Categories
Earth & Climate Energy & Matter Feature Researcher news Student researchers Videos

SMU physicist and her students join national laboratories, other universities in high-stakes hunt for elusive dark matter

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors.” — Jodi Cooley

SMU physicist Jodi Cooley is a member of the international scientific team that will use a powerful new tool to understand one of the biggest mysteries of modern physics.

The U.S. Department of Energy has approved funding and start of construction for SuperCDMS SNOLAB, a $34 million experiment designed to detect dark matter.

SuperCDMS will begin operations in the early 2020s to hunt for hypothetical dark matter particles called weakly interacting massive particles, or WIMPs.

“Understanding the nature of dark matter is one of the most important scientific puzzles in particle astrophysics today,” said Cooley, an associate professor of experimental particle physics. “The experiment will have unprecedented sensitivity to dark matter particles that are hypothesized to have very low mass and interact very rarely. So they are extremely challenging to detect. This challenge has required us to develop cutting edge detectors.”

Cooley is one of 111 scientists from 26 institutions in the SuperCDMS collaboration. SMU graduate students on the experiment include Matt Stein (Ph.D. ’18) and Dan Jardin; and also previously Hang Qiu (Ph.D. ’17).

Physicists are searching for dark matter because although it makes up the bulk of the universe it remains a mystery. They theorize that dark matter could be composed of dark matter particles, with WIMPs a top contender for the title.

If dark matter WIMP particles exist, they would barely interact with their environment and fly right through regular matter. However, every so often, they could collide with an atom of our visible world, and dark matter researchers are looking for these rare interactions.

The SuperCDMS experiment will be the world’s most sensitive for detecting the relatively light WIMPs.

Cooley and her students in the SMU Department of Physics have been working with Washington-based Pacific Northwest National Laboratory on the challenge of background control and material selection for the experiment’s WIMP detectors.

Understanding background signals in the experiment is a major challenge for the detection of the faint WIMP signals.

“One of our major concerns is background particles that can mimic the dark matter signature in our detectors,” Cooley said. “As such, the experiment is constructed from radiopure materials that are carefully characterized through a screening and assay before they are selected.”

The SMU research team also has performed simulations of background particles in the detectors.

“Doing this helps inform the design of the experiment shield,” Cooley said. “We want to select the right materials to use in construction of the experiment. For example, materials that are too high in radioactivity will produce background particles that might produce fake dark matter signals in our detectors. We are extremely careful to use materials that block background particles. We also take great care that the material we use to hold the detectors in place — copper — is very radiopure.”

The experiment will be assembled and operated within the existing Canadian laboratory SNOLAB – 6,800 feet underground inside a nickel mine near the city of Sudbury. That’s the deepest underground laboratory in North America.

The experiment’s detectors will be protected from high-energy particles, called cosmic radiation, which can create the unwanted background signals that Cooley’s team wants to prevent.

SuperCDMS SNOLAB will be 50 times more sensitive than predecessor
Scientists know that visible matter in the universe accounts for only 15 percent of all matter. The rest is the mysterious substance called dark matter.

Due to its gravitational pull on regular matter, dark matter is a key driver for the evolution of the universe, affecting the formation of galaxies like our Milky Way. It therefore is fundamental to our very own existence.

The SuperCDMS SNOLAB experiment will be at least 50 times more sensitive than its predecessor, exploring WIMP properties that can’t be probed by other experiments.

The search will be done using silicon and germanium crystals, in which the collisions would trigger tiny vibrations. However, to measure the atomic jiggles, the crystals need to be cooled to less than minus 459.6 degrees Fahrenheit — a fraction of a degree above absolute zero temperature.

The ultra-cold conditions give the experiment its name: Cryogenic Dark Matter Search, or CDMS. The prefix “Super” indicates an increased sensitivity compared to previous versions of the experiment.

Experiment will measure “fingerprints” left by dark matter
The collisions would also produce pairs of electrons and electron deficiencies that move through the crystals, triggering additional atomic vibrations that amplify the signal from the dark matter collision. The experiment will be able to measure these “fingerprints” left by dark matter with sophisticated superconducting electronics.

Besides Pacific Northwest National Laboratory, two other Department of Energy national labs are involved in the project.

