, who led the research.

The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

“Our idea was to use chemistry and special photoswitch molecules to make a 3-D display that delivers a 360-degree view,” said Lippert, an assistant professor in the SMU Department of Chemistry. “It’s not a hologram, it’s really three-dimensionally structured light.”

Key to the technology is a molecule that switches between non-fluorescent and fluorescent in reaction to the presence or absence of ultraviolet light.

The new technology is not a hologram, and differs from 3-D movies or 3-D computer design. Those are flat displays that use binocular disparity or linear perspective to make objects appear three-dimensional when in fact they only have height and width and lack a true volume profile.

“When you see a 3-D movie, for example, it’s tricking your brain to see 3-D by presenting two different images to each eye,” Lippert said. “Our display is not tricking your brain — we’ve used chemistry to structure light in three actual dimensions, so no tricks, just a real three-dimensional light structure. We call it a 3-D digital light photoactivatable dye display, or 3-D Light Pad for short, and it’s much more like what we see in real life.”

At the heart of the SMU 3-D Light Pad technology is a “photoswitch” molecule, which can switch from colorless to fluorescent when shined with a beam of ultraviolet light.

The researchers discovered a chemical innovation for tuning the photoswitch molecule’s rate of thermal fading — its on-off switch — by adding to it the chemical amine base triethylamine.

Now the sky is the limit for the new SMU 3-D Light Pad technology, given the many possible uses, said Lippert, an expert in fluorescence and chemiluminescence — using chemistry to explore the interaction between light and matter.

For example, conference calls could feel more like face-to-face meetings with volumetric 3-D images projected onto chairs. Construction and manufacturing projects could benefit from rendering them first in 3-D to observe and discuss real-time spatial information. For the military, uses could include tactical 3-D replications of battlefields on land, in the air, under water or even in space.

Volumetric 3-D could also benefit the medical field.

“With real 3-D results of an MRI, radiologists could more readily recognize abnormalities such as cancer,” Lippert said. “I think it would have a significant impact on human health because an actual 3-D image can deliver more information.”

Unlike 3-D printing, volumetric 3-D structured light is easily animated and altered to accommodate a change in design. Also, multiple people can simultaneously view various sides of volumetric display, conceivably making amusement parks, advertising, 3-D movies and 3-D games more lifelike, visually compelling and entertaining.

Lippert and his team in The Lippert Research Group report on the new technology and the discovery that made it possible in the article “A volumetric three-dimensional digital light photoactivatable dye display,” published in the journal Nature Communications.

Some of the 3-D images generated with the new technology are viewable in this video.

Co-authors are Shreya K. Patel, lead author, and Jian Cao, both students in the SMU Department of Chemistry.

Genesis of an idea — cinematic inspiration
The idea to shape light into volumetric animated 3-D objects came from Lippert’s childhood fascination with the movie “Star Wars.” Specifically he was inspired when R2-D2 projects a hologram of Princess Leia. Lippert’s interest continued with the holodeck in “Star Trek: The Next Generation.”

“As a kid I kept trying to think of a way to invent this,” Lippert said. “Then once I got a background in chemistry molecules that interact with light, and an understanding of photoswitches, it finally dawned on me that I could take two beams of light and use chemistry to manipulate the emission of light.”

Key to the new technology was discovering how to turn the chemical photoswitch off and on instantly, and generating light emissions from the intersection of two different light beams in a solution of the photoactivatable dye, he said.

SMU graduate student in chemistry Jian Cao hypothesized the activated photoswitch would turn off quickly by adding the base. He was right.

“The chemical innovation was our discovery that by adding one drop of triethylamine, we could tune the rate of thermal fading so that it instantly goes from a pink solution to a clear solution,” Lippert said. “Without a base, the activation with UV light takes minutes to hours to fade back and turn off, which is a problem if you’re trying to make an image. We wanted the rate of reaction with UV light to be very fast, making it switch on. We also wanted the off-rate to be very fast so the image doesn’t bleed.”

SMU 3-D Light Pad
In choosing among various photoswitch dyes, the researchers settled on N-phenyl spirolactam rhodamines. That particular class of rhodamine dyes was first described in the late 1970s and made use of by Stanford University’s Nobel prize-winning W.E. Moerner.

The dye absorbs light within the visible region, making it appropriate to fluoresce light. Shining it with UV radiation, specifically, triggers a photochemical reaction and forces it to open up and become fluorescent.

Turning off the UV light beam shuts down fluorescence, diminishes light scattering, and makes the reaction reversible — ideal for creating an animated 3-D image that turns on and off.

“Adding triethylamine to switch it off and on quickly was a key chemical discovery that we made,” Lippert said.

To produce a viewable image they still needed a setup to structure the light.

Structuring light in a table-top display
The researchers started with a custom-built, table-top, quartz glass imaging chamber 50 millimeters by 50 millimeters by 50 millimeters to house the photoswitch and to capture light.

Inside they deployed a liquid solvent, dichloromethane, as the matrix in which to dissolve the N-phenyl spirolactam rhodamine, the solid, white crystalline photoswitch dye.

Next they projected patterns into the chamber to structure light in two dimensions. They used an off-the-shelf Digital Light Processing (DLP) projector purchased at Best Buy for beaming visible light.

The DLP projector, which reflects visible light via an array of microscopically tiny mirrors on a semiconductor chip, projected a beam of green light in the shape of a square. For UV light, the researchers shined a series of UV light bars from a specially made 385-nanometer Light-Emitting Diode projector from the opposite side.

Where the light intersected and mixed in the chamber, there was displayed a pattern of two-dimensional squares stacked across the chamber. Optimized filter sets eliminated blue background light and allowed only red light to pass.

To get a static 3-D image, they patterned the light in both directions, with a triangle from the UV and a green triangle from the visible, yielding a pyramid at the intersection, Lippert said.

From there, one of the first animated 3-D images the researchers created was the SMU mascot, Peruna, a racing mustang.

“For Peruna — real-time 3-D animation — SMU undergraduate student Shreya Patel found a way to beam a UV light bar and keep it steady, then project with the green light a movie of the mustang running,” Lippert said.

So long Renaissance
Today’s 3-D images date to the Italian Renaissance and its leading architect and engineer.

“Brunelleschi during his work on the Baptistery of St. John was the first to use the mathematical representation of linear perspective that we now call 3-D. This is how artists used visual tricks to make a 2-D picture look 3-D,” Lippert said. “Parallel lines converge at a vanishing point and give a strong sense of 3-D. It’s a useful trick but it’s striking we’re still using a 500-year-old technique to display 3-D information.”

The SMU 3-D Light Pad technology, patented in 2016, has a number of advantages over contemporary attempts by others to create a volumetric display but that haven’t emerged as commercially viable.

Some of those have been bulky or difficult to align, while others use expensive rare earth metals, or rely on high-powered lasers that are both expensive and somewhat dangerous.

The SMU 3-D Light Pad uses lower light powers, which are not only cheaper but safer. The matrix for the display is also economical, and there are no moving parts to fabricate, maintain or break down.

Lippert and his team fabricated the SMU 3-D Light Pad for under $5,000 through a grant from the SMU University Research Council.

“For a really modest investment we’ve done something that can compete with more expensive $100,000 systems,” Lippert said. “We think we can optimize this and get it down to a couple thousand dollars or even lower.”

Next Gen: SMU 3-D Light Pad 2.0
The resolution quality of a 2-D digital photograph is stated in pixels. The more pixels, the sharper and higher-quality the image. Similarly, 3-D objects are measured in voxels — a pixel but with volume. The current 3-D Light Pad can generate more than 183,000 voxels, and simply scaling the volume size should increase the number of voxels into the millions – equal to the number of mirrors in the DLP micromirror arrays.

For their display, the SMU researchers wanted the highest resolution possible, measured in terms of the minimum spacing between any two of the bars. They achieved 200 microns, which compares favorably to 100 microns for a standard TV display or 200 microns for a projector.

The goal now is to move away from a liquid vat of solvent for the display to a solid cube table display. Optical polymer, for example, would weigh about the same as a TV set. Lippert also toys with the idea of an aerosol display.

The researchers hope to expand from a monochrome red image to true color, based on mixing red, green and blue light. They are working to optimize the optics, graphics engine, lenses, projector technology and photoswitch molecules.

“I think it’s a very fascinating area. Everything we see — all the color we see — arises from the interaction of light with matter,” Lippert said. “The molecules in an object are absorbing a wavelength of light and we see all the rest that’s reflected. So when we see blue, it’s because the object is absorbing all the red light. What’s more, it is actually photoswitch molecules in our eyes that start the process of translating different wavelengths of light into the conscious experience of color. That’s the fundamental chemistry and it builds our entire visual world. Being immersed in chemistry every day — that’s the filter I’m seeing everything through.”

The SMU discovery and new technology, Lippert said, speak to the power of encouraging young children.

“They’re not going to solve all the world’s problems when they’re seven years old,” he said. “But ideas get seeded and if they get nurtured as children grow up they can achieve things we never thought possible.” — Margaret Allen, SMU

Categories
Culture, Society & Family Health & Medicine Learning & Education Researcher news SMU In The News Student researchers

Dallas Innovates: SMU Researchers: Usain Bolt’s Gait is Asymmetrical

The researchers assessed Bolt’s running using a new motion-based method to test how hard and fast each foot hits the ground.

Journalist Lance Murray with D Magazine’s Dallas Innovates covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s asymmetrical running gait.

The article, “SMU Researchers: Usain Bolt’s Gait is Asymmetrical,” published July 5, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who leads the lab and its researchers, he is an expert on human locomotion and the mechanics of running. He is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

When it comes to running, nobody does it faster than Usain Bolt, the eight-time Olympic champion and triple world record holder.

The lanky Jamaican sprinter is known for his explosive acceleration down the track and the famous images of him looking back as he leaves his competitors in his wake.

You’d think Bolt’s powerful legs work as a symmetrical team propelling him at great speed toward the finish line, but according to researchers at Southern Methodist University, Bolt’s gait may, in fact, be asymmetrical.

SMU researchers examined the running mechanics of Bolt, who is considered the world’s fastest man.

The analysis, so far, suggests that his mechanics may vary from his right leg to his left, according to Andrew Udofa, a biometrics researcher in the SMU Locomotor Performance Laboratory.

According to a blog on SMU Research News, most running experts assume that asymmetry impairs performance and slows a runner down. This unexpected asymmetry in Bolt’s mechanics could help scientist better understand the basis of maximal running speeds, according to the university.

“Our observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified,” Udofa, a research team member, said in the blog.

Read the full story.

Categories
Feature Health & Medicine Learning & Education Plants & Animals Researcher news Student researchers Technology Videos

Does symmetry matter for speed? Study finds Usain Bolt may have asymmetrical running gait

A new method for assessing patterns of ground-force application suggests the right and left legs of the world’s fastest man may perform differently, defying current scientific assumptions about running speed.

World champion sprinter Usain Bolt may have an asymmetrical running gait, according to data recently presented by researchers from Southern Methodist University, Dallas.

While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after SMU researchers assessed the running mechanics of the world’s fastest man.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg and his right, said Andrew Udofa, a biomechanics researcher in the SMU Locomotor Performance Laboratory.

The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

“Our observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified,” said Udofa, a member of the research team.

The SMU Locomotor Lab, led by Peter Weyand, focuses on the mechanical basis of human performance. The group includes physicist and engineer Laurence Ryan, an expert in force and motion analysis, and doctoral researcher Udofa.

The intriguing possibility of Bolt’s asymmetry emerged after the SMU researchers decided to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Impulse is a combination of the amount of force applied to the ground multiplied by the time of foot-ground contact.

“The manner in which Bolt achieves his impulses seems to vary from leg to leg,” Udofa said. “Both the timing and magnitude of force application differed between legs in the steps we have analyzed so far.”

Impulse matters because that’s what determines a runner’s time in the air between steps.

“If a runner has a smaller impulse, they don’t get as much aerial time,” Weyand said. “Our previous published research has shown greater ground forces delivered in shorter periods of foot-ground contact are necessary to achieve faster speeds. This is true in part because aerial times do not differ between fast and slow runners at their top speeds. Consequently, the combination of greater ground forces and shorter contact times is characteristic of the world’s fastest sprinters.”

The researchers didn’t test Bolt in the SMU lab. Instead, they used a new motion-based method to assess the patterns of ground-force application. They analyzed Bolt and other elite runners using existing high-speed race footage available from NBC Universal Sports. The runners were competing in the 2011 Diamond League race at the World Athletics Championships in Monaco.

Udofa analyzed 20 of Bolt’s steps from the Monaco race, averaging data from 10 left and 10 right.

The researchers relied upon foot-ground contact time, aerial time, running velocity and body mass to determine the ground reaction forces using the new method, made possible by the “two-mass model” of running mechanics.

Runners typically run on a force-instrumented treadmill or force plates for research examining running ground-reaction forces. However, the two-mass model method provides a tool that enables motion-based assessments of ground reaction forces without direct force measurements.

“There are new avenues of research the model may make possible because direct-force measurements are not required,” Weyand said. “These include investigations of the importance of symmetry for sprinting performance. The two-mass model may facilitate the acquisition of data from outside the lab to help us better address these kinds of questions.”

Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

Two-mass model relies on basic motion data
SMU researchers developed the concise two-mass model as a simplified way to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.

The model integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force on the ground.

It provides accurate predictions of the ground force vs. time patterns throughout each instant of the contact period, regardless of limb mechanics, foot-strike type or running speed.

The two-mass model is substantially less complex than other scientific models that explain patterns of ground force application during running. Most existing models are more elaborate in relying on 14 or more variables, many of which are less clearly linked to the human body.

“The two-mass model provides us with a new tool for assessing the crucial early portion of foot-ground contact that is so important for sprinting performance,” said Udofa. “The model advances our ability to assess the impact-phase force and time relationships from motion data only.”

The two-mass model was developed in SMU’s Locomotor Performance Laboratory by Kenneth P. Clark, now an assistant professor in the Department of Kinesiology at West Chester University, West Chester, Pa.; Ryan, a physicist and research engineer at SMU’s Locomotor Performance Laboratory; and Weyand.

The researchers described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

Support for the research came from the U.S. Army Medical Research and Materiel Command.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development. — Margaret Allen, SMU

Categories
Health & Medicine Learning & Education Researcher news Student researchers Technology

SMU chemist wins prestigious NSF Career Award

Alex Lippert’s research uses chemistry to develop affordable, glowing internal imaging techniques

SMU chemist Alex Lippert has received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences, is an organic chemist and adviser to four doctoral students and five undergraduates who assist in his research.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. For example, when injected into a mouse’s tumor, the compounds luminesce in response to the cancer’s pH and oxygen levels. Place that mouse in a sealed dark box with a sensitive CCD camera that can detect low levels of light, and images can be captured of the light emanating from the mouse’s tumor.

“We are developing chemiluminescent imaging agents, which basically amounts to a specialized type of glow-stick chemistry,” Lippert says. “We can use this method to image the insides of animals, kind of like an MRI, but much cheaper and easier to do.”

Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

But first, there are still a few ways the technique can be improved, and that’s where Lippert says the grant will come in handy.

“In preliminary studies, we needed to directly inject the compound into the tumor to see the chemistry in the tumor,” Lippert says. “One thing that’s funded by this grant is intravenous injection capability, where you inject a test subject and let the agent distribute through the body, then activate it in the tumor to see it light up.”

Another challenge the team will use the grant to explore is making a compound that varies by color instead of glow intensity when reacting to cancer cells. This will make it easier to read images, which can sometimes be buried under several layers of tissue, making the intensity of the glow difficult to interpret.

“We’re applying the method to tumors now, but you could use similar designs for other types of tissues,” Lippert says. “The current compound reacts to oxygen levels and pH, which are important in cancer biology, but also present in other types of biology, so it can be more wide-ranging than just looking at cancer.”

“This grant is really critical to our ability to continue the research going forward,” Lippert adds. “This will support the reagents and supplies, student stipends, and strengthen our collaboration with UT Southwestern Medical Center. Having that funding secure for five years is really nice because we can now focus our attention on the actual science instead of writing grants. It’s a huge step forward in our research progress.”

Lippert joined SMU in 2012. He was a postdoctoral researcher at the University of California, Berkeley, from 2009-12, earned his Ph.D. at the University of Pennsylvania in 2008 and earned a Bachelor of Science at the California Institute of Technology in 2003.

The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…” NSF is the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. — Kenny Ryan, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News Student researchers Technology

Dallas Innovates: SMU Researchers, Gamers Partner on Cancer Research

Adding the processor power of the network of “Minecraft” gamers could double the amount of computer power devoted to the SMU research project.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall.

The researchers are leading an SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

They are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug. Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

A boost in computational power by adding crowdsourcing may help the researchers narrow their search.

The Dallas Innovates article, “SMU Researchers, Gamers Partner on Cancer Research,” published June 5, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Game developers and researchers at SMU are partnering with a worldwide network of gamers who play the popular game in a crowdsourcing effort to beat the disease.

The project is being led by biochemistry professors Pia Vogel and John Wise of the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, the university’s graduate video game development program.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” Vogel said in a release. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Vogel and Wise have been utilizing the university’s ManeFrame supercomputer, one of the most powerful academic supercomputers in the country, to sort through millions of compounds that potentially could work in the fight against cancer.

Now, they’re going to try crowdsourced computing.

The researchers believe that the network of gamers will be able to crunch massive amounts of data during routine game play by pooling two weapons — human intuition and the massive computing power of the networked gaming machine processors.

Adding gamers could double processing power
That should more than double the amount of processing power aimed at their research problem.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” said Clark, who is also an adjunct research associate professor in the Department of Biological Sciences.

“Integrating with the ‘Minecraft’ community should allow us to double the computing power of [SMU’s] supercomputer.”

The research labs of Vogel and Wise are part of the Center for Drug Discovery, Design, and Delivery in SMU’s Dedman College, whose mission is a multidisciplinary focus for scientific research that targets medically important problems in human health, the release said.

