The best in SMU undergraduate and graduate research work was on full display at Research Day in the Hughes Trigg Student Center.
More than 150 graduate and undergraduate students at SMU presented posters at SMU Research Day 2017 in the Promenade Ballroom of Hughes-Trigg Student Center Ballroom on March 28.
Student researchers discussed their ongoing and completed SMU research and their results with faculty, staff and students who attended the one-day event.
“Research Day is an opportunity for SMU students to show off what they’ve been doing at the grad level and at the undergrad level,” Weyand said, “and that’s really an invaluable experience for them.”
“It’s a huge motivation to present your work before people,” said Aparna Viswanath, a graduate student in engineering. Viswanath presented research on “Looking Around Corners,” research into an instrument that converts a scattering surface into computational holographic sensors.
The goal of Research Day is to foster communication about research between students in different disciplines, give students the opportunity to present their work in a professional setting, and to share the outstanding research being conducted at SMU.
Adel Alharbi, a student of Dr. Mitchell Thornton in Lyle School’s Computer Science and Engineering presented research on a novel demographic group prediction mechanism for smart device users based upon the recognition of user gestures.
Ashwini Subramanian and Prasanna Rangarajan, students of Dr. Dinesh Rajan, in Lyle School’s Electrical Engineering Department, presented research about accurately measuring the physical dimensions of an object for manufacturing and logistics with an inexpensive software-based Volume Measurement System using the Texas Instruments OPT8241 3D Time-of-Flight camera, which illuminates the scene with a modulated light source, observing the reflected light and translating it to distance.
Gang Chen, a student of Dr. Pia Vogel in the Department of Chemistry of Dedman College, presented research on multidrug resistance in cancers associated with proteins including P-glycoprotein and looking for inhibitors of P-gp.
Tetiana Hutchison, a student of Dr. Rob Harrod in the Chemistry Department of Dedman College, presented research on inhibitors of mitochondrial damage and oxidative stress related to human T-cell leukemia virus type-1, an aggressive hematological cancer for which there are no effective treatments.
Margarita Sala, a student of Dr. David Rosenfield and Dr. Austin Baldwin in the Psychology Department of Dedman College, presented research on how specific post-exercise affective states differ between regular and infrequent exercisers, thereby elucidating the “feeling better” phenomenon.
Bernard Kauffman, a Level Design student of Dr. Corey Clark in SMU Guildhall, presented research on building a user interface that allows video game players to analyze vast swaths of scientific data to help researchers find potentially useful compounds for treating cancer.
According to the Fall 2016 report on Undergraduate Research, SMU provides opportunities for student research in a full variety of disciplines from the natural sciences and engineering, to social sciences, humanities and the arts. These opportunities permit students to bring their classroom knowledge to practical problems or a professional level in their chosen field of study.
Opportunities offered include both funded and curricular programs
that can be tailored according to student needs:
Students may pursue funded research with the assistance of a
variety of campus research programs. Projects can be supported
during the academic year or in the summer break, when students
have the opportunity to focus full-time on research.
Students may also enroll in research courses that are offered in
many departments that permit them to design a unique project,
or participate in a broader project.
Students can take advantage of research opportunities outside
of their major, or design interdisciplinary projects with their faculty
mentors. The Dedman College Interdisciplinary Institute supports
such research via the Mayer Scholars.
Day of presenting in Hughes-Trigg Student Center allows students to discuss their research, identify potential collaborators, discover other perspectives.
SMU graduate and undergraduate students presented their research to the SMU community at the University’s Research Day 2016 on Feb. 10.
The annual Research Day event fosters communication between students in different disciplines, gives students the opportunity to present their work in a professional setting, and allows students to share with their peers and industry professionals from the greater Dallas community the outstanding research conducted at SMU.
A cash prize of $250 was awarded to the best poster from each department or judging group.
