Energy & Matter Feature Global Learning & Education SMU In The News Technology

SMU Physicist Explains Significance of Latest Cern Discovery Related to the Higgs Boson

Stephen Sekula says observation of the Higgs particle transforming into bottom quarks confirms the 20th-century recipe for mass

DALLAS (SMU) – Scientists conducting physics experiments at CERN’s Large Hadron Collider have announced the discovery of the Higgs boson transforming, as it decays, into subatomic particles called bottom quarks, an observation that confirms that the “Standard Model” of the universe – the 20th century recipe for everything in the known physical world – is still valid.

This new discovery is a big step forward in the quest to understand how the Higgs enables fundamental particles to acquire mass. Many scientists suspect that the Higgs could interact with particles outside the Standard Model, such as dark matter – the unseen matter that does not emit or absorb light, but may make up more than 80 percent of the matter in the universe.

After several years of work experiments at both ATLAS and CMS – CERN detectors that use different types of technology to investigate a broad range of physics –have demonstrated that 60 percent of Higgs particles decay in the same way. By finding and mapping the Higgs boson interactions with known particles, scientists can simultaneously probe for new phenomena.

SMU played important roles in the analysis announced by CERN Aug. 28, including:

  • Development of the underlying analysis software framework (Stephen Sekula, SMU associate professor of physics was co-leader of the small group that included SMU graduate student Peilong Wang and post-doctoral researcher Francesco Lo Sterzo, that does this for the larger analysis for 2017-2018)
  • Studying background processes that mimic this Higgs boson decay, reducing measurement uncertainty in the final result.

“The Standard Model is the recipe for everything that surrounds us in the world today.  Sekula explained. “It has been tested to ridiculous precision. People have been trying for 30-40 years to figure out where or if the Standard Model described matter incorrectly. Like any recipe you inherit from a family member, you trust but verify. This might be grandma’s favorite recipe, but do you really need two sticks of butter? This finding shows that the Standard Model is still the best recipe for the Universe as we know it.”

Scientists would have been intrigued if the Standard Model had not survived this test, Sekula said, because failure would have produced new knowledge.

“When we went to the moon, we didn’t know we’d get Mylar and Tang,” Sekula said. “What we’ve achieved getting to this point is we’ve pushed the boundaries of technology in both computing and electronics just to make this observation. Technology as we know it will continue to be revolutionized by fundamental curiosity about why the universe is the way it is.

“As for what we will get from all this experimentation, the honest answer is I don’t know,” Sekula said. “But based on the history of science, it’s going to be amazing.”

About CERN

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. They use the world’s largest and most complex scientific instruments to study the basic constituents of matter – the fundamental particles. The particles are made to collide together at close to the speed of light. The process gives the physicists clues about how the particles interact, and provides insights into the fundamental laws of nature. Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near Geneva.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas.  SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Earth & Climate Energy & Matter Feature Learning & Education Researcher news

Exploring the mysteries of the universe: Reality in the Shadows

New knowledge has caused us to reconsider many previous conclusions about what the universe is and how it works.

Despite centuries of scientific advancements, there is much about the universe that remains unknown. New knowledge and discoveries in the last 20 years have challenged previously accepted ideas and theories that were once regarded as scientific truth and have subjected them to increasing scrutiny.

These additions to our knowledge have caused scientists to reconsider many previous conclusions about what the universe is and how it works.

“Reality in the Shadows”” or “What the Heck’s the Higgs?” is a new book that explores the concepts that shape our current understanding of the universe and the frontiers of our knowledge of the cosmos.

The authors — two physicists and an engineer — tell us in a manner that non-scientists can readily follow, why studies have moved to superstring theory/M-theory, ideas about extra dimensions of space, and ideas about new particles in nature to find answers. It also explores why these ideas are far from established as accurate descriptions of reality.