According to SMU, the research is partly funded by the National Institutes of Health.

The researchers narrowed a group of compounds that show potential for alleviating the issue of chemotherapy failure after repeated use.

Using gamers in research has happened before
Using human gamers to enhance data-driven research has been done before with success and is a growing practice.

Vogel cited the video game “Foldit.”

Read the full story.

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news Student researchers Technology Videos

SMU Guildhall and cancer researchers level up to tap human intuition of video gamers in quest to beat cancer

Massive computational power of online “Minecraft” gaming community bests supercomputers

Video gamers have the power to beat cancer, according to cancer researchers and video game developers at Southern Methodist University, Dallas.

SMU researchers and game developers are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug.

Biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, are leading the SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” said Vogel. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Up to now, Wise and Vogel have tapped the high performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. With ManeFrame, Wise and Vogel have sorted through millions of compounds that have the potential to work. Now, the biochemists say, it’s time to take that research to the next level — crowdsourced computing.

A network of gamers can crunch massive amounts of data during routine gameplay by pairing two powerful weapons: the best of human intuition combined with the massive computing power of networked gaming machine processors.

Taking their research to the gaming community will more than double the amount of machine processing power attacking their research problem.

“With the distributed computing of the actual game clients, we can theoretically have much more computing power than even the supercomputer here at SMU,” said Clark, also adjunct research associate professor in the Department of Biological Sciences. SMU Guildhall in March was named No. 1 among the Top 25 Top Graduate Schools for Video Game Design by The Princeton Review.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” Clark said. “Integrating with the ‘Minecraft’ community should allow us to double the computing power of that supercomputer.”

Even more importantly, the gaming community adds another important component — human intuition.

Wise believes there’s a lot of brainpower eager to be tapped in the gaming community. And human brains, when tackling a problem or faced with a challenge, can make creative and intuitive leaps that machines can’t.

“What if we learn things that we never would have learned any other way? And even if it doesn’t work it’s still a good idea and the kids will still get their endorphin kicks playing the game,” Wise said. “It also raises awareness of the research. Gamers will be saying ‘Mom don’t tell me to go to bed, I’m doing scientific research.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery (CD4) in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. Their research is funded in part by the National Institutes of Health.

The research question in play
Vogel and Wise have narrowed a group of compounds that show promise for alleviating the problem of chemotherapy failure after repeated use. Each one of those compounds has 50 to 100 — or even more — characteristics that contribute to their efficacy.

“Corey’s contribution will hopefully tell us which dozen perhaps of these 100 characteristics are the important ones,” Vogel said. “Right now of those 100 characteristics, we don’t know which ones are good ones. We want to see if there’s a way with what we learn from Corey’s gaming system to then apply what we learn to millions of other compounds to separate the wheat from the chaff.”

James McCormick — a fifth year Ph.D. student in cellular molecular biology who earned his doctoral degree this spring and is a researcher with the Center for Drug Discovery, Design and Delivery — produced the data set for Clark and Guildhall.

Lauren Ammerman, a first-year Ph.D. student in cellular and molecular biology and also working in the Center for Drug Discovery, Design and Delivery, is taking up the computational part of the project.

Machines can learn from human problem solving
Crowdsourcing video gamers to solve real scientific problems is a growing practice.

Machine learning and algorithms by themselves don’t always find the best solution, Clark said. There are already examples of researchers who for years sought answers with machine learning, then switched to actual human gamers.

Gamers take unstructured data and attack it with human problem-solving skills to quickly find an answer.

“So we’re combining both,” Clark said. “We’re going to have both computers and humans trying to find relationships and clustering the data. Each of those human decisions will also be supplied as training input into a deep neural network that is learning the ‘human heuristic’ — the technique and processes humans are using to make their decisions.”

Gamers already have proven they can solve research problems that have stymied scientists, says Vogel. She cites the video game “Foldit” created by the University of Washington specifically to unlock the structure of an AIDS-related enzyme.

Some other Games With A Purpose, as they’re called, have produced similar results. Humans outperform computers when it comes to tasks in the computational process that are particularly suited to the human intellect.

“With ‘Foldit,’ researchers worked on a problem for 15 years using machine learning techniques and were unable to find a solution,” Clark said. “Once they created the game, 57,000 players found a solution in three weeks.”

Modifying the “Minecraft” game and embedding research data inside
Gamers will access the research problem using the version of “Minecraft” they purchased, then install a “mod” or “plugin” — gamer jargon for modifying game code to expand a game’s possibilities — that incorporates SMUs research problem and was developed in accordance with “Minecraft” terms of service. Players will be fully aware of their role in the research, including ultimately leaderboards that show where players rank toward analyzing the data set in the research problem.

SMU is partnering with leaders in the large “Minecraft” modding community to develop a functioning mod by the end of 2017. The game will be heavily tested before release to the public the second quarter of 2018, Clark said.

The SMU “Minecraft” mod will incorporate a data processing and distributed computing platform from game technology company Balanced Media Technology (BMT), McKinney, Texas. BMT’s HEWMEN software platform executes machine-learning algorithms coupled with human guided interactions. It will integrate Wise and Vogel’s research directly into the SMU “Minecraft” mod.

SMU Guildhall will provide the interface enabling modders to develop their own custom game mechanic that visualizes and interacts with the research problem data within the “Minecraft” game environment. Guildhall research is funded in part by Balanced Media Technology.

“We expect to have over 25,000 people continuously online during our testing period,” Clark said. “That should probably double the computing power of the supercomputer here.”

That many players and that much computing power is a massive resource attacking the research problem, Wise said.

“The SMU computational system has 8,000 computer cores. Even if I had all of ManeFrame to myself, that’s still less computing and brainpower than the gaming community,” he said. “Here we’ve got more than 25,000 different brains at once. So even if 24,000 don’t find an answer, there are maybe 1,000 geniuses playing ‘Minecraft’ that may find a solution. This is the most creative thing I’ve heard in a long time.” — Margaret Allen, SMU

Categories
Health & Medicine Mind & Brain Researcher news SMU In The News

NPR: A Tiny Spot In Mouse Brains May Explain How Breathing Calms The Mind

SMU psychology professor Alicia Merit was interviewed by NPR as an expert outside source on a new study about calming the mind.

Public radio network NPR interviewed SMU clinical psychologist Alicia Meuret for her expertise on breathing as it relates to fear and anxiety.

The NPR article, “A Tiny Spot In Mouse Brains May Explain How Breathing Calms The Mind,” published March 30, 2017.

Meuret is director of the Anxiety and Depression Research Center at SMU, with expertise in discussing the differences between fear and anxiety and when each is helpful and adaptive and when they are harmful and interfere with our lives.

An associate professor in the Clinical Psychology Division of the SMU Department of Psychology, Meuret received her Ph.D. in Clinical Psychology from the University of Hamburg based on her doctoral work conducted at the Department of Psychiatry and Behavioral Sciences at Stanford University. She completed postdoctoral fellowships at the Center for Anxiety and Related Disorders at Boston University and the Affective Neuroscience Laboratory in the Department of Psychology at Harvard University.

Her research program focuses on novel treatment approaches for anxiety and mood disorders, biomarkers in anxiety disorders and chronic disease, fear extinction mechanisms of exposure therapy, and mediators and moderators in individuals with affective dysregulations, including non-suicidal self-injury.

The article “A Tiny Spot In Mouse Brains May Explain How Breathing Calms The Mind,” cites new findings from Meuret’s research, which found patients undergoing exposure therapy for anxiety fared better when sessions were held in the morning when levels of the helpful natural hormone cortisone are higher in the brain.

Read the full story.

EXCERPT:

By Jessica Boddy
NPR

Take a deep breath in through your nose, and slowly let it out through your mouth. Do you feel calmer?

Controlled breathing like this can combat anxiety, panic attacks and depression. It’s one reason so many people experience tranquility after meditation or a pranayama yoga class. How exactly the brain associates slow breathing with calmness and quick breathing with nervousness, though, has been a mystery. Now, researchers say they’ve found the link, at least in mice.

The key is a smattering of about 175 neurons in a part of the brain the researchers call the breathing pacemaker, which is a cluster of nearly 3,000 neurons that sit in the brainstem and control autonomic breathing. Through their research is in mice, the researchers found that those 175 neurons are the communication highway between the breathing pacemaker and the part of the brain responsible for attention, arousal and panic. So breathing rate could directly affect feeling calm or anxious, and vice versa.

If that mouse pathway works the same way in humans, it would explain why we get so chilled out after slowing down our breathing. […]

[…] Alicia Meuret, an associate professor of psychology at Southern Methodist University who also wasn’t involved in the study, wasn’t sure if what the authors described as calm mouse behavior could be described as such. “It’s hard to determine what calm behavior is [in mice],” Meuret says. “We can see their behavior, but we don’t know what effect the loss of neurons has on their emotions.”

Banzett echoed that concern, noting the authors inferred emotion because “they equate the increase in grooming behavior with the emotional state of calmness.”

Read the full story.

Categories
Culture, Society & Family Health & Medicine Learning & Education Mind & Brain Researcher news SMU In The News

KERA News: Teens In Low-Income Families Get HPV Vaccine If Parents Persuade Themselves Of Benefits

In the first study of its kind, self-persuasion software on an iPad motivated low-income parents to want to protect their teens against the cancer-causing Human Papillomavirus.

Journalist Justin Martin with KERA public radio news covered the research of SMU psychology professor Austin S. Baldwin, a principal investigator on the research.

KERA’s article, “Teens In Low-Income Families Get HPV Vaccine If Parents Persuade Themselves Of Benefits,” aired April 12, 2017.

The SMU study found that low-income parents will decide to have their teens vaccinated against the sexually transmitted cancer-causing virus if the parents persuade themselves of the protective benefits.

The study’s subjects — almost all moms — were taking their teens and pre-teens to a safety-net pediatric clinic for medical care. It’s the first to look at changing parents’ behavior through self-persuasion using English- and Spanish-language materials.

A very common virus, HPV infects nearly one in four people in the United States, including teens, according to the Centers for Disease Control. HPV infection can cause cervical, vaginal and vulvar cancers in females; penile cancer in males; and anal cancer, back of the throat cancer and genital warts in both genders, the CDC says.

The CDC recommends a series of two shots of the vaccine for 11- to 14-year-olds to build effectiveness in advance of sexual activity. For 15- to 26-year-olds, they are advised to get three doses over the course of eight months, says the CDC.

Currently, about 60% of adolescent girls and 40% of adolescent boys get the first dose of the HPV vaccine. After that, about 20% of each group fail to follow through with the second dose, Baldwin said.

Listen to the KERA radio interview with Justin Martin.

EXCERPT From KERA News:

Guilt, social pressure and even a doctor’s recommendation aren’t enough to motivate low-income families to vaccinate their teenagers for Human Papillomavirus (HPV), according to research from Southern Methodist University.

But a follow-up study from SMU finds that if parents persuade themselves of the benefits of the vaccinations, more teenagers in low-income families receive protection from the sexually transmitted, cancer-causing virus.

Austin Baldwin, a professor of psychology at SMU, led the research.

What the study tells us about poverty: HPV is a sexually transmitted virus that is the primary cause of a variety of cancers. There’s been a vaccine developed in the last 10 years, 12 years that’s now approved. At times, those who are underinsured or uninsured don’t have this same level of access to it. Both here locally as well as nationally [among] folks who are poor, who are uninsured, we see clear disparities across a variety of health outcomes including cancer, including cervical cancer. The HPV vaccine is potentially a very effective means to address some of those health disparities.

How the study was conducted: We recruited parents of adolescents who get their pediatric care at Parkland clinic, and they participated in an iPad app that we developed. It provides them with some basic information about HPV and about the vaccine. It then prompts them with a number of questions to think about why getting the vaccine may be important, and then it prompts them to generate their own reasons for why they would get the vaccine. Most of the parents who had not previously given thought to or were undecided about the vaccine reported that they had decided to get their adolescent vaccinated.

Listen to the KERA radio interview with Justin Martin.

Categories
Culture, Society & Family Events Health & Medicine

Relentless gene hunter, NIH Director Francis Collins, to speak at SMU Commencement May 20

Collins is best known for leading the Human Genome Project, the world’s largest collaborative biological project and one of the most significant scientific undertakings in modern history.

Francis S. Collins, M.D., Ph.D., the director of the National Institutes of Health, who may be best known for leading the Human Genome Project, will be the featured speaker during SMU’s 102nd all-University Commencement ceremony at 9 a.m. Saturday, May 20, in Moody Coliseum.

Collins — whose own personal research efforts led to the isolation of the genes responsible for cystic fibrosis, neurofibromatosis, Huntington’s disease and Hutchinson-Gilford progeria syndrome — will receive the Doctor of Science degree, honoris causa, from SMU during the ceremony. The entire event, including Collins’ address, will be live streamed at smu.edu/live.

“We are honored to have a pioneering scientist and national leader of Dr. Collins’ stature as featured speaker at Commencement,” said SMU President R. Gerald Turner. “His life is testament to a strong, unwavering commitment to the search for scientific knowledge paired with deep religious faith. He has much to share with us.”

As NIH director, Collins oversees the work of the largest institutional supporter of biomedical research in the world, spanning the spectrum from basic to clinical research. He was appointed by President Obama in 2009 and was asked to remain in the position by President Trump in January 2017. As director, he has helped launch major research initiatives to advance the use of precision medicine for more tailored healthcare, increase our understanding of the neural networks of the brain to improve treatments for brain diseases, and identify areas of cancer research that are most ripe for acceleration to improve cancer prevention and treatment.

While director of NIH’s National Human Genome Research Institute, he oversaw the Human Genome Project, a 13-year international effort to map and sequence the 3 billion letters in human DNA. HGP scientists finished the sequence in April 2003, coinciding with the 50th anniversary of James Watson and Francis Crick’s seminal publication describing the double-helix structure of DNA.

It remains the world’s largest collaborative biological project and one of the most significant scientific undertakings in modern history.

As an innovative evolutionary geneticist and a devout Christian, Collins also has gained fame for his writings on the integration of logic and belief. His first book, The Language of God: A Scientist Presents Evidence for Belief, became a New York Times bestseller in 2006. Since then, he has written The Language of Life: DNA and the Revolution in Personalized Medicine (2011) and edited a selection of writings, Belief: Readings on the Reason for Faith (2010).

Born in Staunton, Va., and raised on a small family farm in the Shenandoah Valley, Collins was home schooled until the sixth grade and attended Robert E. Lee High School in his hometown. He earned his Bachelor of Science degree in chemistry from the University of Virginia in 1970.

In 1974, Collins received his Ph.D. degree in physical chemistry from Yale University, where a course in molecular biology triggered a major change in career direction. He enrolled in medical school at the University of North Carolina-Chapel Hill, where he earned his M.D. degree in 1977. From 1978 to 1981, Collins completed a residency and chief residency in internal medicine at North Carolina Memorial Hospital. He then returned to Yale as a Fellow in Human Genetics at the university’s medical school from 1981 to 1984.

Dr. Collins joined the University of Michigan in 1984 as a Howard Hughes Medical Institute investigator, a position that would eventually lead to a Professorship of Internal Medicine and Human Genetics. Collins heightened his reputation as a relentless gene hunter with an approach he named “positional cloning,” which has developed into a powerful component of modern molecular genetics.

In contrast to previous methods for finding genes, positional cloning enabled scientists to identify disease genes without knowing the functional abnormality underlying the disease in advance. Collins’ team, together with collaborators, applied the new approach in 1989 in their successful quest for the long-sought gene responsible for cystic fibrosis. Other major discoveries soon followed, including isolation of the genes for Huntington’s disease, neurofibromatosis, multiple endocrine neoplasia type 1, the M4 type of adult acute leukemia, and Hutchinson-Gilford progeria syndrome.

In 1993, Collins joined NIH to become director of the National Center for Human Genome Research, which became NHGRI in 1997. As director, he oversaw the International Human Genome Sequencing Consortium and many other aspects of what he has called “an adventure that beats going to the moon or splitting the atom.”

An elected member of the Institute of Medicine and the National Academy of Sciences, Dr. Collins was awarded the Presidential Medal of Freedom in November 2007 from President George W. Bush. He received the National Medal of Science in 2009.

Categories
Culture, Society & Family Feature Health & Medicine Researcher news

Male versus female college students react differently to helicopter parenting, study finds

Helicopter parenting reduces the well-being of young women, while the failure to foster independence harms the well-being of young men but not young women.

Male and female college students react differently to misguided parenting, according to a new study that looked at the impact of helicopter parenting and fostering independence.

Measuring both helicopter parenting as well as autonomy support — fostering independence — was important for the researchers to study, said family dynamics expert Chrystyna Kouros, an assistant professor of psychology at Southern Methodist University, Dallas, and an author on the study.

“Just because mom and dad aren’t helicopter parents, doesn’t necessarily mean they are supporting their young adult in making his or her own choices,” Kouros said. “The parent may be uninvolved, so we also wanted to know if parents are actually encouraging their student to be independent and make their own choices.”

The researchers found that young women are negatively affected by helicopter parenting, while young men suffer when parents don’t encourage independence.

“The sex difference was surprising,” said Kouros, an expert in adolescent depression. “In Western culture in particular, boys are socialized more to be independent, assertive and take charge, while girls are more socialized toward relationships, caring for others, and being expressive and compliant. Our findings showed that a lack of autonomy support — failure to encourage independence — was more problematic for males, but didn’t affect the well-being of females. Conversely, helicopter parenting — parents who are overinvolved — proved problematic for girls, but not boys.”

The study is unique in measuring the well-being of college students, said Kouros, director of the Family Health and Development Lab at SMU. The tendency in research on parenting has been to focus on the mental health of younger children.

“When researchers do focus on college students they tend to ask about academic performance, and whether students are engaged in school. But there haven’t been as many studies that look at mental health or well-being in relation to helicopter parenting,” she said.