SLAC National Accelerator Laboratory in California is managing the construction project. SLAC will provide the experiment’s centerpiece of initially four detector towers, each containing six crystals in the shape of oversized hockey pucks. SLAC built and tested a detector prototype. The first tower could be sent to SNOLAB by the end of 2018.

Fermi National Accelerator Laboratory is working on the experiment’s intricate shielding and cryogenics infrastructure.

“Our experiment will be the world’s most sensitive for relatively light WIMPs,” said Richard Partridge, head of the SuperCDMS group at the Kavli Institute for Particle Astrophysics and Cosmology, a joint institute of SLAC and Stanford University. “This unparalleled sensitivity will create exciting opportunities to explore new territory in dark matter research.”

Close-knit network of strong partners is crucial to success
Besides SMU, a number of U.S. and Canadian universities also play key roles in the experiment, working on tasks ranging from detector fabrication and testing to data analysis and simulation. The largest international contribution comes from Canada and includes the research infrastructure at SNOLAB.

“We’re fortunate to have a close-knit network of strong collaboration partners, which is crucial for our success,” said Project Director Blas Cabrera from KIPAC. “The same is true for the outstanding support we’re receiving from the funding agencies in the U.S. and Canada.”

Funding is from the DOE Office of Science, $19 million, the National Science Foundation, $12 million, and the Canada Foundation for Innovation, $3 million.

SuperCDMS to search for dark matter in entirely new region
“Together we’re now ready to build an experiment that will search for dark matter particles that interact with normal matter in an entirely new region,” said SuperCDMS spokesperson Dan Bauer, Fermilab.

SuperCDMS SNOLAB will be the latest in a series of increasingly sensitive dark matter experiments. The most recent version, located at the Soudan Mine in Minnesota, completed operations in 2015.

”The project has incorporated lessons learned from previous CDMS experiments to significantly improve the experimental infrastructure and detector designs for the experiment,” said SLAC’s Ken Fouts, project manager for SuperCDMS SNOLAB. “The combination of design improvements, the deep location and the infrastructure support provided by SNOLAB will allow the experiment to reach its full potential in the search for low-mass dark matter.” — SLAC National Laboratory; and Margaret Allen, SMU

Categories
Culture, Society & Family Earth & Climate Energy & Matter Events Researcher news SMU In The News Videos

The CW33: Dark Matter Day rocks SMU’s campus

The CW33 TV visited SMU on Halloween to get a glimpse of International Dark Matter Day in action on the SMU campus.

The CW33 TV stopped at the SMU campus during the early morning hours of Halloween to interview SMU physics professor Jodi Cooley about the capers afoot in celebration of International Dark Matter Day.

The SMU Department of Physics in Dedman College of Humanities and Sciences hosted the Oct. 31, 2017 Dark Matter Day celebration for students, faculty, staff and Dallas-area residents.

As part of the festivities, there were speaking events by scientists in the field of dark matter, including dark matter expert Cooley, to explain the elusive particles that scientists refer to as dark matter.

Then throughout Halloween day, the public was invited to test their skills at finding dark matter — in this case, a series of 26 rocks bearing educational messages related to dark matter, which the Society of Physics Students had painted and hidden around the campus. Lucky finders traded them for prizes from the Physics Department.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” said Cooley, whose research is focused on the scientific challenge of detecting dark matter. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Watch the full news segment.

EXCERPT:

By Shardae Neal
The CW33

On Halloween (excuse us) “International Dark Matter Day,” SMU students hosted a public witch hunt to search for the unknown: dark matter.

“What we’re doing is hiding 26 rocks that we have with the help of our society of physic students,” explained SMU Physicist Jodi Cooley.

What exactly is dark matter?

“Think about all the stuff there is in the universe,” Cooley added. “What we can account for makes up only four to five percent of the universe. The rest of it is unknown. Turns out 26% of that unknown stuff is dark matter.”

Watch the full news segment.

Categories
Earth & Climate Energy & Matter Events Learning & Education Researcher news Student researchers Videos

SMU Dark Matter Day celebration culminates in a dark matter rock hunt on Halloween

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day.” — SMU physicist Jodi Cooley

This Halloween, people around the world will be celebrating the mysterious cosmic substance that permeates our universe: dark matter.

At SMU, the Department of Physics in Dedman College of Humanities and Sciences is hosting a Dark Matter Day celebration, and students, faculty, staff and DFW residents are invited to join in the educational fun with events open to the public.