“Our book explains how we know what we know about the universe, what we don’t know, and what we wish we did know,” said co-author Stephen Sekula, an associate professor of Physics at SMU. A physicist, Sekula conducts research into the Higgs Boson at the energy frontier on CERN’s ATLAS Experiment.

The book was initiated by Frank Blitzer, an engineer who participated on national space programs like Apollo and Patriot, several years ago, Sekula said. He was joined by co-author S. James Gates Jr., well known for his work on supersymmetry, supergravity and superstring theory, a few years ago.

“Frank and Jim sought additional input to help complete the book, and serendipitously Frank’s grandson, Ryan, was an SMU undergraduate and Hunt Scholar who helped connect them to me,” Sekula said. “After over an additional year of work, the book was completed.”

The foundations of modern physics rest on ideas that are over 100 years old and battle-tested, Sekula said.

“But nature has offered us new puzzles that have not yet been successfully explained by those ideas,” he added. “Perhaps we don’t yet have the right idea, or perhaps we haven’t searched deep enough into the cosmos. These are exciting times, with opportunities for a new generation of physicists who might crack these puzzles. Our book will help a curious reader to see the way in which knowledge was established, and encourage them to be engaged in solving the new mysteries.”

“Reality in the Shadows,” available through YBK Publishers, describes how humanity came to learn the workings of the universe as groundwork for the science that found the Higgs particle. Now scientists are hunting for the explanations for dark matter and the accelerated expansion of the cosmos, as well as for the many new questions the Higgs Boson itself has raised.

Scientists have recently discovered colliding black holes and neutron stars, that there is more non-luminous matter (dark matter) in the universe than the ordinary stuff of everyday life, and that the universe seems to grow larger each second at a faster and faster rate. Readers will learn how scientists discern such features of the universe and begin to see how to think beyond what is known to what is not yet known.

Throughout the book are descriptions of important developments in theoretical physics that lead the reader to a step-by-step understanding.

Sekula teaches physics and conducts research at ATLAS. He contributed to the measurement of decay modes of the Higgs boson and to the measurement of its spin-parity quantum numbers. Complementary to these efforts, he has worked with colleagues on the ATLAS Experiment to search for additional Higgs bosons in nature, providing intellectual leadership and direct involvement in several searches.

Gates was named 2014 “Scientist of the Year” by the Harvard Foundation. He was elected to the prestigious National Academy of Sciences in 2013 and received the 2013 National Medal of Science, the highest recognition given to scientists by the United States.

Gates has been featured on many TV documentary programs on physics, including “The Elegant Universe,” “Einstein’s Big Idea,” “Fabric of the Cosmos” and “The Hunt for the Higgs.” His DVD series, “Superstring Theory: The DNA of Reality,” makes the complexities of unification theory comprehensible.

Blitzer has more than 50 years of experience in engineering, program management, and business development and participated on national space programs, and The Strategic Defense Initiative (SDI), holding several patents in guidance and control. He has spent more than 20 years in independent research of the subject of the book.

Culture, Society & Family Earth & Climate Events Feature Learning & Education Slideshows SMU In The News Videos

A Total Eclipse of the First Day of School

Dedman College, SMU Physics Department host Great American Solar Eclipse 2017 viewing

Thousands of students, faculty and townspeople showed up to campus Monday, Aug. 21 to observe the Great American Solar Eclipse at a viewing hosted by Dedman College of Humanities and Sciences and the SMU Department of Physics.

The festive event coincided with the kick-off of SMU’s Fall Semester and included Solar Eclipse Cookies served while viewing the rare astronomical phenomenon.

The eclipse reached its peak at 1:09 p.m. in Dallas at more than 75% of totality.

“What a great first day of the semester and terrific event to bring everyone together with the help of Dedman College scientists,” said Dedman Dean Thomas DiPiero. “And the eclipse cookies weren’t bad, either.”