Unlike children subjected to psychological control, in which parents try to instill guilt in their child, children of helicopter parents report a very close bond with their parents. Helicopter parents “hover” out of concern for their child, not from malicious intent, she said.

What helicopter parents don’t realize is that despite their good intentions to help their child, it actually does harm, said Naomi Ekas, a co-author on the study and assistant professor of psychology at Texas Christian University, Fort Worth.

“They’re not allowing their child to become independent or learn problem-solving on their own, nor to test out and develop effective coping strategies,” Ekas said.

Young men that reported more autonomy support, measured stronger well-being in the form of less social anxiety and fewer depressive symptoms.

For young women, helicopter parenting predicted lower psychological well-being. They were less optimistic, felt less satisfaction with accomplishments, and were not looking forward to things with enjoyment, nor feeling hopeful. In contrast, lacking autonomy support wasn’t related to negative outcomes in females.

“The take-away is we have to adjust our parenting as our kids get older,” said Kouros. “Being involved with our child is really important. But we have to adapt how we are involved as they are growing up, particularly going off to college.”

The findings were reported in the article “Helicopter Parenting, Autonomy Support, and College Students’ Mental Health and Well-being: The Moderating Role of Sex and Ethnicity,” in the Journal of Child and Family Studies.

Other co-authors were: Romilyn Kiriaki and Megan Sunderland, SMU Department of Psychology, and Megan M. Pruitt, Texas Christian University. The study was funded by the Hogg Foundation for Mental Health at the University of Texas at Austin.

Parental involvement can go too far
Research on child development has consistently found that children are more successful when they have parental involvement and support.

Now, however, research is finding that parental involvement can go too far. Call it over-parenting, over-controlling parenting or helicopter parenting, but the characteristics are the same: parents offer their child a lot of warmth and support, but in combination with high levels of control and low levels of autonomy and independence.

For example a parent may dispute their college student’s low grade with a professor or negotiate their young adult’s job offer and salary.

Previous research in the field has linked helicopter parenting to a student’s poor academic achievement, lower self-esteem and life satisfaction, poor peer relationships, and greater interpersonal dependency.

“With helicopter parenting you’re impeding children from meeting the developmental goals of being independent and autonomous,” Kouros said. “That lowers their confidence in being able to solve problems on their own. They lose the opportunity to learn how to deal with stressors. Someone who’s used to figuring out daily hassles, however, learns strategies, gets practice and knows problems aren’t the end of the world.”

In contrast, research in the field links positive outcomes when parents support autonomy and independence by encouraging their young adults to make decisions and solve problems. Autonomy support is related to higher self-esteem and less depression.

Minimal research into sex differences of young adults
For the current study, the researchers wanted to see if helicopter parenting and low autonomy support equally affected male and female students.

Researching potential differences was especially important, the researchers concluded, since studies have found that females are twice as prone as males to develop depression and anxiety.

Very little research of sex differences has been conducted in emerging adulthood in relation to parenting. What limited research there is suggests that over-controlling or lax parenting increases the risk for maladjustment, particularly for young women.

The researchers surveyed 118 undergraduate students recruited from two mid-sized private universities in the southwest United States. The majority of students were female, between 18 and 25 years old, primarily white and Hispanic and living on campus.

Students completed widely accepted measures of helicopter parenting and autonomy support. The questionnaires asked students to rank their agreements or disagreement on a scale for items such as “If I were to receive a low grade that I felt was unfair, my parents would call the professor,” or “My parents encourage me to make my own decisions and take responsibility for the choices I make.”

To assess mental health and well-being, the students completed an accepted inventory for depression and anxiety symptoms that asked questions about their feelings the past two weeks. Examples include, “I felt depressed,” “I felt self-conscious knowing that others were watching me,” and “I felt hopeful about the future.”

The study complements a growing body of research about the harmful effects of helicopter parenting for adult children. It also adds to research indicating females are more vulnerable to the negative effects than males.

“You should love and care for your child, but the way you show it and manifest it has to be developmentally appropriate. Your parenting has to follow where your child is developmentally,” Kouros said. “Being over-involved while your child is in college, that may not be appropriate anymore. That doesn’t mean you disengage. So if a college student wants to call their parent and talk through an issue and problem solve, I think that’s appropriate. But it’s their problem and they should be able to confidently handle it on their own.” — Margaret Allen

Categories
Health & Medicine Researcher news SMU In The News

GotScience.org: Can You Improve Your Running with Physics?

The researchers studied the running mechanics of forty-two people ranging from recreational runners to Olympic medalists.

GotScience.org reporter Emily Rhode covered the research of SMU biomechanics expert Peter Weyand and the SMU Locomotor Laboratory. Weyand is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The GotScience.org article, “Can You Improve Your Running with Physics?,” published March 27, 2017.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the controversy surrounding double-amputee South African sprinter Oscar Pistorius. Controversy has swirled around the sprinter over whether his light-weight, carbon-fiber prosthetic “Cheetah” legs give him a competitive advantage.

Weyand helped lead a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

Read the full story.

EXCERPT:

By Emily Rhode
Gotscience.org

Running is one of the simplest forms of exercise we can do. It requires no protective gear or fancy equipment. At its core, it just requires force. Runners are constantly searching for clues for how to improve their speed and prevent injury. But until now, there was no easy way to fully assess the way a runner moves. In a new study published in the Journal of Experimental Biology, researchers at Southern Methodist University describe a new method that requires nothing more than a quality camera and basic laws of physics to predict how a runner and the ground will impact each other.

Newton’s second law of motion says that force is mass multiplied by acceleration. A runner’s mechanics, or movement, can be represented by a simple waveform—a visual representation of force over time. The moment the runner’s foot hits the ground is represented by the beginning of the wave. As the mass of the runner’s body accelerates toward the ground, the amount of force increases and the wave climbs. The wave then slopes down as the runner begins the motion of lifting the leg again.

Collecting the data to create this pattern of force between the runner’s body and the ground is normally a complicated process that requires knowing the masses and motion of as many as fourteen different variables. A team consisting of Dr. Kenneth P. Clark, Dr. Laurence J. Ryan, and Dr. Peter G. Weyand believed that they could simplify the process considerably by focusing on just two parts of the body: the lower leg and the foot.

The researchers studied the running mechanics of forty-two people ranging from recreational runners to Olympic medalists. They measured each person’s body mass and used high-speed cameras to capture the motion of running. At the same time, a specialized treadmill recorded the force of the runners’ footfalls as they moved through their strides. The team then compared the real data to an algorithm, or set of mathematical steps, that they developed to predict an individual’s waveform pattern.

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News Subfeature

New York Times: Blade Runner Tests Limits of Prosthetics, Years After Oscar Pistorius

Track-and-field rules regarding athletes with prosthetic limbs remain gray, even nonexistent.

The New York Times reporter Filip Bondy interviewed SMU biomechanics expert Peter Weyand of the SMU Locomotor Laboratory, for a story about Hunter Woodhall, an 18-year-old athlete with prosthetic limbs competing against top scholastic stars in the United States.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the controversy surrounding double-amputee South African sprinter Oscar Pistorius. Controversy has swirled around the sprinter over whether his light-weight, carbon-fiber prosthetic “Cheetah” legs give him a competitive advantage.

Weyand helped lead a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The New York Times article, “Blade Runner Tests Limits of Prosthetics, Years After Oscar Pistorius,” published March 13, 2017.

Read the full story.

EXCERPT:

By Filip Bondy
The New York Times

A decade after Oscar Pistorius caused track-and-field officials to re-examine their rules regarding the use of prosthetic limbs at the Olympics, a high school amputee is running in open competition on similar carbon-fiber blades. And once again, guidelines are gray, even nonexistent.

The athlete, Hunter Woodhall, 18, from Syracuse, Utah, is at the Armory track in Manhattan to run in an invitational, 400-meter heat on Saturday at the New Balance Nationals Indoor, competing against the top scholastic stars in the country.

One of the youngest competitors at the Rio Paralympics, Woodhall won silver in the 200-meter competition at 21.12 seconds and bronze in the 400 with a personal-best 46.70. He also appeared to capture gold while anchoring the 4×100 relay, but the United States team was disqualified over an exchange violation on an earlier leg.

Amid these successes, background grumbling appears to have increased in connection with his eligibility for open competitions.

Woodhall has such a winsome personality, it is impossible to imagine anyone complaining to his face about anything. The meet directors are thrilled to have him participate. But there are no hard-and-fast rules regarding the eligibility of bladed runners at scholastic or collegiate levels, and the scientific debate has never been fully settled about whether the prosthetics offer a competitor some unfair advantage.

“When something different comes along, people want an answer,” Woodall said. He added that “staying away’’ from the whole debate might be the best alternative.

“Fighting this war is not going to go anywhere,” he said. “At the end of the day, I’m not a scientist, they’re not a scientist, we’re not going to come to a consensus. I just put in the work.”

A decade ago, long before he was convicted in the murder of his girlfriend, Reeva Steenkamp, Pistorius was effectively banned from open competition by the International Association of Athletics Federations. The group in 2007 prohibited any device that “incorporates springs, wheels or any other element that provides a user with an advantage.”

After further testing at Sport University Cologne, in Germany, on behalf of the I.A.A.F., a report concluded that Pistorius’s legs were using 25 percent less energy than those of “able-bodied” runners. He was declared ineligible for the 2008 Olympics in Beijing.

That ban was overturned by the Court of Arbitration for Sport in Lausanne, Switzerland, after further testing at Rice University resulted in a paper for the Journal of Applied Physiology contending that Pistorius was “mechanically dissimilar” to competitors racing on legs, moving his body differently.

Even the scientists involved in the Rice study could not come to complete agreement, however. According to a report in Scientific American, Peter Weyand, a physiologist at Southern Methodist University, believed Pistorius had a mechanical edge. A biomechanics expert, Rodger Kram from the University of Colorado, contended that Pistorius’s artificial limbs created as many problems as advantages.

The court ruled that the testing in Cologne had not factored in the disadvantages of Pistorius’s motion around a curve, or his problems at the start of a race. (These are also the elements of every competition that present the greatest challenges to Woodhall.) Pistorius was eventually selected to participate for South Africa in the 2012 Olympics in London.

Read the full story.

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news Student researchers

Self-persuasion iPad app spurs low-income parents to protect teens against cancer-causing hpv

In the first study of its kind, self-persuasion software on an iPad motivated low-income parents to want to protect their teens against the cancer-causing human papillomavirus

As health officials struggle to boost the number of teens vaccinated against the deadly human papillomavirus, a new study from Southern Methodist University, Dallas, found that self-persuasion works to bring parents on board.

Currently public health efforts rely on educational messages and doctor recommendations to persuade parents to vaccinate their adolescents. Self-persuasion as a tool for HPV vaccinations has never been researched until now.

The SMU study found that low-income parents will decide to have their teens vaccinated against the sexually transmitted cancer-causing virus if the parents persuade themselves of the protective benefits.

The study’s subjects — almost all moms — were taking their teens and pre-teens to a safety-net pediatric clinic for medical care. It’s the first to look at changing parents’ behavior through self-persuasion using English- and Spanish-language materials.

“This approach is based on the premise that completing the vaccination series is less likely unless parents internalize the beliefs for themselves, as in ‘I see the value, I see the importance, and because I want to help my child,’” said psychology professor Austin S. Baldwin, a principal investigator on the research.

Depending on age, the HPV vaccine requires a series of two or three shots over eight months. External pressure might initially spark parents to action. But vaccinations decline sharply after the first dose.

The new study follows an earlier SMU study that found guilt, social pressure or acting solely upon a doctor’s recommendation was not related to parents’ motivation to vaccinate their kids.

The new finding is reported in the article “Translating self-persuasion into an adolescent HPV vaccine promotion intervention for parents attending safety-net clinics” in the journal Patient Education and Counseling.

Both studies are part of a five-year, $2.5 million grant from the National Cancer Institute. Baldwin, associate professor in the SMU Department of Psychology, is co-principal investigator with Jasmin A. Tiro, associate professor in the Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas.

Addressing the HPV problem
A very common virus, HPV infects nearly one in four people in the United States, including teens, according to the Centers for Disease Control. HPV infection can cause cervical, vaginal and vulvar cancers in females; penile cancer in males; and anal cancer, back of the throat cancer and genital warts in both genders, the CDC says.

The CDC recommends a series of two shots of the vaccine for 11- to 14-year-olds to build effectiveness in advance of sexual activity. For 15- to 26-year-olds, they are advised to get three doses over the course of eight months, says the CDC.

Currently, about 60% of adolescent girls and 40% of adolescent boys get the first dose of the HPV vaccine. After that, about 20% of each group fail to follow through with the second dose, Baldwin said.

The goal set by health authorities is to vaccinate 80% of adolescents to achieve the herd immunity effect of indirect protection when a large portion of the population is protected.

NCI grant aimed at developing a software app
The purpose of the National Cancer Institute grant is to develop patient education software for the HPV vaccine that is easily used by low-income parents who may struggle to read and write, and speak only Spanish.

A body of research in the psychology field has shown that the technique of self-persuasion among well-educated people is successful using written English-language materials. Self-persuasion hasn’t previously been tested among underserved populations in safety-net clinics.

The premise is that individuals will be more likely to take action because the choice they are making is important to them and they value it.

In contrast, where motivation is extrinsic, an individual acts out of a sense of others’ expectations or outside pressure.

Research has found that people are much more likely to maintain a behavior over time — such as quitting smoking, exercising or losing weight — when it’s autonomously motivated. Under those circumstances, they value the choice and consider it important.

“A provider making a clear recommendation is clearly important,’” said Deanna C. Denman, a co-author on the study and a graduate researcher in SMU’s Psychology Department. “Autonomy over the decision can be facilitated by the doctor, who can confirm to parents that “The decision is yours, and here are the reasons I recommend it.’”

Doctor’s recommendation matters, but may not be sufficient
For the SMU study, the researchers educated parents in a waiting room by providing a custom-designed software application running on an iPad tablet.

The program guided the parents in English or Spanish to scroll through audio prompts that help them think through why HPV vaccination is important. The parents verbalized in their own words why it would be important to them to get their child vaccinated. Inability to read or write wasn’t a barrier.

Parents in the SMU study were recruited through the Parkland Memorial Hospital’s out-patient pediatric clinics throughout Dallas County. Most of the parents were Hispanic and had a high school education or less. Among 33 parents with unvaccinated adolescents, 27 — 81% — decided they would vaccinate their child after completing the self-persuasion tasks.

New study builds on prior study results
In the earlier SMU study, researchers surveyed 223 parents from the safety-net clinics. They completed questionnaires relevant to motivation, intentions and barriers to vaccination.

The researchers found that autonomous motivation was strongly correlated with intentions, Denman said. As autonomous motivation increased, the greater parents’ intentions to vaccinate. The lower the autonomous motivation, the lower the parents’ intentions to vaccinate, she explained.

“So they may get the first dose because the doctor says it’s important,” Baldwin said. “But the second and third doses require they come back in a couple months and again in six months. It requires the parent to feel it’s important to their child, and that’s perhaps what’s going to push or motivate them to complete the series. So that’s where, downstream, there’s an important implication.”

Other co-authors on the study are Margarita Sala, graduate student in the SMU Psychology Department; Emily G. Marks, Simon C. Lee and Celette Skinner, who along with Tiro are at the University of Texas Southwestern Medical Center and the Harold C. Simmons Comprehensive Cancer Center in Dallas; L. Aubree Shay, U.T. School of Public Health, San Antonio; Donna Persaud and Sobha Fuller, Parkland Health & Hospital System, Dallas; and Deborah J. Wiebe, University of California-Merced, Merced, Calif.

Categories
Economics & Statistics Energy & Matter Feature Health & Medicine Researcher news SMU In The News

Huffington Post: A New Physics Discovery Could Make You A Faster Runner

It’s all about the force

Reporter Sarah DiGiullo with the online news magazine The Huffington Post covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Huffington Post article, “Researchers reveal the mechanics of running is simpler than thought – and it could revolutionize shoe design,” published Feb. 13, 2017.

Read the full story.

EXCERPT:

By Sarah DiGiullo
The Huffington Post

When it comes to race day, runners may have favorite moisture-wicking gear, a stopwatch and tunes to help get that coveted personal record.

But physicists say running at your top speed may actually be a lot simpler. It all comes down to the force of your foot striking the ground ― and that’s about it.

After studying the physics behind some of the world’s fastest runners, researchers came up with a new model they say could make anyone faster. It may help injured runners recover faster, too.

The researchers developed an equation that calculates two forces: The total force of the shin, ankle and foot striking the ground, and the total force of the rest of the body striking the ground. The method, which they detailed in an article published recently in the Journal of Experimental Biology, can predict how fast an athlete will run.

“We’ve known for quite some time that fast people are fast because they’re able to hit the ground harder in relation to how much they weigh,” explained the study’s co-author, Peter Weyand, director of the Locomotor Performance Laboratory at Southern Methodist University in Dallas.

But Weyand and his team were looking to better understand why it was that some people are able to hit the ground harder than others. The new equation makes the answer a lot clearer, with fewer measurements than previous models.

Read the full story.

Categories
Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News

Dallas Innovates: SMU Study Finds Simpler Way to Explain Physics of Running

The research could have implications on shoe design, rehabilitation practices, and running performance.

Reporter Heather Noel with Dallas Innovates covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Dallas Innovates article, “SMU Study Finds Simpler Way to Explain Physics of Running,” published Feb. 2, 2017.

Read the full story.

EXCERPT:

By Heather Noel
Dallas Innovates

Understanding the physics of running all comes down to the motion of two body parts, according to researchers at Southern Methodist University.