To kick off the festivities, two speaking events by scientists in the field of dark matter will familiarize participants with the elusive particles that scientists refer to as dark matter. The first talk is oriented toward the general public, while the second is more technical and will appeal to people familiar with one of the STEM areas of science, technology, engineering or mathematics, particularly physics and astrophysics.

Then throughout Halloween day, everyone is invited to test their skills at finding dark matter — in this case, a series of rocks bearing educational messages related to dark matter, which the Society of Physics Students has painted and then hidden around the campus.

Anyone lucky enough to find one of the 26 rocks can present it at the Physics Department office to receive a prize, says SMU physics professor Jodi Cooley, whose research is focused on the scientific challenge of detecting dark matter.

“In the spirit of science being a pursuit open to all, we are excited to welcome all members of the SMU family to become dark matter hunters for a day,” Cooley said. “Explore your campus in the search for dark matter rocks, just as physicists are exploring the cosmos in the hunt for the nature of dark matter itself.”

Anyone who discovers a dark matter rock on the SMU campus is encouraged to grab their phone and snap a selfie with their rock. Tweet and tag your selfie #SMUDarkMatter so that @SMU, @SMUResearch and @SMUPhysics can retweet photos of the lucky finders.

As SMU’s resident dark matter scientist, Cooley is part of the 100-person international SuperCDMS SNOLAB experiment, which uses ultra pure materials and highly sensitive custom-built detectors to listen for the passage of dark matter.

SuperCDMS, an acronym for Super Cryogenic Dark Matter Search, resides at SNOLAB, an existing underground science laboratory in Ontario, Canada. Located deep underground, SNOLAB allows scientists to use the earth as a shield to block out particles that resemble dark matter, making it easier to see the real thing.

The SuperCDMS SNOLAB experiment, expected to be operational in 2020, has been designed to go deeper below the surface of the earth than earlier generations of the research.

“Dark matter experiments have been a smashing success — they’ve progressed farther than anyone anticipated. The SuperCDMS SNOLAB experiment is quite unique,” Cooley said. “It will allow us to probe models that predict dark matter with the tiniest masses.”

For more on Cooley’s research, go to “Hunt for dark matter takes physicists deep below earth’s surface, where WIMPS can’t hide. — Margaret Allen, SMU

Dark Matter Day events at SMU:

  • Sunday, Oct. 29, 4 p.m., McCord Auditorium — Maruša Bradač, Associate Professor at the University of California at Davis, will give a public lecture on dark matter. A reception will follow the lecture from 5 p.m. to 6 p.m. in the Dallas Hall Rotunda with beverages and light snacks. This event is free and open to the public, and is designed to be open to the widest possible audience.
  • Monday, Oct. 30, 4 p.m., Fondren Science Building, Room 158 — SMU Associate Professor Jodi Cooley will present a seminar on the SuperCDMS direct-detection dark matter search experiment. This event is part of the Physics Department Speaker Series. While this event is open to the public, it will be a more technical talk and may appeal more to an audience interested in the STEM areas of science, technology, engineering and mathematics, especially physics and astrophysics.
  • Tuesday, Oct. 31, 9 a.m. – 4 p.m., SMU Main Campus, Dark Matter Rock Hunt — The SMU Department of Physics has hidden “dark matter rocks” all across the SMU main campus. If you discover one of the dark matter rocks, bring it to the main office of the Physics Department, Fondren Science Building, Room 102, and get a special prize. All SMU students, faculty, staff and community members are welcome to join in the search.
Categories
Culture, Society & Family Energy & Matter Feature Researcher news SMU In The News

APS Physics: Viewpoint — Dark Matter Still at Large

“No dark matter particles have been observed by two of the world’s most sensitive direct-detection experiments, casting doubt on a favored dark matter model.” — Jodi Cooley

SMU physicist Jodi Cooley, an associate professor in the Department of Physics, writes in the latest issue of Physical Review Letters about the hunt by physicists worldwide for dark matter — the most elusive and abundant matter in our Universe.

Cooley is an expert in dark matter and a lead researcher on one of the key dark matter experiments in the world.

Cooley’s APS Physics article, “Viewpoint: Dark Matter Still at Large,” published Jan. 11, 2017.