Physics faculty provided indirect methods for observing the eclipse, including a telescope with a viewing cone on the steps of historic Dallas Hall, a projection of the eclipse onto a screen into Dallas Hall, and a variety of homemade hand-held devices.

Outside on the steps of Dallas Hall, Associate Professor Stephen Sekula manned his home-built viewing tunnel attached to a telescope for people to indirectly view the eclipse.

“I was overwhelmed by the incredible response of the students, faculty and community,” Sekula said. “The people who flocked to Dallas Hall were energized and engaged. It moved me that they were so interested in — and, in some cases, had their perspective on the universe altered by — a partial eclipse of the sun by the moon.”

A team of Physics Department faculty assembled components to use a mirror to project the eclipse from a telescope on the steps of Dallas Hall into the rotunda onto a screen hanging from the second-floor balcony.

Adjunct Professor John Cotton built the mount for the mirror — with a spare, just in case — and Professor and Department Chairman Ryszard Stroynowski and Sekula arranged the tripod setup and tested the equipment.

Stroynowski also projected an illustration of the Earth, the moon and the sun onto the wall of the rotunda to help people visualize movement and location of those cosmic bodies during the solar eclipse.

Professor Fred Olness handed out cardboard projectors and showed people how to use them to indirectly view the eclipse.

“The turn-out was fantastic,” Olness said. “Many families with children participated, and we distributed cardboard with pinholes so they could project the eclipse onto the sidewalk. It was rewarding that they were enthused by the science.”

Stroynowski, Sekula and others at the viewing event were interviewed by CBS 11 TV journalist Robert Flagg.

Physics Professor Thomas Coan and Guillermo Vasquez, SMU Linux and research computing support specialist, put together a sequence of photos they took during the day from Fondren Science Building.

“The experience of bringing faculty, students and even some out-of-campus community members together by sharing goggles, cameras, and now pictures of one of the great natural events, was extremely gratifying,” Vasquez said.

Sekula said the enthusiastic response from the public is driving plans to prepare for the next event of this kind.

“I’m really excited to share with SMU and Dallas in a total eclipse of the sun on April 8, 2024,” he said.

Earth & Climate Energy & Matter Learning & Education Researcher news SMU In The News Ignoring Science At Our Own Peril

“A scientific theory is a very well-tested explanation, built from facts, confirmed hypotheses, and inferences.” — SMU physicist Stephen Sekula

An Op-Ed in the online Connecticut news outlet tapped the expertise of SMU Associate Professor of Physics Stephen Sekula.

The writer of the piece, High School English teacher Barth Keck at Haddam-Killingworth High School, quoted the comments of Sekula, who spoke to Keck’s media literacy class.

The opinion piece, “Ignoring Science At Our Own Peril,” addressed the issue of science illiteracy. The editorial published April 14, 2017.

Sekula was among the SMU physicists at Geneva-based CERN — seat of the world’s largest collaborative physics experiment — in December 2011 who found hints of the long sought after Higgs boson, dubbed the fundamental “God” particle.

Sekula conducts research at the energy frontier through CERN’s ATLAS Experiment. He co-convened the ATLAS Higgs Subgroup 6: Beyond-the-Standard Model Higgs Physics from 2012-2013. He is involved in the search for additional Higgs bosons. He also is an authority on big data and high-performance computing.

Read the full Op-Ed.


By Barth Keck

Last week was a newsworthy week — at least for this high school English teacher.

In a story out of Hartford last Wednesday, the state Board of Education officially eliminated the requirement that standardized test scores be tied to teacher evaluations. The move, while controversial, was a common-sense decision that recognizes the many problems created by evaluations based on standardized tests. A newsworthy development, indeed, for anyone interested in education.

Even so, a more newsworthy event for me occurred on Tuesday when Southern Methodist University professor Stephen Sekula visited English and science classes at his alma mater and my workplace, Haddam-Killingworth High School. Speaking to my students in Media Literacy, Sekula explained in vivid detail how scientists rigorously and deliberately employ the scientific method in their never-ending search for answers. It is with similar vigilance, he explained, that individuals must consider the multitude of messages around them to become truly “media-literate.”