Their findings published recently in the Journal of Experimental Biology, concluded that running can be explained in a lot simpler terms than scientists previously thought. After examining Olympic-caliber runners, they came up with a “two-mass model” that uses the lower leg that comes into contact with the ground and the sum total of the rest of the body to determine ground force.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” said Kenneth Clark, SMU grad and assistant professor in the Department of Kinesiology at West Chester University, in a release.

“This new simplified approach makes it possible to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.”

The research could have implications on shoe design, injury prevention, rehabilitation practices, and running performance.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground,” said Laurence Ryan, a physicist and research engineer at SMU’s Locomotor Performance Laboratory, in a release.

Read the full story.

Categories
Economics & Statistics Energy & Matter Health & Medicine Researcher news SMU In The News

Daily Mail: Researchers reveal the mechanics of running is simpler than thought – and it could revolutionise shoe design

New study: Pattern of force on the ground is due to the motion of two parts of the body

Reporter Stacy Liberatore with London’s Daily Mail newspaper covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Daily Mail article, “Researchers reveal the mechanics of running is simpler than thought – and it could revolutionise shoe design,” published Jan. 31, 2017.

Read the full story.

EXCERPT:

By Stacy Liberatore
Daily Mail

A study has found a new explanation for the basic mechanics of human running.

While observing Olympic-caliber sprinters, researchers discovered that a runner’s pattern of force application on the ground is due to the motion of just two parts of the body: the contacting leg and the rest of the body.

The new approach could help create new patterns to optimize the design of running shoes, orthoses and prosthetics, as experts are able to see exactly how a person runs.

The Southern Methodist University (SMU) researchers explained that the basic concept of their ‘two-mass model’ is relatively simple — a runner’s pattern of force application on the ground is due to the motion of two parts of the body: the lower portion of the leg that is contacting the ground, and the sum total of the rest of the body.

The force contributions of the two body parts are each predicted from their largely independent motions when they have foot-ground contact.

And then combined to predict the overall pattern.

The final prediction relies only upon classical physics and a characteristic link between the force and motion for the two body parts.

‘Our model inputs are limited to contact time on the ground, time in the air, and the motion of the ankle or lower limb.

‘From three basic stride variables we are able to predict the full pattern of ground-force application,’ said Laurence Ryan, who is a physicist and research engineer at SMU’s Locomotor Performance Laboratory.

‘The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates.’

Read the full story.

Categories
Energy & Matter Health & Medicine Researcher news Student researchers Subfeature

New study connects running motion to ground force, provides patterns for any runner

New approach simplifies the physics of running, enabling scientists to predict ground force patterns; applies to rehab, shoe design and athletic performance.

Researchers at Southern Methodist University, Dallas, have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground – during jogging, sprinting and at all speeds in between.

Researchers at Southern Methodist University in Dallas have developed a concise new explanation for the basic mechanics involved in human running.

The approach offers direct insight into the determinants of running performance and injuries, and could enable the use of individualized gait patterns to optimize the design of shoes, orthoses and prostheses according to biomechanics experts Kenneth Clark , Laurence Ryan and Peter Weyand, who authored the new study.

The ground force-time patterns determine the body’s motion coming out of each step and therefore directly determine running performance. The impact portion of the pattern is also believed to be a critical factor for running injuries.

“The human body is mechanically complex, but our new study indicates that the pattern of force on the ground can be accurately understood from the motion of just two body parts,” said Clark, first author on the study and currently an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Pennsylvania.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” Clark said. “This new simplified approach makes it possible to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.”

This new “two-mass model” from the SMU investigators substantially reduces the complexity of existing scientific explanations of the physics of running.

Existing explanations have generally relied upon relatively elaborate “multi-mass spring models” to explain the physics of running, but this approach is known to have significant limitations. These complex models were developed to evaluate rear-foot impacts at jogging speeds and only predict the early portion of the force pattern. In addition, they are less clearly linked to the human body itself. They typically divide the body into four or more masses and include numerous other variables that are hard to link to the actual parts of a human body.

The SMU model offers new insight by providing concise, accurate predictions of the ground force vs. time patterns throughout each instant of the contact period. It does so regardless of limb mechanics, foot-strike type and running speed.

“Our model inputs are limited to contact time on the ground, time in the air, and the motion of the ankle or lower limb. From three basic stride variables we are able to predict the full pattern of ground-force application,” said Ryan, who is a physicist and research engineer at SMU’s Locomotor Performance Laboratory.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground.” added Ryan.

Current methods for assessing patterns of ground force application require expensive in-ground force platforms or force treadmills. Additionally, the links between the motions of an athlete’s body parts and ground forces have previously been difficult to reduce to basic and accurate explanations.

The researchers describe their new two-mass model of the physics of running in the article, “A general relationship links gait mechanics and running ground reaction forces,” published in the Journal of Experimental Biology.

“From both a running performance and injury risk standpoint, many investigations over the last 15 years have focused on the link between limb motion and force application,” said Weyand, who is the director of SMU’s Locomotor Performance Laboratory. “We’re excited that this research can shed light on this basic relationship.”

Overall force-time pattern is the sum of two parts
Traditional scientific explanations of foot-ground forces have utilized different types of spring and mass models ranging from complex to very simple. However, the existing models have not been able to fully account for all of the variation present in the force-time patterns of different runners — particularly at speeds faster than jogging. Consequently, a comprehensive basis for assessing performance differences, injury risks and general running mechanics has not been previously available.

The SMU researchers explain that the basic concept of the new approach is relatively simple — a runner’s pattern of force application on the ground is due to the motion of two parts of the body: the lower portion of the leg that is contacting the ground, and the sum total of the rest of the body.

The force contributions of the two body parts are each predicted from their largely independent, respective motions during the foot-ground contact period. The two force contributions are then combined to predict the overall pattern. The final prediction relies only upon classical physics and a characteristic link between the force and motion for the two body parts.

New approach can be applied accurately and inexpensively
The application of the two-mass approach is direct and immediate.

“Scientists, clinicians and performance specialists can directly apply the new information using the predictive approach provided in the manuscript,” Clark said. “The new science is well-suited to assessing patterns of ground-force application by athletes on running tracks and in performance training centers.”

These capabilities have not been possible previously, much less in the inexpensive and accurate manner that the new approach allows for with existing technology.

“The only requirement is a quality high-speed camera or decent motion sensor and our force-motion algorithms,” Clark said. “It’s conceivable that even shoe stores would benefit by implementing basic treadmill assessments to guide footwear selection from customer’s gait mechanics using the approach.”

A critical breakthrough for the SMU researchers was recognition that the mass contribution of the lower leg did not vary for heel vs. forefoot strikes and was directly quantifiable. Their efforts lead them to recognize the initial force contribution results from the quick stopping of the lower part of the leg — the shin, ankle and foot — which all come down and stop together when the foot hits the ground.

Olympic sprinters were a clue to discovery
The SMU team discovered a general way to quantify the impact forces from the large impacts observed from Olympic-caliber sprinters. Like heel strikers, the patterns of Olympic sprinters exhibit a sharp rising edge peak that results from an abrupt deceleration of the foot and lower leg. However, sprinters accomplish this with forefoot impacts rather than the heel-first landing that most joggers use.

“The world-class sprinters gave us a big signal to figure out the critical determinants of the shape of the waveform,” said Weyand. “Without their big impact forces, we would probably have not been able to recognize that the ground-force patterns of all runners, regardless of their foot-strike mechanics and running speed, have two basic parts.”

When the researchers first began to analyze the seemingly complicated force waveform signals, they found that they were actually composed of two very simple overlapping waveforms, Ryan said.

“Our computer generated the best pattern predictions when the timing of the first waveform coincided with the high-speed video of the ankle stopping on impact. This was true to within a millisecond, every single time. And we did it hundreds of times,” he said. “So we knew we had a direct physical relationship between force and motion that provided a critical insight.”

New approach has potential to diagnose injury, rehab
The SMU team’s new concise waveforms potentially have diagnostic possibilities, Weyand said.

For example, a runner’s pre-injury waveforms could be compared to their post-injury and post-rehab waveforms.

“You could potentially identify the asymmetries of runners with tibial stress fractures, Achilles tendonitis or other injuries by comparing the force patterns of their injured and healthy legs,” he said.

And while medical images could suggest the injury has healed, their waveforms might tell a different story.

“The waveform patterns might show the athlete continues to run with less force on the injured limb. So it may offer an inexpensive diagnostic tool that was not previously available,” Weyand said.

Weyand is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Categories
Culture, Society & Family Health & Medicine Learning & Education Researcher news SMU In The News

CBS News: The “spanking” debate — views depend on what you call it

CBS News covered the research of SMU Psychology Professor George W. Holden, an expert in spanking and its adverse impact on child development. Holden is co-author on a new study that found corporal punishment is viewed as more acceptable and effective when it’s referred to as spanking.

The new study found that parents and nonparents alike feel better about corporal punishment when it’s called spanking rather than hitting or beating.

Study participants judged identical acts of a child’s misbehavior and the corporal punishment that followed it, but rated the discipline as better or worse simply depending on the verb used to describe it.

SMU psychologist Alan S. Brown was lead author on the study.

Holden is a noted expert on parenting, discipline and family violence and a professor in the SMU Department of Psychology.

He strongly advocates against corporal punishment and cites overwhelming research, including his own, that has demonstrated that spanking is not only ineffective, but also harmful to children, and many times leads to child abuse.

Holden is a founding member of the U.S. Alliance to End the Hitting of Children, endhittingusa.org.

Brown is an expert in how people store and retrieve information about the real world, and the manner in which those processes fail us, such as tip of the tongue experience, where one is momentarily stymied in accessing well-stored knowledge.

He also explores the prevalence of other varieties of spontaneous familiarity, related to déjà vu, and whether there are changes across the age span and how people incorporate other’s life experiences into their own autobiography.

The CBS News article, “The ‘spanking’ debate: Views depend on what you call it,” published Jan. 5, 2017.

Read the full story.

EXCERPT:

By Mary Brophy Marcus
CBS News

Words matter when it comes to how people perceive parents’ actions when they discipline their kids, a new study shows.

When researchers at Southern Methodist University, in Dallas, asked adults – 481 parents and 191 without kids – to judge a child’s misbehavior and the punishment that followed, the study participants were more accepting of the same violent punishment when it was called a “spank” versus terms like “slap,” “hit” or “beat.”

In other words, the same form of discipline was considered better or worse depending on the verb used to describe it, study author Dr. George Holden, professor and chair of the department of psychology at SMU, told CBS News.

“Other people have talked about this issue, so it’s not a novel idea, but no one to date has done an empirical study to show simply by changing the particular verb used to describe a parental act that it does indeed change peoples’ perceptions,” he said.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Learning & Education Researcher news SMU In The News

CW33: Spanking Sounds OK, Hitting Not So Much, SMU Study Says

Television station CW33 quoted SMU Psychology Professor Alan S. Brown for his latest research that found corporal punishment is viewed as more acceptable and effective when it’s referred to as spanking.

Brown’s new study found that parents and nonparents alike feel better about corporal punishment when it’s called spanking rather than hitting or beating.

Study participants judged identical acts of a child’s misbehavior and the corporal punishment that followed it, but rated the discipline as better or worse simply depending on the verb used to describe it.

The article, “Spanking Sounds OK, Hitting Not So Much, SMU Study Says,” published Jan. 4, 2017.

Brown was lead author on the research, conducted with SMU psychologist George W. Holden, a noted expert on parenting, discipline and family violence and a professor in the SMU Department of Psychology.

Brown’s research primarily involves how people store and retrieve information about the real world, and the manner in which those processes fail us, such as tip of the tongue experience, where one is momentarily stymied in accessing well-stored knowledge.

He also explores the prevalence of other varieties of spontaneous familiarity, related to déjà vu, and whether there are changes across the age span. Finally, there are several research projects on how people incorporate other’s life experiences into their own autobiography.

Holden is noted for his expertise on spanking. He strongly advocates against corporal punishment and cites overwhelming research, including his own, that has demonstrated that spanking is not only ineffective, but also harmful to children, and many times leads to child abuse.

Holden is a founding member of the U.S. Alliance to End the Hitting of Children, endhittingusa.org.

Read the story at CW33.

EXCERPT:

By Eric Gonzales
The CW33

So how does the word spanking hit you?

A new study by Southern Methodist University bets there are no hard feelings when it comes to getting spanked.

Psychology Professor Alan Brown says the word spank sounds more acceptable to people than saying a kid is getting a slap, a hit or a beating as punishment.

Even though hitting or slapping as punishment may be the same as a spanking, the professor says spanking sounds less harsh.

But parents say it may depend on where you’re spanked. “We got our butts spanked, our butts, not out backs, not our legs,” said Renee Hudspeth. “Even if we did get hit on the arm or the leg, it`s because we were trying to run from our parents.”

The professor says even swatting a kid sounds better than other words for corporal punishment, like beating.

Of course, some people say it’s never okay to hit a child. But a lot of parents believe spanking isn`t behind them.

Read the story at CW33.

Categories
Energy & Matter Health & Medicine Plants & Animals Researcher news SMU In The News

Dallas Innovates: SMU Chemists Find New Way to Break Carbon, Hydrogen Bond

The discovery could make it cheaper and easier to derive products from petroleum.

D Magazine’s Dallas Innovates has covered the latest research of SMU chemist Isaac Garcia-Bosch, who discovered a new way to crack the stubborn carbon-hydrogen bond, “Green chemistry: Au naturel catalyst mimics nature to break tenacious carbon-hydrogen bond.”

The article, “SMU Chemists Find New Way to Break Carbon, Hydrogen Bond,” published Jan. 6, 2017.

The Dallas Innovates article “SMU Chemists Find New Way to Break Carbon, Hydrogen Bond” notes that the new catalyst for breaking the tough molecular bond between carbon and hydrogen holds the promise of a cleaner, easier and cheaper way to derive products from petroleum.

An assistant professor, Garcia-Bosch is Harold A. Jeskey Endowed Chair in Chemistry.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Chemists at Southern Methodist University in Dallas have found a cheaper, cleaner method to break the stubborn molecular bond between carbon and hydrogen, a development that could lead to better ways to derive products from petroleum.

“Some of the most useful building blocks we have in the world are simple, plentiful hydrocarbons like methane, which we extract from the ground. They can be used as starting materials for complex chemical products such as plastics and pharmaceuticals,” Isaac Garcia-Bosch, Harold A. Jeskey Endowed Chair and assistant professor in the Department of Chemistry at SMU, told Eurekalert.org. “But the first step of the process is very, very difficult — breaking that carbon-hydrogen bond. The stronger the bond, the more difficult it is to oxidize.”

Oxidizing causes the molecule to undergo a reaction that combines with oxygen and breaks the carbon-hydrogen bonds, according to Eurekalert.

SMU chemists have been working on the project in collaboration with a team from the Johns Hopkins University.

According to the report, Garcia-Bosch and chemist Maxime A. Siegler, director of the X-Ray Crystallography facility at the Johns Hopkins University, used copper catalysts in conjunction with hydrogen peroxide to create the carbon-oxygen bonds.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Learning & Education Researcher news Student researchers Subfeature

Corporal punishment viewed as more acceptable and effective when referred to as spanking, study finds

Parents and nonparents alike buffer their views of physical discipline and rate it more common, acceptable and effective when it’s labeled with a more neutral, less violent word

Parents and nonparents alike feel better about corporal punishment when it’s called ‘spanking’ rather than ‘hitting’ or ‘beating,’ according to a new study by researchers at Southern Methodist University, Dallas.

Study participants judged identical acts of a child’s misbehavior and the corporal punishment that followed it, but rated the discipline as better or worse simply depending on the verb used to describe it.

Discipline acts referred to as spank and swat were ranked as more effective and acceptable than those referred to as slap, hit or beat.

The findings of the study indicate that people buffer negative views of corporal punishment by calling it by a more culturally acceptable label, said psychologist Alan Brown, psychology professor at SMU and lead author on the research.

“Our findings suggest that the way child-discipline is described may alter the action’s implied intensity or physical harm, and its consequences such as emotional upset,” Brown said. “Calling a response to misbehavior a ‘swat’ may imply higher prevalence of that response as well as make it seem more justifiable and valid — even if the actual punishment is the same as an act described more harshly.”

Participants in the study rated the acts after reading and responding to hypothetical scenarios in which a mom disciplined her misbehaving son. Spank rated highest for commonness, acceptability and effectiveness, while beat ranked the worst, he said.

“The labels that we give to our experiences can have a moderate to profound influence on how we interpret and remember these events,” Brown said. “We found that altering the verb used to describe an act of corporal punishment can change perception of its effectiveness and acceptance of it.”

One implication of the study is that public health interventions to eliminate corporal punishment should focus on changing the semantics of discipline to reduce or prevent violence, say the authors. They cite UNICEF’s 2014 recommendation that “There is a need to eliminate words which maintain ‘social norms that hide violence in plain sight.’”

The psychologists endorse replacing the verb spank with the verb assault, as suggested by other researchers in the field, which they say could change the perception of spanking and reduce its use.

Labels can buffer how actions are perceived
Research consistently has found that corporal punishment does emotional and developmental harm to children and fails to improve a child’s behavior over the long run.

“Our belief is that it is never OK to discipline a child by striking them, and that various terms commonly used to describe such actions can buffer how these actions are perceived,” Brown said. “Our research demonstrated that ratings of how common, acceptable and effective an act of corporal punishment appears to be is significantly influenced by the word used to describe it.”

Co-author on the study was psychologist George Holden, a noted expert on parenting, discipline and family violence and co-author on the research and a professor in the SMU Department of Psychology.

The findings were reported in the article “Spank, Slap, or Hit? How Labels Alter Perceptions of Child Discipline” published in the journal Psychology of Violence.

The other co-author on the research was Rose Ashraf, a graduate student in SMU’s Department of Psychology.

Holden is a founding steering committee member and current president of the U.S. Alliance to End the Hitting of Children.

Study examined how different terms influence perceptions and actions
Participants were 191 nonparents and 481 parents.