Faris Altamimi, a student of Dr. Sevinc Sengor in Lyle School‘s Civil and Environmental Engineering Department, presented a study investigating experimental and modeling approaches for enhanced methane generation from municipal solid waste, while providing science-based solutions for cleaner, renewable sources of energy for the future.
Yongqiang Li and Xiaogai Li, students of Dr. Xin-Lin Gao in Lyle School’s Mechanical Engineering Department, are addressing the serious blunt trauma injury that soldiers on the battlefield suffer from ballistics impact to their helmets. The study simulated the ballistic performance of the Advanced Combat Helmet.
Audrey Reeves, Sara Merrikhihaghi and Kevin Bruemmer, students of Dr. Alexander Lippert, in the Chemistry Department of Dedman College, presented research on cell-permeable fluorescent probes in the imaging of enzymatic pathways in living cells, specifically the gaseous signaling molecule nitroxyl. Their research better understands nitroxyl’s role as an inhibitor of an enzyme that is key in the conversion of acetaldehyde to acetic acid.
Rose Ashraf, a student of Dr. George Holden in the Psychology Department of Dedman College, presented her research on harsh verbal discipline in the home and its prediction of child compliance. It was found permissive parents are least likely to elicit prolonged compliance.
Nicole Vu and Caitlin Rancher, students of Dr. Ernest N. Jouriles and Dr. Renee McDonald in the Psychology Department of Dedman College, presented research on children’s threat appraisals of interparental conflict and it’s relationship to child anxiety.
See the full catalog of participants and their abstracts.
SMU scientists and their research have a global reach that is frequently noted, beyond peer publications and media mentions.
By Margaret Allen
SMU News & Communications
It was a good year for SMU faculty and student research efforts. Here is a small sampling of public and published acknowledgements during 2015:
Hot topic merits open access
Taylor & Francis, publisher of the online journal Environmental Education Research, lifted its subscription-only requirement to meet demand for an article on how climate change is taught to middle-schoolers in California.
Co-author of the research was Diego Román, assistant professor in the Department of Teaching and Learning, Annette Caldwell Simmons School of Education and Human Development.
Román’s research revealed that California textbooks are teaching sixth graders that climate change is a controversial debate stemming from differing opinions, rather than a scientific conclusion based on rigorous scientific evidence.
Research makes the cover of Biochemistry
Drugs important in the battle against cancer were tested in a virtual lab by SMU biology professors to see how they would behave in the human cell.
A computer-generated composite image of the simulation made the Dec. 15 cover of the journal Biochemistry.
Scientific articles about discoveries from the simulation were also published in the peer review journals Biochemistry and in Pharmacology Research & Perspectives.
The researchers tested the drugs by simulating their interaction in a computer-generated model of one of the cell’s key molecular pumps — the protein P-glycoprotein, or P-gp. Outcomes of interest were then tested in the Wise-Vogel wet lab.
The ongoing research is the work of biochemists John Wise, associate professor, and Pia Vogel, professor and director of the SMU Center for Drug Discovery, Design and Delivery in Dedman College. Assisting them were a team of SMU graduate and undergraduate students.
The researchers developed the model to overcome the problem of relying on traditional static images for the structure of P-gp. The simulation makes it possible for researchers to dock nearly any drug in the protein and see how it behaves, then test those of interest in an actual lab.
To date, the researchers have run millions of compounds through the pump and have discovered some that are promising for development into pharmaceutical drugs to battle cancer.
Strong interest in research on sexual victimization
Teen girls were less likely to report being sexually victimized after learning to assertively resist unwanted sexual overtures and after practicing resistance in a realistic virtual environment, according to three professors from the SMU Department of Psychology.
The finding was reported in Behavior Therapy. The article was one of the psychology journal’s most heavily shared and mentioned articles across social media, blogs and news outlets during 2015, the publisher announced.
The study was the work of Dedman College faculty Lorelei Simpson Rowe, associate professor and Psychology Department graduate program co-director; Ernest Jouriles, professor; and Renee McDonald, SMU associate dean for research and academic affairs.