The journal is that of the American Physical Society, a non-profit membership organization advancing knowledge of physics through its research journals, scientific meetings, education, outreach, advocacy and international activities. APS represents more than 53,000 members, including physicists in academia, national laboratories and industry in the United States and throughout the world.

Cooley’s current research interest is to improve our understanding of the universe by deciphering the nature of dark matter. The existence of dark matter was first postulated nearly 80 years ago. However, it wasn’t until the last decade that the revolution in precision cosmology revealed conclusively that about a quarter of our universe consisted of dark matter. Cooley and her colleagues operate sophisticated detectors in the Soudan Underground Laboratory in Minnesota. These detectors can distinguish between elusive dark matter particles and background particles that mimic dark matter interactions.

She received a B.S. degree in Applied Mathematics and Physics from the University of Wisconsin in Milwaukee in 1997. She earned her Masters in 2000 and her Ph.D. in 2003 at the University of Wisconsin-Madison for her research searching for neutrinos from diffuse astronomical sources with the AMANDA-II detector. Upon graduation she did postdoctoral studies at both MIT and Stanford University.

Cooley is a Principal Investigator on the SuperCDMS dark matter experiment and a Principal Investigator for the AARM collaboration, which aims to develop integrative tools for underground science. She has won numerous awards for her research including an Early Career Award from the National Science Foundation and the Ralph E. Powe Jr. Faculty Enhancement Award from the Oak Ridge Associated Universities.

She was named December 2012 Woman Physicist of the Month by the American Physical Societies Committee on the Status of Women and earned a 2012 HOPE (Honoring our Professor’s Excellence) by SMU. In 2015 she received the Rotunda Outstanding Professor Award.

Read the full article.

EXCERPT:

By Jodi Cooley
Southern Methodist University

Over 80 years ago astronomers and astrophysicists began to inventory the amount of matter in the Universe. In doing so, they stumbled into an incredible discovery: the motion of stars within galaxies, and of galaxies within galaxy clusters, could not be explained by the gravitational tug of visible matter alone [1]. So to rectify the situation, they suggested the presence of a large amount of invisible, or “dark,” matter. We now know that dark matter makes up 84% of the matter in the Universe [2], but its composition—the type of particle or particles it’s made from—remains a mystery. Researchers have pursued a myriad of theoretical candidates, but none of these “suspects” have been apprehended. The lack of detection has helped better define the parameters, such as masses and interaction strengths, that could characterize the particles. For the most compelling dark matter candidate, WIMPs, the viable parameter space has recently become smaller with the announcement in September 2016 by the PandaX-II Collaboration [3] and now by the Large Underground Xenon (LUX) Collaboration [4] that a search for the particles has come up empty.

Since physicists don’t know what dark matter is, they need a diverse portfolio of instruments and approaches to detect it. One technique is to try to make dark matter in an accelerator, such as the Large Hadron Collider at CERN, and then to look for its decay products with a particle detector. A second technique is to use instruments such as the Fermi Gamma-ray Space Telescope to observe dark matter interactions in and beyond our Galaxy. This approach is called “indirect detection” because what the telescope actually observes is the particles produced by a collision between dark matter particles. In the same way that forensic scientists rely on physical evidence to reverse-engineer a crime with no witnesses, scientists use the aftermath of these collisions to reconstruct the identities of the initial dark matter particles.

The third technique, and the one used in both the LUX and PandaX-II experiments, is known as “direct detection.” Here, a detector is constructed on Earth with a massive target to increase the odds of an interaction with the dark matter that exists in our Galaxy. In the case of LUX and PandaX-II, the dark matter particles leave behind traces of light that can be detected with sophisticated sensors. This is akin to having placed cameras at the scene of a crime, capturing the culprit in the act.

Read the full article.

Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Events Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Student researchers

SMU 2015 research efforts broadly noted in a variety of ways for world-changing impact

SMU scientists and their research have a global reach that is frequently noted, beyond peer publications and media mentions.

By Margaret Allen
SMU News & Communications

It was a good year for SMU faculty and student research efforts. Here is a small sampling of public and published acknowledgements during 2015:

Simmons, Diego Roman, SMU, education

Hot topic merits open access
Taylor & Francis, publisher of the online journal Environmental Education Research, lifted its subscription-only requirement to meet demand for an article on how climate change is taught to middle-schoolers in California.