The discipline scenarios were between a mom and her 5-year-old son. The mom and son varied with each scenario, which described a boy in eight acts of misbehavior: aggression, stealing, ignoring requests, deception, teasing, property destruction, animal cruelty and lying.

Study participants read each vignette of misbehavior, and the subsequent description of the mom’s response using a term commonly reflecting corporal punishment: spank, slap, swat, hit and beat.

The authors selected the labels from the most commonly used terms in the research literature for corporal punishment in American culture.

The hypothetical scenarios were brief and left context and details such as the seriousness of the transgression or the intentions of the misbehaving child to the respondents’ imaginations.

For example: “John continues to hit his sibling after his mother has asked him to stop. John’s mother ______ him.” The participants then rated the mother’s response on how common it was, how acceptable it was and how effective it was.

The purpose was to examine how differences in the terms influence perceptions of parental discipline, the authors said.

“Our study highlights the role of language in legitimizing violent parental behavior,” according to the authors in their article. “Altering the verb used to describe the same act of corporal punishment can have a substantial impact on how that parental response is evaluated, with some terms having a relative tempering effect (spank, swat) compared with others (hit, slap, beat).”

Categories
Culture, Society & Family Health & Medicine Mind & Brain Researcher news SMU In The News

Wall Street Journal: For better talk therapy, try taking a nap

Doctors are finding creative ways to make cognitive behavioral therapy more effective

The Wall Street Journal has covered the latest research of SMU clinical psychologist Alicia Meuret, quoting her as an expert source.

The article, “For better talk therapy, try taking a nap,” published Nov. 28.

Meuret is director of the Anxiety and Depression Research Center at SMU, with expertise in discussing the differences between fear and anxiety and when each is helpful and adaptive and when they are harmful and interfere with our lives.

An associate professor in the Clinical Psychology Division at the SMU Department of Psychology, Meuret received her Ph.D. in Clinical Psychology from the University of Hamburg based on her doctoral work conducted at the Department of Psychiatry and Behavioral Sciences at Stanford University. She completed postdoctoral fellowships at the Center for Anxiety and Related Disorders at Boston University and the Affective Neuroscience Laboratory in the Department of Psychology at Harvard University.

Her research program focuses on novel treatment approaches for anxiety and mood disorders, biomarkers in anxiety disorders and chronic disease, fear extinction mechanisms of exposure therapy, and mediators and moderators in individuals with affective dysregulations, including non-suicidal self-injury.

The article “For better talk therapy, try taking a nap,” cites new findings from Meuret’s research, which found patients undergoing exposure therapy for anxiety fared better when sessions were held in the morning when levels of the helpful natural hormone cortisone are higher in the brain.

Read the full story.

EXCERPT:

By Andrea Petersen
Wall Street Journal

New tweaks are improving the age-old practice of talk therapy.

Doing therapy in the morning, taking a nap afterward or adding a medication that enhances learning are just a few of the methods scientists are discovering that can make cognitive behavioral therapy work better.

CBT, which involves changing dysfunctional patterns of thoughts and behaviors, is one of the most well-researched and effective treatments for a range of mental health issues, including anxiety disorders, depression and eating disorders.

But about a quarter to half of people with depression and anxiety don’t get significant relief after a course of CBT, which usually consists of about 12 to 15 weekly sessions. Some patients find the treatment time-consuming and difficult. Anywhere from 15% to 30% of people who begin it don’t finish, says David H. Barlow, founder of the Center for Anxiety and Related Disorders at Boston University. “There’s still plenty of room for improvement,” he says.

A study published in September in the journal Psychoneuroendocrinology that involved 24 patients with anxiety disorders found that therapy appointments earlier in the day were more effective than those later in the day.

In the study, subjects—who all had panic disorder with agoraphobia (fear of situations where escape may be difficult)—were treated with exposure therapy, a common component of CBT: They repeatedly confronted situations they feared, such as being in elevators or crowds. Subjects with sessions early in the day reported less severe anxiety symptoms at their next session than those who had sessions later in the day.

The researchers found that higher levels of the stress hormone cortisol that naturally occur in the morning were responsible for at least part of the benefit of the earlier sessions. “Acute boosts of cortisol can actually facilitate learning,” says Alicia E. Meuret, associate professor of psychology at Southern Methodist University and lead author of the study.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Plants & Animals Researcher news SMU In The News

How Stuff Works: Could Humans Break the Two-hour Marathon Barrier?

How Stuff Works reporter Julia Layton tapped the expertise of SMU biomechanics expert Peter Weyand for a news story about the burning question of the limits of human speed and whether — or when — runners will break the two-hour marathon barrier. Weyand explained the biomechanics of human locomotion, particularly as it pertains to fast runners.

The article “Could Humans Break the Two-hour Marathon Barrier?” published Nov. 16, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Could Humans Break the Two-hour Marathon Barrier?.

EXCERPT:

By Julia Layton
How Stuff Works

The New York City Marathon saw some impressive finishes in 2016. In the Nov. 6 race, women’s winner Mary Keitany of Kenya crossed the finish line in 2:24:26, and Eritrea’s Ghirmay Ghebreslassie took the men’s division with 2:07:51. Ghebreslassie earned a $25,000 bonus for breaking the 2:08:00 mark.

The world records, however, were perfectly safe. No woman has come within three minutes of Paula Radcliffe’s 2:15:25 at the London Marathon in 2003 (Radcliffe is British). In the 26.2-mile (42.2-kilometer) stretch that is the marathon, a minute is an “exceptionally long time,” writes Noah Davis on Pacific Standard. “Losing by five minutes to a 2:15 marathoner,” he explains, “is to be almost a mile [1.6 kilometer] behind when she crosses the finish line.”

The men’s marathon record of 2:02:57, established by Kenya’s Dennis Kimetto at the 2014 Berlin Marathon, may be approaching the limits of human physiology.

The Two-hour Barrier
In marathon science, two hours is the “golden ticket.” It’s really just the next-lowest round number in marathon times, explains Dr. Peter Weyand, professor of applied physiology and biomechanics at Southern Methodist University in Dallas, but “[t]he progression toward the [two-hour] barrier has for some time marked it as a milestone in the history of athletics and human performance — one of great symbolic and functional significance.”

Marathon times have plummeted in the last few decades. The men’s record fell by almost four minutes between 1998 and 2014, and the women’s dropped by more than five minutes. At this point, most experts predict a runner will eventually break the two-hour-hour mark. When and how it will happen is more controversial.

“The number of variables involved that will need to align simultaneously to break the two-hour barrier are numerous,” writes Weyand, “making specific predictions highly uncertain.” However, he says five years is “not unrealistic.”

Could Humans Break the Two-hour Marathon Barrier?.

Categories
Feature Health & Medicine Researcher news Slideshows Student researchers

NCI grant funds SMU research into cancer-causing viruses that hide from the immune system

Genes common to both the human T-cell leukemia virus and high-risk human papillomaviruses activate survival mechanisms in cancer cells. An SMU lab, with National Cancer Institute funding, is hunting ways to inhibit those genes to halt the development of cancer.

SMU virologist and cancer researcher Robert L. Harrod has been awarded a $436,500 grant from the National Cancer Institute to further his lab’s research into how certain viruses cause cancers in humans.

Under two previous NCI grants, Harrod’s lab discovered that the human T-cell leukemia virus type-1, HTLV-1, and high-risk subtype human papillomaviruses, HPVs, share a common mechanism that plays a key role in allowing cancers to develop.

Now the lab will search for the biological mechanism — a molecular target — to intervene to block establishment and progression of virus-induced cancers. The hope is to ultimately develop a chemotherapy drug to block the growth of those tumor cells in patients.

“The general theme of our lab is understanding the key molecular events involved in how the viruses allow cancer to develop,” said Harrod, an associate professor in SMU’s Department of Biological Sciences whose research focuses on understanding the molecular basis of viral initiation of cancer formation.

While HTLV-1 and HPV are unrelated transforming viruses and lead to very different types of cancers, they’ve evolved a similar mechanism to cooperate with genes that cause cancer in different cell types. The lab discovered that the two viruses tap a common protein that cooperates with cellular genes to help the viruses hide from the immune system.

That common protein, the p30 protein of HTLV-1, binds to a different protein in the cell, p53, which normally has the job of suppressing cancerous growth or tumor development. Instead, however, p30 manages to subvert p53’s tumor suppressor functions, which in turn activates pro-survival pathways for the virus.

From there, the virus can hide inside the infected cell for two to three decades while evading host immune-surveillance pathways. As the cell divides, the virus divides and replicates. Then ultimately the deregulation of gene expression by viral encoded products causes cancer to develop.

“They are essentially using a similar mechanism, p30, to deregulate those pathways from their normal tumor-suppressing function,” Harrod said.

Tumor suppression, DNA damage-repair pathways, begin to fail with age
About 15 percent to 20 percent of all cancers are virus related. Worldwide, about 10 million people are infected with HTLV-1 and, as with other viral-induced cancers, about 3 percent to 5 percent of those infected go on to develop malignant disease.

Cancer is often associated with the process of normal aging, because our tumor suppression and DNA damage-repair pathways begin to break down and fail, explained Harrod. Our pathways don’t as easily repair genetic mutations, which makes us more susceptible to cancers like adult T-cell leukemia and HPV-associated cervical cancers or head-and-neck carcinomas, he said.

The human T-cell leukemia virus is transmitted through blood and body fluid contact, usually infecting infants and children via breastfeeding from their mother. A tropical infectious disease, it’s endemic to Southeast Asia, primarily Japan, Taiwan, China and Malaysia, as well as certain regions in the Middle East, Northern Africa and islands of the Caribbean. In the United States, Hawaii and Florida have the highest incidence of adult T-cell leukemia. HTLV-1 is highly resistant to most modern anticancer therapies, including radiotherapy and bone marrow or matching donor stem cell transplants. The life expectancy of patients with acute or lymphoma-stage disease is about six months to two years after diagnosis.

In the case of HPV, certain high-risk sub-types aren’t inhibited by today’s available HPV vaccines. It’s considered the high-risk HPVs are sexually transmitted through direct contact with the tissues of the virus-producing papillomas or warts. High-risk HPVs can also cause cervical cancers and head and neck carcinomas, many of which are associated with poor clinical outcomes and have high mortality rates.

How do viruses cause cancer?
For both HTLV-1 and HPV, the virus itself does not cause cancer to develop.

“It’s cooperating with oncogenes — cellular genes that become deregulated and have the potential to cause cancer,” Harrod said. “The role of these viruses, it seems, is to induce the proliferation of the cell affected with cancer. We’re trying to understand some of the molecular events that are associated with these cancers. ”

The lab’s three-year NCI grant runs through 2019. Harrod’s two previous grants awarded by the National Institutes of Health were also three-year-grants, for $435,000 and $162,000. Each one has targeted HTLV-1 and the p30 protein.

The lab’s first NCI grant came after the researchers provided the first demonstration that p30 could cooperate with cellular oncogenes, which have the potential to cause cancer, to cause deregulated cell growth leading to normal cells transforming into cancer cells. That original discovery was reported in 2005 in the article “A human T-cell lymphotropic virus type 1 enhancer of Myc transforming potential stabilizes Myc-TIP60 transcriptional interactions,” in the high-profile journal Molecular and Cellular Biology.

“We find that the p30 protein is involved in maintaining the latency of these viruses. These viruses have to persist in the body for 20 to 40 years before a person develops disease. To do that they have to hide from the immune response,” Harrod explained. “So p30 plays a role in silencing the viral genome so that the affected cells can hide, but at the same time it induces replication of the affected cells. So when the cell divides, the virus divides. We call that pro-viral replication.”

The term “latency maintenance factor” in reference to p30 originated with Harrod’s lab and has gained traction in the HTLV-1 field.

Under the lab’s second NCI grant, the researchers figured out how to block pro-survival pathways to kill tumor cells.

In the current grant proposal, Harrod’s lab demonstrated that by inhibiting specific downstream targets of p53 — essentially blocking pathways regulated by the p53 protein — they could cause infected tumor cells to collapse on themselves and undergo cell death.

“We do that independent of chemotherapy,” Harrod said. “So that was a big find for us.”

Goal is to eliminate cancer cells by inhibiting pathway
Each grant project builds upon the one before it, and the third grant extends the work, to now include high-risk HPVs.

“Now that we’ve shown we can block one or two of these factors to cause cell death, we’re starting to get an eye really on how we can inhibit these cancer cells and what potentially down the road may lead to a therapeutic,” Harrod said. “That’s the ultimate goal.”

One of the biggest challenges will be to inhibit the pathways in the tumor cells without targeting normal cells, he said. The lab’s recent findings indicate the researchers may soon be within reach of identifying a new strategy to eliminate cancer cells by inhibiting pathways key to their survival.

Harrod’s lab collaborates on the research with: Lawrence Banks, Tumor Virology Group Leader, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; Brenda Hernandez, Associate Director, Hawaii Tumor Registry, University of Hawaii Cancer Center, Honolulu; and Patrick Green, Director, Center for Retrovirus Research, The Ohio State University. — Margaret Allen, SMU

Categories
Health & Medicine Mind & Brain Researcher news SMU In The News

Huffington Post: The Science-Backed Reason To See Your Therapist In The Morning

Your daily hormone cycle plays an important role.

Huffington Post sleep writer Sarah DiGiulio covered the latest research of SMU clinical psychologist Alicia Meuret for the online news hub.

The article, “The Science-Backed Reason To See Your Therapist In The Morning,” published Oct. 25.

Meuret is director of the Anxiety and Depression Research Center at SMU, with expertise in discussing the differences between fear and anxiety and when each is helpful and adaptive and when they are harmful and interfere with our lives.

An associate professor in the Clinical Psychology Division at the SMU Department of Psychology, Meuret received her Ph.D. in Clinical Psychology from the University of Hamburg based on her doctoral work conducted at the Department of Psychiatry and Behavioral Sciences at Stanford University. She completed postdoctoral fellowships at the Center for Anxiety and Related Disorders at Boston University and the Affective Neuroscience Laboratory in the Department of Psychology at Harvard University.

Her research program focuses on novel treatment approaches for anxiety and mood disorders, biomarkers in anxiety disorders and chronic disease, fear extinction mechanisms of exposure therapy, and mediators and moderators in individuals with affective dysregulations, including non-suicidal self-injury.

The article “The Science-Backed Reason To See Your Therapist In The Morning,” cites new findings from Meuret’s research, which found patients undergoing exposure therapy for anxiety fared better when sessions were held in the morning when levels of the helpful natural hormone cortisone are higher in the brain.

Read the full story.

EXCERPT:

By Sarah DiGiulio
Huffington Post

Not a morning person? There still might be a good reason to get up and at it when it comes to booking time with your therapist.

A new study found that patients actually made more progress in overcoming anxiety, fears and phobias when they went to psychotherapy in the morning versus the afternoon. In fact, a test of panic symptoms revealed that patients had nearly 30 percent more improvement after an a.m. appointment than an afternoon session.

It’s not about whether or not you’re a morning person or a night owl, study author Alicia E. Meuret, a clinical psychologist at Southern Methodist University in Dallas, told The Huffington Post. The new data suggests morning therapy sessions are aided by higher levels of cortisol, the stress hormone that our bodies naturally release throughout the day.

The regular release of cortisol plays a role in ramping up metabolism and your immune system to get your body ready to go for the day, she explained. But more cortisol is released in the morning.

“There is already good evidence that learning is facilitated in the morning. There is also good evidence that cortisol facilitates learning,” she said. But this study is the first to suggest that your morning cortisol boost may also help you better face ― and deal with ― your fears and anxieties.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News

Real Simple: This Is the Best Time of Day to See Your Therapist

If you’re struggling to overcome anxiety or a phobia, you’ll want to schedule a session at this time.

Real Simple health writer Amanda MacMillan covered the research of SMU clinical psychologist Alicia Meuret in the latest issue of the magazine and web site.

The article, “This Is the Best Time of Day to See Your Therapist,” published Oct. 16.

Meuret is director of the Anxiety and Depression Research Center at SMU, with expertise in discussing the differences between fear and anxiety and when each is helpful and adaptive and when they are harmful and interfere with our lives.

An associate professor in the Clinical Psychology Division at the SMU Department of Psychology, Meuret received her Ph.D. in Clinical Psychology from the University of Hamburg based on her doctoral work conducted at the Department of Psychiatry and Behavioral Sciences at Stanford University. She completed postdoctoral fellowships at the Center for Anxiety and Related Disorders at Boston University and the Affective Neuroscience Laboratory in the Department of Psychology at Harvard University.

Her research program focuses on novel treatment approaches for anxiety and mood disorders, biomarkers in anxiety disorders and chronic disease, fear extinction mechanisms of exposure therapy, and mediators and moderators in individuals with affective dysregulations, including non-suicidal self-injury.

The article “This Is the Best Time of Day to See Your Therapist,” cites new findings from Meuret’s research, which found patients undergoing exposure therapy for anxiety fared better when sessions were held in the morning when levels of the helpful natural hormone cortisone are higher in the brain.

Read the full story.

EXCERPT:

By Amanda MacMillan
Real Simple

If you see a therapist for anxiety or a phobia, you might make more progress in sessions scheduled for the morning hours. Cortisol, a hormone that regulates stress and fear, is highest at this time of day—and a new study suggests this could make a real difference in overcoming emotional difficulties.

The new research, conducted by researchers at Southern Methodist University and the University of Michigan, focused specifically on a treatment known as exposure therapy. During exposure therapy, patients work with mental-health professionals to put themselves in situations that would normally cause panic or fear. The goal, with repeated exposures, is to diminish those stress responses over time.

“For example, a patient may think that standing in an elevator could cause him or her to lose control or faint, suffocate, or may create physical symptoms that would be intolerable,” explained Alicia E. Meuret, PhD, director of the SMU Anxiety and Depression Research Center, in a press release. “By having them stand in an elevator for a prolonged time, the patient learns that their feared outcome does not occur, despite high levels of anxiety. We call this corrective learning.”