Consumers assume bigger price equals better quality
Even when competing firms can credibly disclose the positive attributes of their products to buyers, they may not do so.
Instead, they find it more lucrative to “signal” quality through the prices they charge, typically working on the assumption that shoppers think a high price indicates high quality. The resulting high prices hurt buyers, and may create a case for mandatory disclosure of quality through public policy.
That was a finding of the research of Dedman College’s Santanu Roy, professor, Department of Economics. Roy’s article about the research was published in February in one of the blue-ribbon journals, and the oldest, in the field, The Economic Journal.
Published by the U.K.’s Royal Economic Society, The Economic Journal is one of the founding journals of modern economics. The journal issued a media briefing about the paper, “Competition, Disclosure and Signaling,” typically reserved for academic papers of broad public interest.
Chemistry research group edits special issue
Chemistry professors Dieter Cremer and Elfi Kraka, who lead SMU’s Computational and Theoretical Chemistry Group, were guest editors of a special issue of the prestigious Journal of Physical Chemistry. The issue published in March.
The Computational and Theoretical research group, called CATCO for short, is a union of computational and theoretical chemistry scientists at SMU. Their focus is research in computational chemistry, educating and training graduate and undergraduate students, disseminating and explaining results of their research to the broader public, and programming computers for the calculation of molecules and molecular aggregates.
The special issue of Physical Chemistry included 40 contributions from participants of a four-day conference in Dallas in March 2014 that was hosted by CATCO. The 25th Austin Symposium drew 108 participants from 22 different countries who, combined, presented eight plenary talks, 60 lectures and about 40 posters.
CATCO presented its research with contributions from Cremer and Kraka, as well as Marek Freindorf, research assistant professor; Wenli Zou, visiting professor; Robert Kalescky, post-doctoral fellow; and graduate students Alan Humason, Thomas Sexton, Dani Setlawan and Vytor Oliveira.
There have been more than 75 graduate students and research associates working in the CATCO group, which originally was formed at the University of Cologne, Germany, before moving to SMU in 2009.
Vertebrate paleontology recognized with proclamation
Dallas Mayor Mike Rawlings proclaimed Oct. 11-17, 2015 Vertebrate Paleontology week in Dallas on behalf of the Dallas City Council.
The proclamation honored the 75th Annual Meeting of the Society of Vertebrate Paleontology, which was jointly hosted by SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College and the Perot Museum of Science and Nature. The conference drew to Dallas some 1,200 scientists from around the world.
Making research presentations or presenting research posters were: faculty members Bonnie Jacobs, Louis Jacobs, Michael Polcyn, Neil Tabor and Dale Winkler; adjunct research assistant professor Alisa Winkler; research staff member Kurt Ferguson; post-doctoral researchers T. Scott Myers and Lauren Michael; and graduate students Matthew Clemens, John Graf, Gary Johnson and Kate Andrzejewski.
The host committee co-chairs were Anthony Fiorillo, adjunct research professor; and Louis Jacobs, professor. Committee members included Polcyn; Christopher Strganac, graduate student; Diana Vineyard, research associate; and research professor Dale Winkler.
KERA radio reporter Kat Chow filed a report from the conference, explaining to listeners the science of vertebrate paleontology, which exposes the past, present and future of life on earth by studying fossils of animals that had backbones.
SMU earthquake scientists rock scientific journal
Findings by the SMU earthquake team reverberated across the nation with publication of their scientific article in the prestigious British interdisciplinary journal Nature, ranked as one of the world’s most cited scientific journals.
The article reported that the SMU-led seismology team found that high volumes of wastewater injection combined with saltwater extraction from natural gas wells is the most likely cause of unusually frequent earthquakes occurring in the Dallas-Fort Worth area near the small community of Azle.
The research was the work of Dedman College faculty Matthew Hornbach, associate professor of geophysics; Heather DeShon, associate professor of geophysics; Brian Stump, SMU Albritton Chair in Earth Sciences; Chris Hayward, research staff and director geophysics research program; and Beatrice Magnani, associate professor of geophysics.