Co-author of the research was Diego Román, assistant professor in the Department of Teaching and Learning, Annette Caldwell Simmons School of Education and Human Development.

Román’s research revealed that California textbooks are teaching sixth graders that climate change is a controversial debate stemming from differing opinions, rather than a scientific conclusion based on rigorous scientific evidence.

The article, “Textbooks of doubt: Using systemic functional analysis to explore the framing of climate change in middle-school science textbooks,” published in September. The finding generated such strong interest that Taylor & Francis opened access to the article.

bichaw_v054i049.indd

Research makes the cover of Biochemistry
Drugs important in the battle against cancer were tested in a virtual lab by SMU biology professors to see how they would behave in the human cell.

A computer-generated composite image of the simulation made the Dec. 15 cover of the journal Biochemistry.

Scientific articles about discoveries from the simulation were also published in the peer review journals Biochemistry and in Pharmacology Research & Perspectives.

The researchers tested the drugs by simulating their interaction in a computer-generated model of one of the cell’s key molecular pumps — the protein P-glycoprotein, or P-gp. Outcomes of interest were then tested in the Wise-Vogel wet lab.

The ongoing research is the work of biochemists John Wise, associate professor, and Pia Vogel, professor and director of the SMU Center for Drug Discovery, Design and Delivery in Dedman College. Assisting them were a team of SMU graduate and undergraduate students.

The researchers developed the model to overcome the problem of relying on traditional static images for the structure of P-gp. The simulation makes it possible for researchers to dock nearly any drug in the protein and see how it behaves, then test those of interest in an actual lab.

To date, the researchers have run millions of compounds through the pump and have discovered some that are promising for development into pharmaceutical drugs to battle cancer.

Click here to read more about the research.

SMU, Simpson Rowe, sexual assault, video

Strong interest in research on sexual victimization
Teen girls were less likely to report being sexually victimized after learning to assertively resist unwanted sexual overtures and after practicing resistance in a realistic virtual environment, according to three professors from the SMU Department of Psychology.

The finding was reported in Behavior Therapy. The article was one of the psychology journal’s most heavily shared and mentioned articles across social media, blogs and news outlets during 2015, the publisher announced.

The study was the work of Dedman College faculty Lorelei Simpson Rowe, associate professor and Psychology Department graduate program co-director; Ernest Jouriles, professor; and Renee McDonald, SMU associate dean for research and academic affairs.

The journal’s publisher, Elsevier, temporarily has lifted its subscription requirement on the article, “Reducing Sexual Victimization Among Adolescent Girls: A Randomized Controlled Pilot Trial of My Voice, My Choice,” and has opened it to free access for three months.

Click here to read more about the research.

Consumers assume bigger price equals better quality
Even when competing firms can credibly disclose the positive attributes of their products to buyers, they may not do so.

Instead, they find it more lucrative to “signal” quality through the prices they charge, typically working on the assumption that shoppers think a high price indicates high quality. The resulting high prices hurt buyers, and may create a case for mandatory disclosure of quality through public policy.

That was a finding of the research of Dedman College’s Santanu Roy, professor, Department of Economics. Roy’s article about the research was published in February in one of the blue-ribbon journals, and the oldest, in the field, The Economic Journal.

Published by the U.K.’s Royal Economic Society, The Economic Journal is one of the founding journals of modern economics. The journal issued a media briefing about the paper, “Competition, Disclosure and Signaling,” typically reserved for academic papers of broad public interest.

The Journal of Physical Chemistry A

Chemistry research group edits special issue
Chemistry professors Dieter Cremer and Elfi Kraka, who lead SMU’s Computational and Theoretical Chemistry Group, were guest editors of a special issue of the prestigious Journal of Physical Chemistry. The issue published in March.

The Computational and Theoretical research group, called CATCO for short, is a union of computational and theoretical chemistry scientists at SMU. Their focus is research in computational chemistry, educating and training graduate and undergraduate students, disseminating and explaining results of their research to the broader public, and programming computers for the calculation of molecules and molecular aggregates.

The special issue of Physical Chemistry included 40 contributions from participants of a four-day conference in Dallas in March 2014 that was hosted by CATCO. The 25th Austin Symposium drew 108 participants from 22 different countries who, combined, presented eight plenary talks, 60 lectures and about 40 posters.