Read the full story.

Categories
Energy & Matter Health & Medicine Researcher news SMU In The News

KERA News: The Biomechanical Breakdown Of Back Flips On Pogo Sticks

KERA news reporter Courtney Collins tapped the expertise of SMU biomechanics expert Peter Weyand for a news story about the extreme pogo stick performers that have captivated fair goers this year at the Texas State Fair. Weyand explained the biomechanics of the high-flying backflips and stunts of the pogo stick gymnasts.

The article “The Biomechanical Breakdown Of Back Flips On Pogo Sticks” aired on Oct. 17, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Watch the video and listen to the broadcast.

EXCERPT:

By Courtney Collins
KERA News

There’s a lot to gawk at at the State Fair of Texas. A 55 foot tall cowboy, towering cones of cotton candy, flashing midway rides that defy gravity. This year, a handful of guys on pogo sticks do that too.

Three times a day, the Xpogo demo team does everything from back flips to 7-foot bounds over a limbo pole. It looks cool, sure. The biomechanical breakdown of what these athletes are actually doing is even cooler.
The Xpogo athletes can pull off tricks most of us would never attempt. Jumps with no hands, jumps with no feet. Black flips, front flips and sky-high leaps over obstacles.

Bryan Pognant has been involved in extreme pogo-sticking for 15 years. He says the key to getting tricks down isn’t strength, it’s…

“Balance, always balance,” he says. “We have 13 year olds jumping like 10 feet, and that’s only because they know how to balance.”

Watch Pognant perform a trick called the ‘no foot peg grab’ with scientific analysis from SMU professor of physiology and biomechanics Peter Weyand.

Watch the video and listen to the broadcast.

Categories
Health & Medicine Learning & Education Mind & Brain

Psychotherapy sessions are best in the morning when levels of helpful hormone are high

New study found patients with anxiety, phobias and fears showed greater improvement from therapy that was scheduled in the morning, when levels of cortisol — a naturally occurring hormone — test higher.

Patients make more progress toward overcoming anxiety, fears and phobias when their therapy sessions are scheduled in the morning, new research suggests.

The study found that morning sessions helped psychotherapy patients overcome their panic and anxiety and phobic avoidance better, in part, because levels of cortisol — a naturally occurring hormone — are at their highest then, said clinical psychologist Alicia E. Meuret, Southern Methodist University, Dallas.

“The hormone cortisol is thought to facilitate fear extinction in certain therapeutic situations,” said Meuret, lead author on the research. “Drugs to enhance fear extinction are being investigated, but they can be difficult to administer and have yielded mixed results. The findings of our study promote taking advantage of two simple and naturally occurring agents – our own cortisol and time of day.”

The findings were reported in the article “Timing matters: Endogenous cortisol mediates benefits from early-day psychotherapy” in the journal Psychoneuroendocrinology.

Co-authors from the SMU Department of Psychology are David Rosenfield, Lavanya Bhaskara and Thomas Ritz. Co-authors from the Department of Psychiatry at the University of Michigan are Richard Auchus, Israel Liberzon, and James L. Abelson.

The study taps into research that anxiety and phobias are best treated by learning corrective information. Patients with anxiety and phobic disorders will overestimate the threat that a sensation or situation can cause. But by direct exposure, a patient learns that the likelihood of an expected catastrophe is very low.

“For example, a patient may think that standing in an elevator could cause him or her to lose control or faint, suffocate, or may create physical symptoms that would be intolerable,” Meuret said. “By having them stand in an elevator for a prolonged time, the patient learns that their feared outcome does not occur, despite high levels of anxiety. We call this corrective learning.”

However, since not all patients benefit equally from exposure therapy, researchers seek to identify ways to enhance corrective learning. To date, no simple way to augment fear extinction has been established.

The hormone cortisol is thought to help the extinction of fear. It appears to suppress the fear memory established by earlier distressing encounters while at the same time helping a patient better absorb and remember the new corrective information.

“In a prior study, we have shown that higher levels of cortisol during and in anticipation of exposure facilitate corrective learning,” said Meuret, an associate professor in the SMU Psychology Department and director of the SMU Anxiety and Depression Research Center in the Clinical Psychology Division of the department. “We also know that cortisol is higher early in the day. But we did not know whether cortisol would act as a mediator between time of day and therapeutic gains. This is what our study investigated.”

Exposure therapy in general resulted in significant improvements
Participants in the study were 24 people diagnosed with panic disorder and agoraphobia, which is a fear of public places where a person feels panicked, trapped or helpless.

For the study, participants underwent a standard psychotherapeutic treatment of “exposure therapy,” in which patients are exposed to situations that can typically induce their panic or fear with the goal that repeated exposure can help diminish a disabling fear response over time.

Patients received weekly sessions over three weeks, each lasting, on average, 40 minutes. Exposure situations included tall buildings, highways and overpasses, enclosed places such as elevators, supermarkets, movie theaters, and public transportation such as subways and intercity trains and boats. In addition, levels of cortisol were measured at various times during each exposure session by swabbing inside the mouth for saliva.

In the session following exposure, the researchers measured patients’ appraisals of the threats, their avoidance behavior, how much control they perceived themselves as having, and the severity of their panic symptoms.

Assessing the results from those measurements, the researchers found the exposure therapy in general resulted in significant improvements in all measures over all time periods.

Biggest gains after sessions that started earlier in the day
However, patients made the biggest gains in overcoming their fears after the sessions that started earlier in the day. At the next session, patients reported less severe symptoms for threat misappraisal, avoidance behaviors and panic symptom severity. They also perceived greater control over their panic symptoms.

“Notably, higher cortisol was related to greater reductions in threat appraisal, perceived control and panic symptom severity at the next session,” Meuret said, “and that was the case over-and-above the effects of time-of-day, with large effect sizes.”

That finding suggests that cortisol accounts for some of the therapeutic effects associated with time-of-day, she said.

Because cortisol levels are generally higher in the morning, the authors speculate that higher cortisol levels may aid extinction learning, and contribute to enhanced early-day benefits of exposure sessions through such a mechanism.

However, Meuret cautioned that the precise mechanism by which cortisol enhances the effectiveness of morning exposure sessions remains unclear and can’t be directly addressed from the data in this study. The sample size of the study was small and findings need to be confirmed independently in larger studies, she said.

Meuret and her team suspect additional mechanisms are at play to explain the time-of-day effect. Other factors could include memory and learning and the body’s natural circadian rhythm, quantity and quality of sleep, attention control, and interactions between those factors and others. — Margaret Allen, SMU

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Health & Medicine Mind & Brain Researcher news SMU In The News

The Guardian: How fast can we go? The science of the 100m sprint

“Newton figured out the laws of motion centuries ago but when we apply them to the human body it gets really complex, really quickly.” — Peter Weyand

Journalist Simon Usborne tapped the human-speed expertise of SMU biomechanics expert Peter Weyand for an article in the London newspaper The Guardian. The article examines the potential for humans to continue improving strength and speed beyond what has already been achieved.

Usborne interviewed Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “How fast can we go? The science of the 100m sprint” published Oct. 3, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Simon Usborne
The Guardian

The greatest race in the Olympics is the simplest. Eight runners, eight straight lines. A bang, an explosion of muscle and, less than ten seconds later, a winner. And all they do is run. No bikes, boats, vaults or horses — just one foot in front of the other. Yet, in those three dozen blinks of an eye, sprinters in the 100m perform physical feats so advanced that scientists are still trying to understand them.

“On one level you’d think we would have pieced it together a long time ago,” says Peter Weyand, one of the world’s leading students of running and professor of applied physiology and biomechanics at South Methodist University in Dallas, Texas. “Newton figured out the laws of motion centuries ago but when we when we apply them to the human body it gets really complex, really quickly.”

Simply analysing the extreme motion and exertions of a sprinter is challenging. Weyand and his team have a large treadmill in their lab capable of rolling at 90mph. In the punishing max test, athletes straddle the moving belt and hop on for a few seconds at a time. They start slow, with rests in between. “We increase the speed until the athlete can’t maintain it,” the professor says. “We need eight steps without moving backwards for a good trial.”

The tests are a safer version of jumping off the back of an old Routemaster bus and staying upright for eight paces – athletes wear harnesses in case they trip – but how fast is the bus going? “The unofficial record on our treadmill is 11.72 metres per second,” Weyand says. That’s 26.7mph, or not far off a city speed limit, or Bolt’s peak speed during his 2009 world record run of 27.8mph. “When we have elite athletes do the test, the whole office comes over to watch.”

High-speed treadmills, slow-motion imaging and pressure sensors have allowed scientists to study aspects of elite sprinting that were largely unknown as recently as 15 years ago. “If you asked a coach in the late 1990s what they were doing it was all very much based on form,” Weyand says. “But when we started this work back at that time, the first thing we figured out is that what makes these guys fast is how forcefully they can hit the ground in relation to their body weight.”

When Usain Bolt looks like he’s floating over the track, he’s really not. That extreme rippling in the face that slow motion footage reveals in some runners demonstrates the forces that transfer from foot to floor. “We know that Bolt will peak out with each step at about five times his weight, while non-sprinting athletes will peak at about 3.5 times,” Weyand explains. “The science is clear: the top athletes are specialised to deliver the most force to the ground and that’s what makes them fast. But even now I think we’re still in the formative phase — it hasn’t yet translated into broad practices in training.”

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Economics & Statistics Health & Medicine Learning & Education SMU In The News

NPR: How Domestic Violence In One Home Affects Every Child In A Class

Kids who witness domestic violence are more likely to get in trouble at school and have behavioral problems, including being aggressive and bullying their classmates.

NPR journalist Gabrielle Emanuel covered the research of SMU government policy expert Elira Kuka for an All Things Considered segment on NPR as part of its series on “The Mental Health Crisis In Our Schools.” The segment examined the impact on an entire school classroom when one student is victimized by domestic violence at home.

Kuka, an assistant professor in the SMU Department of Economics, and her colleagues found that new data shows violence in the home hinders the academic performance not only of the student who is abused, but also of their classmates, too.

Kuka’s research focus is on understanding how government policy effects individual behavior and well-being, the extent to which it provides social insurance during times of need, and its effectiveness in alleviation of poverty and inequality.

Her current research topics include the potential benefits of the Unemployment Insurance (UI) program, the protective power of the U.S. safety net during recessions and various issues in academic achievement.

Read the full story.

EXCERPT:

By Gabrielle Emanuel
NPR

Every Monday morning at Harvie Elementary School, in Henrico County, Va., Brett Welch stands outside her office door as kids file in.

“The first thing I’m looking for are the faces,” says Welch, a school counselor. She’s searching for hints of fear, pain or anger.

“Maybe there was a domestic incident at the house that weekend,” says Welch. “That’s reality for a lot of our kids.”

And a reality for a lot of kids in the U.S. While it’s difficult to get an exact number, researchers estimate that between 10 and 20 percent of children are exposed to domestic violence each year.

New data quantifies what many teachers and school counselors already know: While such violence often takes place outside of school, its repercussions resonate in the classroom.

It hurts not only the kids who witness the violence, but also their classmates. The harm is evident in lower test scores as well as lower rates of college attendance and completion. And the impact extends past graduation — it can be seen in lower earnings later in life.

“It’s a sad story,” says Scott Carrell, economist at the University of California, Davis, who has studied this for over a decade.

But, he says, there’s one thing he and his colleagues — economists Mark Hoekstra and Elira Kuka — found that can improve the situation “not only for that family but for all the child’s classmates.” What was it? Reporting domestic violence when it happens.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Feature Health & Medicine Mind & Brain Researcher news Videos

Researchers test blood flow in athletes’ brains to find markers that diagnose concussions

Diagnosing concussions is difficult because it typically rests on subjective symptoms such as forgetfulness, wobbly gait and disorientation or loss of consciousness. A new study of college athletes investigates objective indicators using Doppler ultrasound to measure brain blood flow and blood vessel function.

A hard hit to the head typically prompts physicians to look for signs of a concussion based on symptoms such as forgetfulness, wobbly gait and disorientation.

But symptoms such as those are subjective. And youth who are anxious to get back to their sport can sometimes hide the signs in order to brush off adult concerns, says physiologist Sushmita Purkayastha, Southern Methodist University, Dallas.

Now a new study funded by the Texas Institute for Brain Injury and Repair at U.T. Southwestern Medical Center, Dallas aims to find noninvasive objective indicators to diagnose whether an athlete has suffered a concussion. Using transcranial Doppler ultrasound, the study will probe the brains of college athletes to measure blood vessel function in the brain, looking for tell-tale signs related to blood flow that help diagnose concussion, said Purkayastha, a researcher on the new study.

“We know this is an understudied area. With other health problems, when the doctor suspects diabetes or hypertension, they don’t guess, they run objective tests to confirm the diagnosis. But that’s not the case with concussion — yet,” said Purkayastha, whose research expertise is blood flow regulation in the human brain. “That’s why my research focus is to find markers that are objective and not subjective. And this method of monitoring blood flow in the brain with ultrasound is noninvasive, inexpensive and there’s no radiation.”

Purkayastha and others on the research team are working under a one-year, $150,000 pilot research grant from the Texas Institute for Brain Injury and Repair, a UT Southwestern initiative funded by the Texas Legislature to enhance the diagnosis and treatment of brain injuries.

The team will observe 200 male and female college athletes over the next two years. Half the athletes will be students playing a contact-collision sport who have recently suffered a sports-related concussion. The other half, a control group, will be students playing a contact-collision sport who don’t have a concussion. The study draws on athletes from football, soccer, equestrian sports, cheerleading and recreational sports.

The researchers began testing subjects in August. They expect to have results by the Fall of 2017.

“We are very excited at establishing this collaboration between SMU and the Physical Medicine and Rehabilitation Department at UTSW. Our work with Dr. Purkayastha promises to give meaningful insight into the role of cerebral blood flow mechanisms after concussion and will point us in the right direction for improved neurorecovery,” said physician Kathleen Bell, a leading investigator at U.T. Southwestern’s Texas Institute for Brain Injury and Repair and principal investigator on the study. Bell is a nationally recognized leader in rehabilitation medicine and a specialist in neurorehabilitation.

Diagnosing concussions by using objective, non-invasive and inexpensive markers will result in accurate diagnosis and better return-to-play decisions following a concussion, thereby preventing the long-term risk of second-impact syndrome, said Purkayastha, an assistant professor in the Department of Applied Physiology and Wellness of SMU’s Annette Caldwell Simmons School of Education and Human Development.

“Although sports-related concussions are common, the physiology of the injury is poorly understood, and hence there are limited treatments currently available,” she said.

Hemorrhage or blackouts result, for example, if autoregulation malfunctions
While the brain is the most important organ in the body, it has been very understudied, said Purkayastha, a professor in the Simmons School of Education & Human Development. But since blood vessels in the brain behave similarly to those in the rest of the body, it’s possible to measure blood vessel function in the brain by monitoring blood pressure and brain blood flow. Observing those functions could reveal a marker, she said.

In Purkayastha’s lab on the SMU campus, student athletes are being outfitted with two small ultrasound probes, one on each side of their forehead in the temple area, to test blood vessel function. Specifically, the two probes monitor the blood flow through middle cerebral artery, which supplies blood to 75 percent of the brain. The artery traverses the brain, circulating blood to the brain tissues responsible for movement, cognition and decision-making.

Branching from the middle cerebral artery is a network of blood vessels that get smaller and smaller as they get further from the artery, spreading like tree branches through the brain. The smallest vessels — via a different local regulatory mechanism — maintain constant blood flow to the brain, making microadjustments, such as constricting and dilating in the face of constant changes in blood pressure. Adjustments occur as a person’s muscles move, whether standing, sitting, exercising, or even just laughing and experiencing emotion. These continual adjustments in the vessels — called cerebral autoregulation — keep blood flow constant and regular. That prevents problems such as hemorrhaging or passing out from large fluctuations in blood pressure that is either too high or too low.

Researchers suspect concussion diminishes a vessels ability to properly regulate blood flow
In the current study, ultrasound probes on the temples record the vessels’ microadjustments as digital data. That information is processed through a WinDaq data acquisition software and analyzed to examine cerebral autoregulation with spontaneous changes in blood pressure during that period of time.

Unlike at the doctor’s office, when a cuff is used to measure blood pressure at a rate of single measurements during 30 seconds, Purkayastha’s ultrasound monitoring of blood pressure provides continuous blood pressure recording throughout each heartbeat. As sound waves bounce into the artery and send back an echo, they measure the speed of red blood cells and other blood components moving through the artery.

“We collect 10 minutes of very high frequency data points collecting information on beat-to-beat changes in blood pressure and blood flow to the brain for every single heartbeat,” said Purkayastha. “Then we analyze and post-process and examine how well the blood vessels were able to maintain constant blood flow to the brain. We suspect in people with concussion that the autoregulation function isn’t operating properly which leads to impairments in function such as wobbly gait, disorientation or forgetfulness. This is a noninvasive way to see if there’s a flaw in the autoregulation.”

Athletes with confirmed diagnosis of concussions will be tested three times during the course of the study. The first test is three days after a suspected concussion, the second is 21 days afterward, and the third is three months afterward.

“The pilot studies so far look promising and our goal is to better understand the mechanism behind injury and design objective markers detecting concussion,” said Purkayastha.

The Texas Institute for Brain Injury and Repair at U.T. Southwestern Medical Center, a component of the Harold and Annette Simmons Comprehensive Center for Research and Treatment in Brain and Neurological Disorders, is a collaborative initiative involving local and national organizations, including the National Institutes of Health, University of Texas Dallas and its Center for BrainHealth, Children’s Medical Center, Dallas VA Medical Center, and Parkland Health and Hospital System, as well as Texas Health Resources and Texas Health Ben Hogan Sports Medicine. — Margaret Allen, SMU

Categories
Health & Medicine Learning & Education Researcher news Slideshows Student researchers Videos

SMU biochemists, students probe membrane proteins that thwart cancer chemotherapies

“Recurring cancers have ‘learned’ how to evade chemotherapy by pumping it out of the cancer cells so that only sub-therapeutic concentrations remain in the cell, making the drug useless.” — SMU biochemist Pia Vogel

The SMU undergraduate students and Dallas-area high school students get hands-on experience working on cancer research in the combined SMU Department of Biological Sciences laboratories of Wise and Vogel.