The article, “Causal factors for seismicity near Azle, Texas,” published online in late April. Already the article has been downloaded nearly 6,000 times, and heavily shared on both social and conventional media. The article has achieved a ranking of 270, which puts it in the 99th percentile of 144,972 tracked articles of a similar age in all journals, and 98th percentile of 626 tracked articles of a similar age in Nature.
“It has a very high impact factor for an article of its age,” said Robert Gregory, professor and chair, SMU Earth Sciences Department.
The scientific article also was entered into the record for public hearings both at the Texas Railroad Commission and the Texas House Subcommittee on Seismic Activity.
Researchers settle long-debated heritage question of “The Ancient One”
The research of Dedman College anthropologist and Henderson-Morrison Professor of Prehistory David Meltzer played a role in settling the long-debated and highly controversial heritage of “Kennewick Man.”
Also known as “The Ancient One,” the 8,400-year-old male skeleton discovered in Washington state has been the subject of debate for nearly two decades. Argument over his ancestry has gained him notoriety in high-profile newspaper and magazine articles, as well as making him the subject of intense scholarly study.
Officially the jurisdiction of the U.S. Army Corps of Engineers, Kennewick Man was discovered in 1996 and radiocarbon dated to 8500 years ago.
Because of his cranial shape and size he was declared not Native American but instead ‘Caucasoid,’ implying a very different population had once been in the Americas, one that was unrelated to contemporary Native Americans.
But Native Americans long have claimed Kennewick Man as theirs and had asked for repatriation of his remains for burial according to their customs.
Meltzer, collaborating with his geneticist colleague Eske Willerslev and his team at the Centre for GeoGenetics at the University of Copenhagen, in June reported the results of their analysis of the DNA of Kennewick in the prestigious British journal Nature in the scientific paper “The ancestry and affiliations of Kennewick Man.”
The results were announced at a news conference, settling the question based on first-ever DNA evidence: Kennewick Man is Native American.
The announcement garnered national and international media attention, and propelled a new push to return the skeleton to a coalition of Columbia Basin tribes. Sen. Patty Murray (D-WA) introduced the Bring the Ancient One Home Act of 2015 and Washington Gov. Jay Inslee has offered state assistance for returning the remains to Native Tribes.
Science named the Kennewick work one of its nine runners-up in the highly esteemed magazine’s annual “Breakthrough of the Year” competition.
The research article has been viewed more than 60,000 times. It has achieved a ranking of 665, which puts it in the 99th percentile of 169,466 tracked articles of a similar age in all journals, and in the 94th percentile of 958 tracked articles of a similar age in Nature.
In “Kennewick Man: coming to closure,” an article in the December issue of Antiquity, a journal of Cambridge University Press, Meltzer noted that the DNA merely confirmed what the tribes had known all along: “We are him, he is us,” said one tribal spokesman. Meltzer concludes: “We presented the DNA evidence. The tribal members gave it meaning.”
Prehistoric vacuum cleaner captures singular award
Science writer Laura Geggel with Live Science named a new species of extinct marine mammal identified by two SMU paleontologists among “The 10 Strangest Animal Discoveries of 2015.”
The new species, dubbed a prehistoric hoover by London’s Daily Mail online news site, was identified by SMU paleontologist Louis L. Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences, Dedman College of Humanities and Sciences, and paleontologist and SMU adjunct research professor Anthony Fiorillo, vice president of research and collections and chief curator at the Perot Museum of Nature and Science.
Jacobs and Fiorillo co-authored a study about the identification of new fossils from the oddball creature Desmostylia, discovered in the same waters where the popular “Deadliest Catch” TV show is filmed. The hippo-like creature ate like a vacuum cleaner and is a new genus and species of the only order of marine mammals ever to go extinct — surviving a mere 23 million years.