CATCO presented its research with contributions from Cremer and Kraka, as well as Marek Freindorf, research assistant professor; Wenli Zou, visiting professor; Robert Kalescky, post-doctoral fellow; and graduate students Alan Humason, Thomas Sexton, Dani Setlawan and Vytor Oliveira.

There have been more than 75 graduate students and research associates working in the CATCO group, which originally was formed at the University of Cologne, Germany, before moving to SMU in 2009.

519ca82d-6517-4df9-b5ac-26e5458882ef

Vertebrate paleontology recognized with proclamation
Dallas Mayor Mike Rawlings proclaimed Oct. 11-17, 2015 Vertebrate Paleontology week in Dallas on behalf of the Dallas City Council.

The proclamation honored the 75th Annual Meeting of the Society of Vertebrate Paleontology, which was jointly hosted by SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College and the Perot Museum of Science and Nature. The conference drew to Dallas some 1,200 scientists from around the world.

Making research presentations or presenting research posters were: faculty members Bonnie Jacobs, Louis Jacobs, Michael Polcyn, Neil Tabor and Dale Winkler; adjunct research assistant professor Alisa Winkler; research staff member Kurt Ferguson; post-doctoral researchers T. Scott Myers and Lauren Michael; and graduate students Matthew Clemens, John Graf, Gary Johnson and Kate Andrzejewski.

The host committee co-chairs were Anthony Fiorillo, adjunct research professor; and Louis Jacobs, professor. Committee members included Polcyn; Christopher Strganac, graduate student; Diana Vineyard, research associate; and research professor Dale Winkler.

KERA radio reporter Kat Chow filed a report from the conference, explaining to listeners the science of vertebrate paleontology, which exposes the past, present and future of life on earth by studying fossils of animals that had backbones.

SMU earthquake scientists rock scientific journal

Modelled pressure changes caused by injection and production. (Nature Communications/SMU)
Modelled pressure changes caused by injection and production. (Nature Communications/SMU)

Findings by the SMU earthquake team reverberated across the nation with publication of their scientific article in the prestigious British interdisciplinary journal Nature, ranked as one of the world’s most cited scientific journals.

The article reported that the SMU-led seismology team found that high volumes of wastewater injection combined with saltwater extraction from natural gas wells is the most likely cause of unusually frequent earthquakes occurring in the Dallas-Fort Worth area near the small community of Azle.

The research was the work of Dedman College faculty Matthew Hornbach, associate professor of geophysics; Heather DeShon, associate professor of geophysics; Brian Stump, SMU Albritton Chair in Earth Sciences; Chris Hayward, research staff and director geophysics research program; and Beatrice Magnani, associate professor of geophysics.

The article, “Causal factors for seismicity near Azle, Texas,” published online in late April. Already the article has been downloaded nearly 6,000 times, and heavily shared on both social and conventional media. The article has achieved a ranking of 270, which puts it in the 99th percentile of 144,972 tracked articles of a similar age in all journals, and 98th percentile of 626 tracked articles of a similar age in Nature.

It has a very high impact factor for an article of its age,” said Robert Gregory, professor and chair, SMU Earth Sciences Department.

The scientific article also was entered into the record for public hearings both at the Texas Railroad Commission and the Texas House Subcommittee on Seismic Activity.

Researchers settle long-debated heritage question of “The Ancient One”

The skull of Kennewick Man and a sculpted bust by StudioEIS based on forensic facial reconstruction by sculptor Amanda Danning. (Credit: Brittany Tatchell)
The skull of Kennewick Man and a sculpted bust by StudioEIS based on forensic facial reconstruction by sculptor Amanda Danning. (Credit: Brittany Tatchell)

The research of Dedman College anthropologist and Henderson-Morrison Professor of Prehistory David Meltzer played a role in settling the long-debated and highly controversial heritage of “Kennewick Man.”

Also known as “The Ancient One,” the 8,400-year-old male skeleton discovered in Washington state has been the subject of debate for nearly two decades. Argument over his ancestry has gained him notoriety in high-profile newspaper and magazine articles, as well as making him the subject of intense scholarly study.

Officially the jurisdiction of the U.S. Army Corps of Engineers, Kennewick Man was discovered in 1996 and radiocarbon dated to 8500 years ago.