“A scientific theory is a very well-tested explanation, built from facts, confirmed hypotheses, and inferences,” according to the physics professor. “It is more powerful than a fact because it explains facts.”

Unfortunately, said Sekula, the word “theory” is often likened to “opinion” in public dialogue — as in “human-caused climate change is just a theory” — but there’s an essential difference between theory and opinion. Scientists know the difference, of course, but so should all citizens. Thus, a media-literate person sees a red flag whenever someone — a “pseudoscientist” — uses “theory” and “opinion” interchangeably.

“Pseudoscience readily admits opinions and equates that with the idea of scientific theory,” explained Sekula, “requiring no high quality evidence to make explanatory claims about the world.”

And there it was: the explanation for so much happening in the public sphere right now. Fake news, conspiracy theories, science-averse officials appointed to science-dependent federal agencies. Professor Sekula’s message could not be more timely and, therefore, newsworthy.

Read the full Op-Ed.

Culture, Society & Family Energy & Matter Researcher news Student researchers

SMU physicists: CERN’s Large Hadron Collider is once again smashing protons, taking data

CERN’s Large Hadron Collider (LHC) and its experiments are back in action, now taking physics data for 2016 to get an improved understanding of fundamental physics.

Following its annual winter break, the most powerful collider in the world has been switched back on.

Geneva-based CERN’s Large Hadron Collider (LHC) — an accelerator complex and its experiments — has been fine-tuned using low-intensity beams and pilot proton collisions, and now the LHC and the experiments are ready to take an abundance of data.

The goal is to improve our understanding of fundamental physics, which ultimately in decades to come can drive innovation and inventions by researchers in other fields.

Scientists from SMU’s Department of Physics are among the several thousand physicists worldwide who contribute on the LHC research.

“All of us here hope that some of the early hints will be confirmed and an unexpected physics phenomenon will show up,” said Ryszard Stroynowski, SMU professor and a principal investigator on the LHC. “If something new does appear, we will try to contribute to the understanding of what it may be.”

SMU physicists work on the LHC’s ATLAS experiment. Run 1 of the Large Hadron Collider made headlines in 2012 when scientists observed in the data a new fundamental particle, the Higgs boson. The collider was then paused for an extensive upgrade and came back much more powerful than before. As part of Run 2, physicists on the Large Hadron Collider’s experiments are analyzing new proton collision data to unravel the structure of the Higgs.

The Higgs was the last piece of the puzzle for the Standard Model — a theory that offers the best description of the known fundamental particles and the forces that govern them. In 2016 the ATLAS and CMS collaborations of the LHC will study this boson in depth.

Over the next three to four months there is a need to verify the measurements of the Higgs properties taken in 2015 at lower energies with less data, Stroynowski said.

“We also must check all hints of possible deviations from the Standard Model seen in the earlier data — whether they were real effects or just statistical fluctuations,” he said. “In the long term, over the next one to two years, we’ll pursue studies of the Higgs decays to heavy b quarks leading to the understanding of how one Higgs particle interacts with other Higgs particles.”

In addition, the connection between the Higgs Boson and the bottom quark is an important relationship that is well-described in the Standard Model but poorly understood by experiments, said Stephen Sekula, SMU associate professor. The SMU ATLAS group will continue work started last year to study the connection, Sekula said.

“We will be focused on measuring this relationship in both Standard Model and Beyond-the-Standard Model contexts,” he said.

SMU physicists also study Higgs-boson interactions with the most massive known particle, the top-quark, said Robert Kehoe, SMU associate professor.

“This interaction is also not well-understood,” Kehoe said. “Our group continues to focus on the first direct measurement of the strength of this interaction, which may reveal whether the Higgs mechanism of the Standard Model is truly fundamental.”