Desmostylians, every single species combined, lived in an interval between 33 million and 10 million years ago. Their strange columnar teeth and odd style of eating don’t occur in any other animal, Jacobs said.
As noted by the CERN Courier — the news magazine of the CERN Laboratory in Geneva, which hosts the Large Hadron Collider, the world’s largest science experiment — more than 250 scientists from 30 countries presented more than 200 talks on a multitude of subjects relevant to experimental and theoretical research. SMU physicists presented at the conference.
The SMU organizing committee was led by Fred Olness, professor and chair of the SMU Department of Physics in Dedman College, who also gave opening and closing remarks at the conference. The committee consisted of other SMU faculty, including Jodi Cooley, associate professor; Simon Dalley, senior lecturer; Robert Kehoe, professor; Pavel Nadolsky, associate professor, who also presented progress on experiments at CERN’s Large Hadron Collider; Randy Scalise, senior lecturer; and Stephen Sekula, associate professor.
Sekula also organized a series of short talks for the public about physics and the big questions that face us as we try to understand our universe.
“No significant signs of new physics with the present data yet but it takes only one significant deviation in the data to change everything.” — Albert De Roeck, CERN
First collisions of protons at the world’s largest science experiment are expected to start the first or second week of June, according to a senior research scientist with CERN’s Large Hadron Collider in Geneva.
“It will be about another six weeks to commission the machine, and many things can still happen on the way,” said physicist Albert De Roeck, a staff member at CERN and a professor at the University of Antwerp, Belgium and UC Davis, California. De Roeck is a leading scientist on CMS, one of the Large Hadron Collider’s key experiments.
The LHC in early April was restarted for its second three-year run after a two-year pause to upgrade the machine to operate at higher energies. At higher energy, physicists worldwide expect to see new discoveries about the laws that govern our natural universe.
Book a live interview
To book a live or taped interview with SMU Physics Department Chair Fred Olness in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email news@smu.edu.
De Roeck made the comments Monday while speaking during an international meeting of more than 250 physicists from 30 countries on the campus of Southern Methodist University, Dallas.
“There are no significant signs of new physics yet,” De Roeck said of the data from the first run, adding however that especially SUSY diehards — physicists who predict the existence of a unique new theory of space and time called SuperSymmetry — maintain hopes of seeing evidence soon of that theory.
De Roeck in fact has high expectations for the possibility of new discoveries that could change the current accepted theory of physical reality, the Standard Model.
“It will take only one significant deviation in the data to change everything,” De Roeck said. “The upgraded machine works. Now we have to get to the real operation for physics.”
“Unidentified Lying Object” not a problem — remains stable
But work remains to be done. One issue the accelerator physicists remain cautiously aware of, he said, is an “Unidentified Lying Object” in the beam pipe of the LHC’s 17-mile underground tunnel, a vacuum tube where proton beams collide and scatter particles that scientists then analyze for keys to unlock the mysteries of the Big Bang and the cosmos.
Because the proton beam is sensitive to the geometry of the environment and can be easily blocked, the beam pipe must be free of even the tiniest amount of debris. Even something as large as a nitrogen particle could disrupt the beam. Because the beam pipe is a sealed vacuum it’s impossible to know what the “object” is.
“The unidentified lying object turns out not to be a problem for the operation, it’s just something to keep an eye on,” De Roeck said. “It’s in the vacuum tube and it’s not a problem if it doesn’t move and remains stable.”
The world’s largest particle accelerator, the Large Hadron Collider made headlines when its global collaboration of thousands of scientists in 2012 observed a new fundamental particle, the Higgs boson. After that, the collider was paused for the extensive upgrade. Much more powerful than before, as part of Run 2 physicists on the Large Hadron Collider’s experiments are analyzing new proton collision data to unravel the structure of the Higgs.
The Large Hadron Collider straddles the border between France and Switzerland. Its first run began in 2009, led by CERN, the European Organization for Nuclear Research, in Geneva, through an international consortium of thousands of scientists.