Because of his cranial shape and size he was declared not Native American but instead ‘Caucasoid,’ implying a very different population had once been in the Americas, one that was unrelated to contemporary Native Americans.

But Native Americans long have claimed Kennewick Man as theirs and had asked for repatriation of his remains for burial according to their customs.

Meltzer, collaborating with his geneticist colleague Eske Willerslev and his team at the Centre for GeoGenetics at the University of Copenhagen, in June reported the results of their analysis of the DNA of Kennewick in the prestigious British journal Nature in the scientific paper “The ancestry and affiliations of Kennewick Man.”

The results were announced at a news conference, settling the question based on first-ever DNA evidence: Kennewick Man is Native American.

The announcement garnered national and international media attention, and propelled a new push to return the skeleton to a coalition of Columbia Basin tribes. Sen. Patty Murray (D-WA) introduced the Bring the Ancient One Home Act of 2015 and Washington Gov. Jay Inslee has offered state assistance for returning the remains to Native Tribes.

Science named the Kennewick work one of its nine runners-up in the highly esteemed magazine’s annual “Breakthrough of the Year” competition.

The research article has been viewed more than 60,000 times. It has achieved a ranking of 665, which puts it in the 99th percentile of 169,466 tracked articles of a similar age in all journals, and in the 94th percentile of 958 tracked articles of a similar age in Nature.

In “Kennewick Man: coming to closure,” an article in the December issue of Antiquity, a journal of Cambridge University Press, Meltzer noted that the DNA merely confirmed what the tribes had known all along: “We are him, he is us,” said one tribal spokesman. Meltzer concludes: “We presented the DNA evidence. The tribal members gave it meaning.”

Click here to read more about the research.

Prehistoric vacuum cleaner captures singular award

Paleontologists Louis L. Jacobs, SMU, and Anthony Fiorillo, Perot Museum, have identified a new species of marine mammal from bones recovered from Unalaska, an Aleutian island in the North Pacific. (Hillsman Jackson, SMU)
Paleontologists Louis L. Jacobs, SMU, and Anthony Fiorillo, Perot Museum, have identified a new species of marine mammal from bones recovered from Unalaska, an Aleutian island in the North Pacific. (Hillsman Jackson, SMU)

Science writer Laura Geggel with Live Science named a new species of extinct marine mammal identified by two SMU paleontologists among “The 10 Strangest Animal Discoveries of 2015.”

The new species, dubbed a prehistoric hoover by London’s Daily Mail online news site, was identified by SMU paleontologist Louis L. Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences, Dedman College of Humanities and Sciences, and paleontologist and SMU adjunct research professor Anthony Fiorillo, vice president of research and collections and chief curator at the Perot Museum of Nature and Science.

Jacobs and Fiorillo co-authored a study about the identification of new fossils from the oddball creature Desmostylia, discovered in the same waters where the popular “Deadliest Catch” TV show is filmed. The hippo-like creature ate like a vacuum cleaner and is a new genus and species of the only order of marine mammals ever to go extinct — surviving a mere 23 million years.

Desmostylians, every single species combined, lived in an interval between 33 million and 10 million years ago. Their strange columnar teeth and odd style of eating don’t occur in any other animal, Jacobs said.

SMU campus hosted the world’s premier physicists

The SMU Department of Physics hosted the “23rd International Workshop on Deep Inelastic Scattering and Related Subjects” from April 27-May 1, 2015. Deep Inelastic Scattering is the process of probing the quantum particles that make up our universe.

As noted by the CERN Courier — the news magazine of the CERN Laboratory in Geneva, which hosts the Large Hadron Collider, the world’s largest science experiment — more than 250 scientists from 30 countries presented more than 200 talks on a multitude of subjects relevant to experimental and theoretical research. SMU physicists presented at the conference.

The SMU organizing committee was led by Fred Olness, professor and chair of the SMU Department of Physics in Dedman College, who also gave opening and closing remarks at the conference. The committee consisted of other SMU faculty, including Jodi Cooley, associate professor; Simon Dalley, senior lecturer; Robert Kehoe, professor; Pavel Nadolsky, associate professor, who also presented progress on experiments at CERN’s Large Hadron Collider; Randy Scalise, senior lecturer; and Stephen Sekula, associate professor.

Sekula also organized a series of short talks for the public about physics and the big questions that face us as we try to understand our universe.

Click here to read more about the research.