The researchers and students are working to find ways to treat cancer patients whose cancer has either returned after initial chemotherapy or was initially hard to treat using chemotherapeutics. The research is funded in part by the National Institutes of Health.

SMU Cancer Research

Students recently in the lab included Victoria Bennet, Hockaday School, and Shaffin Siddiqui and Robert Luo, both from Highland Park High School. SMU undergraduates included Hamilton Scholar Alexis Sunshine, Clinton Osifo, Stefanie Lohse, Brianna Ramirez, Henry Thornton, Shirely Liu, Justin Musser, Jake Oien and Michael Fowler. Also currently working in the lab are M.S. student and Hamilton Scholar Collette Marchesseau (2016 SMU graduate), and Ph.D. students Amila Nanayakkara, Mike Chen, Courtney Follit, Maisa Oliveira and James McCormick.

“Often, recurring cancers have ‘learned’ how to evade chemotherapy by pumping the therapeutic out of the cancer cells so that only sub-therapeutic concentrations remain in the cell, making the drug useless,” said Vogel, a professor and director of the SMU interdisciplinary research institute, the Center for Drug Discovery, Design and Delivery.

The pumps that do the work are proteins that span the cell membranes and use the biological fuel ATP to actively pump chemotherapeutics and other toxins out of the cells.

“We like to compare these proteins to biological sump pumps,” said Wise, associate professor.

Wise and Vogel use a combination of computational, biochemical and human cell-based techniques to find new drug-like compounds that inhibit the action of the pumps. If successful, the novel drugs — or derivatives of them — will be given to patients with therapy-resistant cancer together with the chemotherapeutic.

“Since our novel compounds block the pumps, the chemotherapeutic will remain in the cell and kill the cancer that had not been treatable previously,” Vogel said.

The researchers have discovered drug-like compounds that can be modified and developed into medicines that target the protein, called P-glycoprotein.

The SMU researchers discovered the compounds after virtually screening more than 10 million small drug-like compounds made publically available in digital form from the pharmacology database Zinc at the University of California, San Francisco.

Using SMU’s Maneframe high performance computer, Wise ran the compounds through a computer-generated model of the protein. The virtual model, designed and built by Wise, is the first computational microscope of its kind to simulate the actual behavior of P-glycoprotein in the human body, including interactions with drug-like compounds while taking on different shapes. The promising compounds were then tested in the lab.

“We have been quite successful and already have identified close to 20 novel compounds that block the pumps in our cell-based assays,” said Wise. “In these experiments we culture therapy-resistant prostate or ovarian or colon cancer cells in the lab and then show that we can kill these cancer cells using normal amounts of commonly available therapeutics in the presence of our novel compounds — even though in the absence of our novel compounds, the cancer cells would not be treatable.”

A pharmaceutical hit compound, like those discovered by Vogel and her co-authors, is a compound that is a promising candidate for chemical modification so it can eventually be delivered to patients as a therapeutic drug. In the case reported here, the compounds were commercially available for testing. The timeline from drug discovery to development to clinical trials and approval can take a decade or more.

SMU undergraduates and high school students experience world-class research
SMU undergraduate and high school students have been involved in different aspects of the research. Typically the beginning students work together with graduate or advanced undergraduate students to learn techniques used in the lab.

Some perform small research projects. Others have simply learned state-of-the-art techniques and “how science works” in the context of critical human health problems.

“High school student Robert Luo was interested in the computational side of our work, so he’s worked with senior SMU Ph.D. candidate James McCormick on trying to evaluate how strongly one of the therapy-sensitizing compounds we found potentially interacts with the pump protein at different proposed binding sites,” said Wise. “It is actually a significant project and will help with our research.”

The opportunities available for students to learn how science works using high performance computing, biochemistry and cell biology can be valuable even for those who won’t necessarily become practicing scientists, said Wise, citing as an example a recent SMU graduate who previously worked in the lab.

Ketetha Olengue (SMU ’15) is a good example,” he said. “She is now in her second year at the Keck School of Medicine at the University of Southern California, where she is pursuing her M.D. degree in a novel program with USC Engineering.” — Margaret Allen, SMU

Categories
Culture, Society & Family Health & Medicine Plants & Animals Researcher news SMU In The News

Science.mic: Usain Bolt’s Winning Race at the Rio Olympics, Explained by Science

“His foot and ankle mechanics into the ground (which are crucial variable for force application and speed) seem excellent based on the available information, but could potentially be more forceful with modest adjustments,” Weyand said.

Journalist Kelly Dickerson referenced the research of SMU biomechanics expert Peter Weyand for an article in the news blog Science.Mic examining the potential for humans to continue improving strength and speed beyond what has already been achieved.

Dickerson quotes Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “Usain Bolt’s Winning Race at the Rio Olympics, Explained by Science” published Aug. 15, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Kelly Dickerson
Science.mic

Sprinter Usain Bolt of Jamaica just made history by winning his third straight gold medal in the men’s 100-meter dash — something no runner has done before.

How does Bolt keep doing it?

Bolt doesn’t win by moving his legs faster than everyone else. At the Olympic level, there are much more important factors that contribute to speed, and Bolt has figured out how to capitalize on them.

The key to sprinting isn’t a quicker stride, according to research by Peter Weyand, a professor of applied physiology and biomechanics at Southern Methodist University. It comes down to the amount of force a runner can apply to the ground, as well as how long they leave their feet on the ground per step.

Case in point: Studies have found the average runner applies about 500 to 600 pounds per step. An Olympic runner applies upward of 1,000 pounds. The average runner has their foot on the ground for 0.12 seconds per step, according to the Post Game. An Olympic runner has it there for less than a tenth of a second.

Bolt is really tall — he stands at 6 feet, 5 inches. Normally, that height would be a disadvantage, Weyand explained.

“Shorter individuals are advantaged coming out of the blocks and over the initial 5 to about 15 meters of the race,” Weyand said in an email. “Shorter runners have less mass to move, so the ground force needed to accelerate the body is not as great. So although Bolt is not the best starter in the world, he loses relatively little ground versus what science indicates he should.”

“Although Bolt is not the best starter in the world, he loses relatively little ground versus what science indicates he should.”

After the start of the race, Bolt’s height becomes a major advantage for two reasons, according to Weyand:

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Health & Medicine Plants & Animals Researcher news SMU In The News

The Globe and Mail: In perfect asymmetry

“Weyand says there’s no ideal weight or height for sprinting fast, but that the world’s best have something in common — they apply greater ground force, a rapid punch to the ground, when their feet contact the track.” — The Globe and Mail

Journalist Rachel Brady referenced the research of SMU biomechanics expert Peter Weyand for an article in the news blog The Roar examining the potential for humans to continue improving strength and speed beyond what has already been achieved.

Porter quotes Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “In perfect asymmetry” published Aug. 18, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Rachel Brady
The Globe and Mail

It’s hard to explain, but experts would love to try. Canadian sprinter Andre De Grasse, at 5-foot-9 and 154 pounds and with a running style that has his right arm flying behind him, doesn’t fit the conventional mold of a world class sprinter, reports Rachel Brady. So why’s he so fast?

Some experts in the biomechanics of sport have been watching Canada’s rising track star, Andre De Grasse, with fascination, dreaming of what it would be like to get the speedy phenom into their labs to find out how the first-time Olympian with the unconventional style runs so fast.

The 5-foot-9, 154-pound sprinter is shorter and less muscular than most of his opponents. He doesn’t start races out of the blocks particularly well, and as he flies down the track, his right arm swings backward in a quirky sort of way. To boot, the 21-year-old youngster took up sprinting less than four years ago. Yet De Grasse, who ran the 100-metre dash in 9.91 seconds to capture an Olympic bronze medal on Sunday, is defying many conventional beliefs about how a world-class sprinter should look and move.

The youngster from Markham, Ont., repeatedly pumps his outstretched right arm behind him when hitting his top speed during a race; meanwhile his left arm is bent and pumping in a more typical way.

The asymmetry is in sharp contrast to most of his opponents, who typically pump bent arms at both sides. De Grasse told a reporter from the International Association of Athletics Federations website last year that he attributes that extended right arm swing to an imbalance in his hips caused by a minor basketball injury in his childhood.

The experts say it’s no surprise that De Grasse is being left to run the way he’s most comfortable.

… One expert with experience testing world-class sprinters in a locomotor performance lab says arms have little effect on what is most important to elite sprinting – ground-reaction forces.

“His arm swing is not at all consequential to performance,” said Peter Weyand, professor of applied physiology and biomechanics at Southern Methodist University in Dallas, Texas. “The arms are light pendulums that allow runners to stay balanced as they execute strides. Differences in the arm’s motion and how it’s angled at the elbow really doesn’t matter to the sprinter’s velocity and the interaction between the feet and the ground. Some of the old guard still think arm motion really matters, but most today realize it’s not that consequential. The old guard might have tried to bend a sprinter’s elbow into place, but they wouldn’t have been able to offer much scientific data about why they were doing it.”

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Health & Medicine Plants & Animals Researcher news SMU In The News

The Roar: Humans can’t bolt much faster than Usain — What science says about the 100m world record

Record-breaking has slowed, but science could find new ways to make us keep getting stronger and faster

Sports writer Matt Porter referenced the research of SMU biomechanics expert Peter Weyand for an article in the news blog The Roar examining the potential for humans to continue improving strength and speed beyond what has already been achieved.

Porter quotes Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “Humans can’t bolt much faster than Usain: What science says about the 100m world record” published Aug. 15, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Matt Porter
The Roar

We’ve just watched the incomparable Usain Bolt ensure his immortality as the greatest sprinter of all time with his third successive 100m Olympic Gold medal in Rio.

The world rejoiced and the embattled Rio Olympics organisers and IAAF breathed a sigh of relief as the Great Jamaican ran down twice convicted doping cheat Justin Gatlin to claim his rightful place in the Olympic pantheon.

The triumph came barely half an hour after South African Wayde van Niekerk smashed Michael Johnson’s 17-year-old 400m world record to beat home a star-studded field in the final of that event to scorch the lap in 43.03s, a whopping 0.15s faster than the old mark.

What an hour for the fastest humans on the planet. 

The 100m final is my favourite nine and a bit seconds of any Olympic Games. So primal. So raw. No other modes of transport involved. No distance to endure, water to splash through or bends in the track to negotiate. No racquets, bats, clubs or balls. Just the fastest of a land-based mammal species attempting to out-run one another from start to finish over a very short distance in a straight line.

…Peter Weyand, a biomechanics professor at Southern Methodist University in Dallas is a leading expert in human locomotion. He reckons the primary factor influencing speed is how much force sprinters hit the ground with their feet.

When athletes run at a constant speed they use their limbs like pogo sticks, Weyand says. Once a sprinter hits the ground, his limb compresses and gets him ready to rebound. When he’s in the air, the feet get ready to hit the ground again.

Every time a runner hits the ground, 90 per cent of the force goes vertically to push him or her up again, while only 5 per cent propels him or her horizontally. In that regard, sprinters behave a lot like one of those super bouncy balls you play with as a kid, Weyand says. “They bounce a lot.” 

Our body naturally adjusts to how fast we run by changing how hard we hit the ground. The harder we hit the ground, the faster we go.

So just how hard can humans hit the ground while they run?

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News

Inverse: There is no limit to human speed — Fast, faster, fastest, and fastest-er.

“Weyand doesn’t see a future where records stop being broken; there are just too many different ways to legally influence performance through better training and better technology.”

Science writer Jacqueline Ronson tapped the expertise of SMU biomechanics expert Peter Weyand for an article on the news web site Inverse.com that examines the possibility for humans to continue running faster and faster — and faster.

Ronson cites physiologist Weyand’s numerous research findings, which have explored the mechanics of how sprinters like Usain Bolt and other world-class athletes are able to run so fast that they continually break speed records. The article “There is no limit to human speed” published Aug. 11, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Jacqueline Ronson
Inverse.com

Usain Bolt seems to run impossibly fast: His record time of 9.58 seconds in the 100-meter sprint seems unbeatable — yet that’s what was said about so many of the record holders before.

But surely there must be a hard limit to human speed, after which no more records will be broken? Humans, after all, cannot run infinitely fast.

Peter Weyand, a physiologist who has studied the biomechanics of running for two decades, says no.

“You can always be confident, no matter how fast somebody runs, it’s possible to go faster,” he tells Inverse. “You’re never going to have absolutely perfect conditions and an absolutely perfect person and an absolutely perfect race all come together at the same time.”

Here’s a neat fact: If you can sprint, you can be as fast as Usain Bolt. Back in the late 1990s, Weyand and a team of researchers measured a bunch of different people running at their top speed, and they had something in common: Within a very small margin, they all took the same amount of time to swing a leg through the stride from back to front. “Whether you’re fast, slow, or in between, the repositioning time for the limb at top speed is basically the same,” he says.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Health & Medicine SMU In The News Student researchers

Scientific American: Blade Runners — Do High-Tech Prostheses Give Runners an Unfair Advantage?

Four years after Oscar Pistorius made history at the London Olympics, the question remains unanswered

Science writer Larry Greenemeier cited the research of SMU biomechanics expert Peter Weyand for an article in Scientific American that examines the pros and cons of carbon-fiber blade prosthetics used by athlete amputees.

Greenemeier cites Weyand’s research findings from a study of Olympic blade-runner Oscar Pistorius to determine whether the double-amputee had a competitive advantage from his carbon-fiber prosthetic legs. The article “Blade Runners: Do High-Tech Prostheses Give Runners an Unfair Advantage?” published Aug. 5, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Larry Greenemeier
Scientific American

Paralympic long jump champ Markus Rehm’s bid to compete in the 2016 Rio de Janeiro Olympics fell short in July when he could not prove that his carbon-fiber “blade” prosthesis didn’t give him an advantage. His baffling case serves as a reminder that four years after South African sprinter Oscar Pistorius propelled himself into history as the first amputee Olympic athlete to compete using blade prostheses, the technology’s impact on performance remains unclear despite ongoing research.

Blade prostheses, like Rehm uses on his right leg and Pistorius used on both, share some characteristics with biological limbs. The blades store energy as they bear the runner’s weight and then release it as the runner pushes off the ground, much the way a leg’s calf muscles and Achilles’ tendons spring and recoil. But an important difference is the foot, which on a blade prosthetic does not pivot or generate its own energy. A biological foot has muscle fibers that help it push off the ground in a way that creates “metabolic efficiency so your muscles don’t have to put all of the work back in with every step as you’re running,” says David Morgenroth, an assistant professor in the University of Washington’s Department of Rehabilitation Medicine…

…Shortly after track and field’s governing body, the International Association of Athletics Federations (IAAF), banned Pistorius in 2008 from competing against so-called “able-bodied” competitors, he underwent a series of tests at Rice University’s Locomotion Laboratory in an attempt to be reinstated. The researchers concluded that Pistorius used 17 percent less energy than that of elite sprinters on intact limbs. The tests also revealed that it took the South African 21 percent less time to reposition, or swing, his legs between strides. Big disagreements arose over how to interpret the research.

Southern Methodist University’s Peter Weyand and Matt Bundle from the University of Montana saw a clear overall advantage in Pistorius’s faster leg swings and more energy-efficient stride, which they said could create up to a seven-second advantage in the 400-meter race. “The more mass you have closer to the axis—in this case, your hips—the easier it is to stop the rotation and then turn it around,” Bundle says. “Whereas if you had that same amount of mass located a long way away from the axis—in your lower legs and feet—it becomes much more difficult to stop it and get it going in the opposite direction.”

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News

Scientific American: Have We Reached the Athletic Limits of the Human Body?

Record-breaking has slowed, but science could find new ways to make us keep getting stronger and faster

Science writer Bret Stetka tapped the expertise of SMU biomechanics expert Peter Weyand for an article in Scientific American examining the potential for humans to continue improving strength and speed beyond what has already been achieved.

Stetka quotes Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “Have We Reached the Athletic Limits of the Human Body?” published Aug. 5, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Bret Stetka
Scientific American

At this month’s summer’s Olympic Games in Rio, the world’s fastest man, Usain Bolt—a six-foot-five Jamaican with six gold medals and the sinewy stride of a gazelle—will try to beat his own world record of 9.58 seconds in the 100-meter dash.

If he does, some scientists believe he may close the record books for good.

Whereas myriad training techniques and technologies continue to push the boundaries of athletics, and although strength, speed and other physical traits have steadily improved since humans began cataloguing such things, the slowing pace at which sporting records are now broken has researchers speculating that perhaps we’re approaching our collective physiological limit—that athletic achievement is hitting a biological brick wall.

Common sense tells us that of course there are limits to athletic achievement: Barring some drastic amendment to the laws of physics, no human will ever run at the speed of sound. And physiologically speaking there’s only so much calcium that can flood into a muscle cell causing it to contract; there’s only so much oxygen our red blood cells can shuttle around.

In this vein, in 2008 running enthusiast and Stanford University biologist Mark Denny published a study attempting to determine if there are absolute limits to the speeds animals can run. To do so he analyzed the records of three racing sports with long histories of documentation: track and field and horse racing in the U.S., along with English greyhound racing…

…Bolt may be comforted to know that for Southern Methodist University physiology professor Peter Weyand, one of the leading experts on the biology of performance, we humans haven’t quite reached our athletic ceiling. Weyand explains that when considering endurance, for example, there are two paths to improvement: either increasing the amount of blood being pumped out of the heart or increasing the oxygen concentration in the blood itself, as is the case with blood doping. “I don’t think we’ve hit our limits yet,” he believes, “I think people will find ways to enhance oxygen delivery through the body and squeeze more performance out of humans. The only question is will these approaches be considered legal.”

