Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Technology

2010 a year of advances for SMU scientific researchers at the vanguard of those helping civilization

From picking apart atomic particles at Switzerland’s CERN, to unraveling the mysterious past, to delving into the human psyche, SMU researchers are in the vanguard of those helping civilization understand more and live better.

With both public and private funding — and the assistance of their students — they are tackling such scientific and social problems as brain diseases, immigration, diabetes, evolution, volcanoes, panic disorders, childhood obesity, cancer, radiation, nuclear test monitoring, dark matter, the effects of drilling in the Barnett Shale, and the architecture of the universe.

The sun never sets on SMU research
Besides working in campus labs and within the Dallas-area community, SMU scientists conduct research throughout the world, including at CERN’s Large Hadron Collider, and in Angola, the Canary Islands, Mongolia, Kenya, Italy, China, the Congo Basin, Ethiopia, Mexico, the Northern Mariana Islands and South Korea.

“Research at SMU is exciting and expanding,” says Associate Vice President for Research and Dean of Graduate Studies James E. Quick, a professor in the Huffington Department of Earth Sciences. “Our projects cover a wide range of problems in basic and applied research, from the search for the Higgs particle at the Large Hadron Collider in CERN to the search for new approaches to treat serious diseases. The University looks forward to creating increasing opportunities for undergraduates to become involved as research expands at SMU.”

Funding from public and private sources
In 2009-10, SMU received $25.6 million in external funding for research, up from $16.5 million the previous year.

“Research is a business that cannot be grown without investment,” Quick says. “Funding that builds the research enterprise is an investment that will go on giving by enabling the University to attract more federal grants in future years.”

The funding came from public and private sources, including the National Science Foundation; the National Institutes of Health; the U.S. Departments of Agriculture, Defense, Education and Energy; the U.S. Geological Survey; Google.org; the Alfred P. Sloan Foundation; Texas’ own Hogg Foundation for Mental Health; and the Texas Instruments Foundation.

Worldwide, the news media are covering SMU research. See some of the coverage. Browse a sample of the research:

CERN and the origin of our universe
cern_atlas-thumb.jpgLed by Physics Professor Ryszard Stroynowski, SMU physics researchers belong to the global consortium of scientists investigating the origins of our universe by monitoring high-speed sub-atomic particle collisions at CERN, the world’s largest physics experiment.

Compounds to fight neurodegenerative diseases
Biehl%20lab%20400x300.jpg
Synthetic organic chemist and Chemistry Professor Edward Biehl leads a team developing organic compounds for possible treatment of neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s. Preliminary investigation of one compound found it was extremely potent as a strong, nontoxic neuroprotector in mice.

Hunting dark matter
Dark%20matterthumb.jpgAssistant Professor of Physics Jodi Cooley belongs to a high-profile international team of experimental particle physicists searching for elusive dark matter — believed to constitute the bulk of the matter in the universe — at an abandoned underground mine in Minnesota, and soon at an even deeper mine in Canada.

Robotic arms for injured war vets
Robotic%20hand%20thumb.jpg
Electrical Engineering Chairman and Professor Marc Christensen is director of a new $5.6 million center funded by the Department of Defense and industry. The center will develop for war veteran amputees a high-tech robotic arm with fiber-optic connectivity to the brain capable of “feeling” sensations.

Green energy from the Earth’s inner heat
Yellowstone%20thumb.jpg
The SMU Geothermal Laboratory, under Earth Sciences Professor David Blackwell, has identified and mapped U.S. geothermal resources capable of supplying a green source of commercial power generation, including resources that were much larger than expected under coal-rich West Virginia.

Exercise can be magic drug for depression and anxiety
Exercise%20for%20anxiety%20thumb.jpg
Psychologist Jasper Smits, director of the Anxiety Research and Treatment Program at SMU, says exercise can help many people with depression and anxiety disorders and should be more widely prescribed by mental health care providers.

The traditional treatments of cognitive behavioral therapy and pharmacotherapy don’t reach everyone who needs them, says Smits, an associate professor of psychology.

Virtual reality “dates” to prevent victimization
avatar%20thumb.jpg
SMU psychologists Ernest Jouriles, Renee McDonald and Lorelei Simpson have partnered with SMU Guildhall in developing an interactive video gaming environment where women on virtual-reality dates can learn and practice assertiveness skills to prevent sexual victimization.

With assertive resistance training, young women have reduced how often they are sexually victimized, the psychologists say.

Controlled drug delivery agents for diabetes
brent-sumerlin.thumb.jpgAssociate Chemistry Professor Brent Sumerlin leads a team of SMU chemistry researchers — including postdoctoral, graduate and undergraduate students — who fuse the fields of polymer, organic and biochemistries to develop novel materials with composite properties. Their research includes developing nano-scale polymer particles to deliver insulin to diabetics.

Sumerlin, associate professor of chemistry, was named a 2010-2012 Alfred P. Sloan Research Fellow, which carries a $50,000 national award to support his research.