All those measurements are key goals in the ATLAS Run 2 and beyond physics program, Sekula said. In addition, none of the ultimate physics goals can be achieved without faultless operation of the complex ATLAS detector, its software and data acquisition system.

“The SMU group maintains work on operations, improvements and maintenance of two components of ATLAS — the Liquid Argon Calorimeter and data acquisition trigger,” Stroynowski said.

Intensity of the beam to increase, supplying six times more proton collisions
Following a short commissioning period, the LHC operators will now increase the intensity of the beams so that the machine produces a larger number of collisions.

“The LHC is running extremely well,” said CERN Director for Accelerators and Technology, Frédérick Bordry. “We now have an ambitious goal for 2016, as we plan to deliver around six times more data than in 2015.”

The LHC’s collisions produce subatomic fireballs of energy, which morph into the fundamental building blocks of matter. The four particle detectors located on the LHC’s ring allow scientists to record and study the properties of these building blocks and look for new fundamental particles and forces.

This is the second year the LHC will run at a collision energy of 13 TeV. During the first phase of Run 2 in 2015, operators mastered steering the accelerator at this new higher energy by gradually increasing the intensity of the beams.

“The restart of the LHC always brings with it great emotion”, said Fabiola Gianotti, CERN Director General. “With the 2016 data the experiments will be able to perform improved measurements of the Higgs boson and other known particles and phenomena, and look for new physics with an increased discovery potential.”

New exploration can begin at higher energy, with much more data
Beams are made of “trains” of bunches, each containing around 100 billion protons, moving at almost the speed of light around the 27-kilometre ring of the LHC. These bunch trains circulate in opposite directions and cross each other at the center of experiments. Last year, operators increased the number of proton bunches up to 2,244 per beam, spaced at intervals of 25 nanoseconds. These enabled the ATLAS and CMS collaborations to study data from about 400 million million proton–proton collisions. In 2016 operators will increase the number of particles circulating in the machine and the squeezing of the beams in the collision regions. The LHC will generate up to 1 billion collisions per second in the experiments.

“In 2015 we opened the doors to a completely new landscape with unprecedented energy. Now we can begin to explore this landscape in depth,” said CERN Director for Research and Computing Eckhard Elsen.

Between 2010 and 2013 the LHC produced proton-proton collisions with 8 Tera-electronvolts of energy. In the spring of 2015, after a two-year shutdown, LHC operators ramped up the collision energy to 13 TeV. This increase in energy enables scientists to explore a new realm of physics that was previously inaccessible. Run II collisions also produce Higgs bosons — the groundbreaking particle discovered in LHC Run I — 25 percent faster than Run I collisions and increase the chances of finding new massive particles by more than 40 percent.

But there are still several questions that remain unanswered by the Standard Model, such as why nature prefers matter to antimatter, and what dark matter consists of, despite it potentially making up one quarter of our universe.

The huge amounts of data from the 2016 LHC run will enable physicists to challenge these and many other questions, to probe the Standard Model further and to possibly find clues about the physics that lies beyond it.

The physics run with protons will last six months. The machine will then be set up for a four-week run colliding protons with lead ions.

“We’re proud to support more than a thousand U.S. scientists and engineers who play integral parts in operating the detectors, analyzing the data, and developing tools and technologies to upgrade the LHC’s performance in this international endeavor,” said Jim Siegrist, Associate Director of Science for High Energy Physics in the U.S. Department of Energy’s Office of Science. “The LHC is the only place in the world where this kind of research can be performed, and we are a fully committed partner on the LHC experiments and the future development of the collider itself.”

The four largest LHC experimental collaborations, ALICE, ATLAS, CMS and LHCb, now start to collect and analyze the 2016 data. Their broad physics program will be complemented by the measurements of three smaller experiments — TOTEM, LHCf and MoEDAL — which focus with enhanced sensitivity on specific features of proton collisions. — SMU, CERN and Fermilab