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News

The Wall Street Journal: The Science Behind Sprinter Usain Bolt’s Speed

Usain Bolt, the fastest-ever human, appears to have an extra gear that propels him ahead of other sprinters. But that’s not what’s going on.

Science writer Matthew Futterman tapped the expertise of SMU biomechanics expert Peter Weyand for an article about the world’s fastest-ever human, Usain Bolt.

Reporting in The Wall Street Journal, Futterman quotes Weyand for his expertise on the mechanics of Usain Bolt’s unusual speed. The article “The Science Behind Sprinter Usain Bolt’s Speed,” published July 28, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Matthew Futterman
The Wall Street Journal

Sprinters who have taken on Usain Bolt in the 100-meter dash often describe a moment in the second half of the race when the world’s fastest-ever human just runs away from them.

One minute they are shoulder-to-shoulder with Bolt, believing that this will be the night the legend will be toppled. The next they are staring at his back, watching him raise his hands in triumph, sometimes many meters before he crosses the finish line.

Last week Bolt expressed his usual, unflappable confidence, even though a hamstring injury kept him from Jamaica’s track and field trials. Granted a medical exemption by the country’s athletics federation, he was named to the team even though he couldn’t qualify at the national trials.

“My chances are always the same: Great!” he said. “If everything goes smoothly the rest of the time and the training goes well, I’m going to be really confident going to the championship.” …

…However, a 2012 study by Matthew Bundle of the University of Montana in Missoula and Peter Weyand at Southern Methodist University in Dallas, showed that the greatest decrease in muscular performance occurs within the first seconds of a sprint when runners are still accelerating, which would suggest that deceleration in a race as short as 100 meters may not be related to how sprinters metabolize glycogen.

“Muscle fatigue happens contraction by contraction,” Weyand said. He argues that the biological process that causes the fatigue is still a mystery. It also is very hard to measure, because it is difficult to examine what is happening to an incredibly fast person’s muscles when he can only run at full speed for roughly three seconds.

Still, the idea that muscle fatigue begins instantaneously and with each muscle contraction may say plenty about why Bolt is so hard to beat.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Plants & Animals Researcher news SMU In The News

Scientific American: The Secret to Human Speed — “To sprint like a pro, think like a piston.”

“Weyand has conducted what many researchers consider to be some of the best science to date on the biomechanics of sprinting and how these elite athletes achieve their record-breaking speeds.” — Scientific American

Peter Weyand, human speed, Scientific American, SMU, elite sprinters, speed, biomechanics

The work of SMU biomechanics researcher Peter G. Weyand is featured in the August 2016 issue of the science news magazine Scientific American.

Science writer and associate editor Dina Fine Maron reports on Weyand’s leading-edge research about the key to human speed for sprinters in the article “The Secret to Human Speed” and the video report “How Elite Sprinters Run So Fast.” Hint: “Think like a piston,” says Maron.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Watch the Scientific American video on “How Elite Sprinters Run So Fast” showing how SMU’s Weyand and his lab study the stride of Olympic athlete Mike Rodgers.

The full story is available from Scientific American behind a paywall.

EXCERPT:

By Dina Fine Marone
Scientific American

… Before (Weyand’s) investigations, the prevailing wisdom about great sprinters was that they are particularly adept at quickly repositioning their limbs for their next step while their feet are in the air … Weyand was the first to test this idea scientifically — and his findings indicate that it is wrong …

… In subsequent work, Weyand further determined that at top speeds the best runners landed with a peak force up to five times their body weight, compared with 3.5 times among the average runner … Recently Weyand’s team additionally figured out how the best sprinters are able to generate those higher forces — and in so doing forced a revision of another central tenet of the running world.

The full story is available from Scientific American behind a paywall.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Health & Medicine Plants & Animals

Good news! You’re likely burning more calories than you thought

Leading standardized equations used to predict or estimate walking energy expenditure — calories burned — count too few calories in nearly all cases on level surfaces, study finds. New method improves accuracy.

Jennifer Nollkamper and Dr. Lindsay Ludlow assist Dr. Takeshi Fujii in a treadmill test that captures volume of oxygen, volume of expired air and the levels of oxygen and carbon dioxide, all variables that help measure energy expenditure during walking. (Hillsman Jackson, SMU)
Jennifer Nollkamper and Dr. Lindsay Ludlow assist Dr. Takeshi Fujii in a treadmill test that captures volume of oxygen, volume of expired air and the levels of oxygen and carbon dioxide, all variables that help measure energy expenditure during walking. (Hillsman Jackson, SMU)

Walking is the most common exercise, and many walkers like to count how many calories are burned.

Little known, however, is that the leading standardized equations used to predict or estimate walking energy expenditure — the number of calories burned — assume that one size fits all. The equations have been in place for close to half a century and were based on data from a limited number of people.

A new study at Southern Methodist University, Dallas, found that under firm, level ground conditions, the leading standards are relatively inaccurate and have significant bias. The standards predicted too few calories burned in 97 percent of the cases researchers examined, said SMU physiologist Lindsay Ludlow.

A new standardized equation developed by SMU scientists is about four times more accurate for adults and kids together, and about two to three times more accurate for adults only, Ludlow said.

“Our new equation is formulated to apply regardless of the height, weight and speed of the walker,” said Ludlow, a researcher in the SMU Locomotor Performance Laboratory of biomechanics expert Peter Weyand. “And it’s appreciably more accurate.”

Ludlow and her colleagues report the new equation in the Journal of Applied Physiology, “Energy expenditure during level human walking: seeking a simple and accurate predictive solution.” The article is published in the March 1, 2016 issue, and available online at this link.

“The economy of level walking is a lot like shipping packages – there is an economy of scale,” said Weyand, a co-author on the paper. “Big people get better gas mileage when fuel economy is expressed on a per-pound basis.”

The SMU equation predicts the calories burned as a person walks on a firm, level surface. Ongoing research is expanding the algorithm to predict the calories burned while walking up- and downhill, and while carrying loads, Ludlow said.

SMU’s research is funded by the U.S. Department of Defense Medical Research and Materiel Command. The grant is part of a larger DOD effort to develop load-carriage decision-aid tools to assist foot soldiers.

The research comes at a time when greater accuracy combined with mobile technology, such as wearable sensors like Fitbit, is increasingly being used in real time to monitor the body’s status. The researchers note that some devices use the old standardized equations, while others use a different method to estimate the calories burned.

New equation considers different-sized people
To provide a comprehensive test of the leading standards, SMU researchers compiled a database using the extensive walking metabolism data available in the existing scientific literature to evaluate the leading equations for walking on level ground.

“The SMU approach improves upon the existing standards by including different-sized individuals and drawing on a larger database for equation formulation,” Weyand said.

The new equation achieves greater accuracy by better incorporating the influence of body size, and by specifically incorporating the influence of height on gait mechanics. Specifically:

  • Bigger people burn fewer calories on a per pound basis of their body weight to walk at a given speed or to cover a fixed distance;
  • The older standardized equations don’t account for size differences well, assuming roughly that one size fits all.

Accuracy of standardized equations had not previously undergone comprehensive evaluation
The exact dates are a bit murky, but the leading standardized equations, known by their shorthand as the “ACSM” and “Pandolf” equations, were developed about 40 years ago for the American College of Sports Medicine and for the military, Ludlow said.

The Pandolf method, for example, draws on walking metabolism data from six U.S. soldiers, she said. Both the Pandolf and ACSM equations were developed on a small number of adult males of average height.

The new more accurate equation will prove useful. Predicting energy expenditure is common in many fields, including those focused on health, weight loss, exercise, military and defense, and professional and amateur physical training.

“Burning calories is of major importance to health, fitness and the body’s physiological status,” Weyand said. “But it hasn’t been really clear just how accurate the existing standards are under level conditions because previous assessments by other researchers were more limited in scope.”

Energy expenditure estimates could assist with monitoring the body’s physiological status
Accurate estimations of the rate at which calories are burned could potentially help predict a person’s aerobic power and likelihood for executing a task, such as training for an athletic competition or carrying out a military objective.

In general, the new metabolic estimates can be combined with other physiological signals such as body heat, core temperature and heart rate to improve predictions of fatigue, overheating, dehydration, the aerobic power available, and whether a person can sustain a given intensity of exercise.

Military seeks solutions to overburdened soldier problem
The military has a major interest in more accurate techniques to help address their problem of over-burdened soldiers.

“These soldiers carry incredible loads — up to 150 pounds, but they often need to be mobile to successfully carry out their missions,” said Weyand, a professor of Applied Physiology and Wellness in the SMU Simmons School of Education.

Accurately predicting how many calories a person expends while walking could supply information that can help soldiers avoid thermal stress and fatigue in the field, especially troops deployed to challenging environments.

“Soldiers incur a variety of physiological and musculoskeletal stresses in the field,” Weyand said. “Our metabolic modeling work is part of a broader effort to provide the Department of Defense with quantitative tools to help soldiers.” — Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Events Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Student researchers Videos

SMU Research Day 2016: Students present their research to the SMU and Dallas community

Day of presenting in Hughes-Trigg Student Center allows students to discuss their research, identify potential collaborators, discover other perspectives.

SMU graduate and undergraduate students presented their research to the SMU community at the University’s Research Day 2016 on Feb. 10.

Sponsored by the SMU Office of Research and Graduate Studies, the research spanned more than 20 different fields from schools across campus.

The annual Research Day event fosters communication between students in different disciplines, gives students the opportunity to present their work in a professional setting, and allows students to share with their peers and industry professionals from the greater Dallas community the outstanding research conducted at SMU.

A cash prize of $250 was awarded to the best poster from each department or judging group.

View the list of student winners whose research was awarded a cash prize.

View highlights of the presentations.

Some highlights of the research:

  • Faris Altamimi, a student of Dr. Sevinc Sengor in Lyle School‘s Civil and Environmental Engineering Department, presented a study investigating experimental and modeling approaches for enhanced methane generation from municipal solid waste, while providing science-based solutions for cleaner, renewable sources of energy for the future.
  • Yongqiang Li and Xiaogai Li, students of Dr. Xin-Lin Gao in Lyle School’s Mechanical Engineering Department, are addressing the serious blunt trauma injury that soldiers on the battlefield suffer from ballistics impact to their helmets. The study simulated the ballistic performance of the Advanced Combat Helmet.
  • Audrey Reeves, Sara Merrikhihaghi and Kevin Bruemmer, students of Dr. Alexander Lippert, in the Chemistry Department of Dedman College, presented research on cell-permeable fluorescent probes in the imaging of enzymatic pathways in living cells, specifically the gaseous signaling molecule nitroxyl. Their research better understands nitroxyl’s role as an inhibitor of an enzyme that is key in the conversion of acetaldehyde to acetic acid.
  • Rose Ashraf, a student of Dr. George Holden in the Psychology Department of Dedman College, presented her research on harsh verbal discipline in the home and its prediction of child compliance. It was found permissive parents are least likely to elicit prolonged compliance.
  • Nicole Vu and Caitlin Rancher, students of Dr. Ernest N. Jouriles and Dr. Renee McDonald in the Psychology Department of Dedman College, presented research on children’s threat appraisals of interparental conflict and it’s relationship to child anxiety.

See the full catalog of participants and their abstracts.

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Events Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Student researchers

SMU 2015 research efforts broadly noted in a variety of ways for world-changing impact

SMU scientists and their research have a global reach that is frequently noted, beyond peer publications and media mentions.

By Margaret Allen
SMU News & Communications

It was a good year for SMU faculty and student research efforts. Here is a small sampling of public and published acknowledgements during 2015:

Simmons, Diego Roman, SMU, education

Hot topic merits open access
Taylor & Francis, publisher of the online journal Environmental Education Research, lifted its subscription-only requirement to meet demand for an article on how climate change is taught to middle-schoolers in California.

Co-author of the research was Diego Román, assistant professor in the Department of Teaching and Learning, Annette Caldwell Simmons School of Education and Human Development.

Román’s research revealed that California textbooks are teaching sixth graders that climate change is a controversial debate stemming from differing opinions, rather than a scientific conclusion based on rigorous scientific evidence.

The article, “Textbooks of doubt: Using systemic functional analysis to explore the framing of climate change in middle-school science textbooks,” published in September. The finding generated such strong interest that Taylor & Francis opened access to the article.

bichaw_v054i049.indd

Research makes the cover of Biochemistry
Drugs important in the battle against cancer were tested in a virtual lab by SMU biology professors to see how they would behave in the human cell.

A computer-generated composite image of the simulation made the Dec. 15 cover of the journal Biochemistry.

Scientific articles about discoveries from the simulation were also published in the peer review journals Biochemistry and in Pharmacology Research & Perspectives.

The researchers tested the drugs by simulating their interaction in a computer-generated model of one of the cell’s key molecular pumps — the protein P-glycoprotein, or P-gp. Outcomes of interest were then tested in the Wise-Vogel wet lab.

The ongoing research is the work of biochemists John Wise, associate professor, and Pia Vogel, professor and director of the SMU Center for Drug Discovery, Design and Delivery in Dedman College. Assisting them were a team of SMU graduate and undergraduate students.

The researchers developed the model to overcome the problem of relying on traditional static images for the structure of P-gp. The simulation makes it possible for researchers to dock nearly any drug in the protein and see how it behaves, then test those of interest in an actual lab.

To date, the researchers have run millions of compounds through the pump and have discovered some that are promising for development into pharmaceutical drugs to battle cancer.

Click here to read more about the research.

SMU, Simpson Rowe, sexual assault, video

Strong interest in research on sexual victimization
Teen girls were less likely to report being sexually victimized after learning to assertively resist unwanted sexual overtures and after practicing resistance in a realistic virtual environment, according to three professors from the SMU Department of Psychology.

The finding was reported in Behavior Therapy. The article was one of the psychology journal’s most heavily shared and mentioned articles across social media, blogs and news outlets during 2015, the publisher announced.

The study was the work of Dedman College faculty Lorelei Simpson Rowe, associate professor and Psychology Department graduate program co-director; Ernest Jouriles, professor; and Renee McDonald, SMU associate dean for research and academic affairs.

The journal’s publisher, Elsevier, temporarily has lifted its subscription requirement on the article, “Reducing Sexual Victimization Among Adolescent Girls: A Randomized Controlled Pilot Trial of My Voice, My Choice,” and has opened it to free access for three months.

Click here to read more about the research.

Consumers assume bigger price equals better quality
Even when competing firms can credibly disclose the positive attributes of their products to buyers, they may not do so.

Instead, they find it more lucrative to “signal” quality through the prices they charge, typically working on the assumption that shoppers think a high price indicates high quality. The resulting high prices hurt buyers, and may create a case for mandatory disclosure of quality through public policy.

That was a finding of the research of Dedman College’s Santanu Roy, professor, Department of Economics. Roy’s article about the research was published in February in one of the blue-ribbon journals, and the oldest, in the field, The Economic Journal.

Published by the U.K.’s Royal Economic Society, The Economic Journal is one of the founding journals of modern economics. The journal issued a media briefing about the paper, “Competition, Disclosure and Signaling,” typically reserved for academic papers of broad public interest.

The Journal of Physical Chemistry A

Chemistry research group edits special issue
Chemistry professors Dieter Cremer and Elfi Kraka, who lead SMU’s Computational and Theoretical Chemistry Group, were guest editors of a special issue of the prestigious Journal of Physical Chemistry. The issue published in March.

The Computational and Theoretical research group, called CATCO for short, is a union of computational and theoretical chemistry scientists at SMU. Their focus is research in computational chemistry, educating and training graduate and undergraduate students, disseminating and explaining results of their research to the broader public, and programming computers for the calculation of molecules and molecular aggregates.

The special issue of Physical Chemistry included 40 contributions from participants of a four-day conference in Dallas in March 2014 that was hosted by CATCO. The 25th Austin Symposium drew 108 participants from 22 different countries who, combined, presented eight plenary talks, 60 lectures and about 40 posters.

CATCO presented its research with contributions from Cremer and Kraka, as well as Marek Freindorf, research assistant professor; Wenli Zou, visiting professor; Robert Kalescky, post-doctoral fellow; and graduate students Alan Humason, Thomas Sexton, Dani Setlawan and Vytor Oliveira.

There have been more than 75 graduate students and research associates working in the CATCO group, which originally was formed at the University of Cologne, Germany, before moving to SMU in 2009.

519ca82d-6517-4df9-b5ac-26e5458882ef

Vertebrate paleontology recognized with proclamation
Dallas Mayor Mike Rawlings proclaimed Oct. 11-17, 2015 Vertebrate Paleontology week in Dallas on behalf of the Dallas City Council.

The proclamation honored the 75th Annual Meeting of the Society of Vertebrate Paleontology, which was jointly hosted by SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College and the Perot Museum of Science and Nature. The conference drew to Dallas some 1,200 scientists from around the world.

Making research presentations or presenting research posters were: faculty members Bonnie Jacobs, Louis Jacobs, Michael Polcyn, Neil Tabor and Dale Winkler; adjunct research assistant professor Alisa Winkler; research staff member Kurt Ferguson; post-doctoral researchers T. Scott Myers and Lauren Michael; and graduate students Matthew Clemens, John Graf, Gary Johnson and Kate Andrzejewski.

The host committee co-chairs were Anthony Fiorillo, adjunct research professor; and Louis Jacobs, professor. Committee members included Polcyn; Christopher Strganac, graduate student; Diana Vineyard, research associate; and research professor Dale Winkler.

KERA radio reporter Kat Chow filed a report from the conference, explaining to listeners the science of vertebrate paleontology, which exposes the past, present and future of life on earth by studying fossils of animals that had backbones.

SMU earthquake scientists rock scientific journal