Particle discoveries unlock mysteries of cosmos, pave way for new technology
The workshop in Dallas, the “2015 International Workshop on Deep-Inelastic Scattering,” draws the world’s leading scientists each year to an international city for nuts and bolts talks that drive the world’s leading-edge physics experiments, such as the Large Hadron Collider.
Going into the second run, De Roeck said physicists will continue to look for anomalies, unexpected decay modes or couplings, multi-Higgs production, or larger decay rates than expected, among other things.
Particle discoveries by physicists resolve mysteries, such as questions surrounding Dark Matter and Dark Energy, and the earliest moments of the Big Bang. But particle discoveries also are ultimately applied to other fields to improve everyday life, such as medical technologies like MRIs and PET scans, which diagnose and treat cancer.
For example, proton therapy is the newest non-invasive, precision scalpel in the fight against cancer, with new centers opening all over the world.
Hosted by the SMU Department of Physics in Dedman College, the Dallas meeting of physicists began Monday, April 27, 2015, and runs through Friday, May 1, 2015.
The workshop is sponsored by SMU, U.S. Department of Energy’s Office of Science, CERN, National Science Foundation, Fermi National Accelerator Laboratory, Brookhaven National Laboratory, DESY national research center and Thomas Jefferson National Accelerator Facility. — Margaret Allen
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.
Energy Department Announces Finalists for National University Geothermal Energy Competition
A group of SMU graduate students has been selected as one of three finalist teams in a prestigious national geothermal energy competition sponsored by the U.S. Department of Energy. The DOE Office of Energy Efficiency and Renewable Energy competition challenges student teams to conduct research aimed at breakthroughs in geothermal energy development.
The SMU Geothermal Laboratory student team members — Zach Frone, Joe Batir, Ryan Dingwall and Mitchell Williams — are presenting their project at the 36th Geothermal Resources Council Annual Meeting in Reno, Nev., Sept. 30-Oct. 3. The other two student teams presenting their work in this last stage of the competition are from Idaho State University and Boise State University.
Book a live interview
To book a live or taped interview with David Blackwell in the SMU News Broadcast Studio call SMU News and Communications at 214-768-7650 or email news@smu.edu.
SMU’s Geothermal Laboratory is a renowned national resource for the development of clean, green energy from the Earth’s heat. Sophisticated mapping of geothermal resources produced by David Blackwell, SMU’s Hamilton professor of Geothermal Studies, and Maria Richards, director of SMU’s Geothermal Laboratory, makes it clear that vast geothermal resources reachable through current technology could replace and multiply the levels of energy currently produced in the United States by mostly coal-fired power plants.
MIT study identified Snake River as potential area for geothermal development
The student teams involved in the DOE competition have been analyzing the economic feasibility of developing geothermal energy in Snake River Plain, Idaho.
In announcing the competition, the Department of Energy noted that a 2006 study conducted by the Massachusetts Institute of Technology (Blackwell and Richards were part of the study team) identified Snake River Valley as one of six potential areas in the United States for near-term geothermal development.
The region has geothermal resources with temperatures higher than 200°C at a depth of less than three miles, which is considered optimal for energy development.
Dingwall explained that the SMU team developed and ran fluid flow models for the competition, using temperatures measured in wells in the West Snake River Plain, published geologic information and other data.
The results indicate the area is viable for direct use geothermal applications (naturally occurring hot water drawn from below the earth’s surface) or enhanced geothermal systems, which require artificially circulating liquid through rock formations to heat it to temperatures high enough to produce energy.
U.S. install geothermal capacity exceeds that of rest of world
The United States currently has 3,177 megawatts of installed geothermal energy capacity, according to the Geothermal Energy Association, which far outpaces production in the rest of the world.
California and Nevada are the U.S. production leaders. However, Blackwell and Richards’ research through the SMU Geothermal Lab, available at Google.org’s EGS Home Page, has confirmed and refined locations across North America with resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions. — Kimberly Cobb
SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.
SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.