Human speed
Usain_Bolt_Berlin%2Csmall.jpgAn expert on the locomotion of humans and other terrestrial animals, Associate Professor of Applied Physiology and Biomechanics Peter Weyand has analyzed the biomechanics of world-class athletes Usain Bolt and Oscar Pistorius. His research targets the relationships between muscle function, metabolic energy expenditure, whole body mechanics and performance.

Weyand’s research also looks at why smaller people tire faster. Finding that they have to take more steps to cover the same distance or travel at the same speed, he and other scientists derived an equation that can be used to calculate the energetic cost of walking.

Pacific Ring of Fire volcano monitoring
E_crater1%20thumb.jpgAn SMU team of earth scientists led by Professor and Research Dean James Quick works with the U.S. Geological Survey to monitor volcanoes in the Pacific Ocean’s Ring of Fire near Guam on the Northern Mariana Islands. Their research will help predict and anticipate hazards to the islands, the U.S. military and commercial jets.

The two-year, $250,000 project will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow.

Reducing anxiety and asthma
Mueret%20thumb.jpgA system of monitoring breathing to reduce CO2 intake is proving useful for reducing the pain of chronic asthma and panic disorder in separate studies by Associate Psychology Professor Thomas Ritz and Assistant Psychology Professor Alicia Meuret.

The two have developed the four-week program to teach asthmatics and those with panic disorder how to better control their condition by changing the way they breathe.

Breast Cancer community engagement
breast%20cancer%20100x80.jpgAssistant Psychology Professor Georita Friersen is working with African-American and Hispanic women in Dallas to address the quality-of-life issues they face surrounding health care, particularly during diagnosis and treatment of breast cancer.

Friersen also examines health disparities regarding prevention and treatment of chronic diseases among medically underserved women and men.

Paleoclimate in humans’ first environment
Cenozoic%20Africa%20150x120%2C%2072dpi.jpgPaleobotanist and Associate Earth Sciences Professor Bonnie Jacobs researches ancient Africa’s vegetation to better understand the environmental and ecological context in which our ancient human ancestors and other mammals evolved.

Jacobs is part of an international team of researchers who combine independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia in particular. She also identifies and prepares flora fossil discoveries for Ethiopia’s national museum.

Ice Age humans
BwD%20Clovis%20type%20specimens%20II%20150x120px.jpg
Anthropology Professor David Meltzer explores the western Rockies of Colorado to understand the prehistoric Folsom hunters who adapted to high-elevation environments during the Ice Age.

Meltzer, a world-recognized expert on paleoIndians and early human migration from eastern continents to North America, was inducted into the National Academy of Scientists in 2009.

Understanding evolution
Cane%20rate%2C%20Uganda%2C%2020%20mya%20400x300.jpgThe research of paleontologist Alisa WInkler focuses on the systematics, paleobiogeography and paleoecology of fossil mammals, in particular rodents and rabbits.

Her study of prehistoric rodents in East Africa and Texas, such as the portion of jaw fossil pictured, is helping shed more light on human evolution.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news Slideshows

Ancient Africa mysteries: Evidence is weak for tropical rainforest 65 million years ago in Africa’s low-latitudes

Evidence is weak for tropical rainforest 65 million years ago in Africa’s low-latitudes

The landscape of Central Africa 65 million years ago was a low-elevation tropical belt, but the jury is still out on whether the region’s mammals browsed and hunted beneath the canopy of a lush rainforest.

The scientific evidence for a tropical rainforest at that time is weak and far from convincing, says paleobotanist Bonnie F. Jacobs, Southern Methodist University in Dallas.

Fossil pollen from Central and West Africa provide no definitive evidence for communities of rainforest trees at the beginning of the Cenozoic, says Jacobs, an expert in the paleobotany of Africa soon after dinosaurs had gone extinct. It was the start of the age of mammals, and Africa was largely an island continent.

Many Cenozoic mysteries remain to be solved
The rainforest mystery is characteristic of the scientific uncertainty and unknowns surrounding Africa’s ancient flora during the period called the Cenozoic.

There are large gaps in the fossil record, says Jacobs, a co-author of “A Review of the Cenozoic Vegetation History of Africa.” She is an associate professor in SMU’s Roy M. Huffington Department of Earth Sciences.

The analysis, a chapter in “Cenozoic Mammals of Africa” (University of California Press, 2010), is the first of its kind since 1978 to review and interpret the Cenozoic paleobotanical record of Africa, with paleogeographic maps showing paleobotanical site distributions through time. Jacobs co-authored the paper with Aaron D. Pan, a paleobotanist at the Fort Worth Museum of Science and History, and Christopher R. Scotese, in the Earth Sciences Department at the University of Texas at Arlington.

The 1008-page “Cenozoic Mammals of Africa” is the first scientific reference of its kind since 1978, comprising 48 chapters by 64 experts. The volume summarizes and interprets the published fossil research to date of Africa’s mammals, tectonics, geography, climate and flora of the past 65 million years.

Details sparse, but big picture emerges for past 65 million years
Paleobotanical data for Africa are generally meager and uneven for the Cenozoic, according to Jacobs and her co-authors.

In an original series of maps, they chart each Cenozoic Africa paleobotanical locale described in the published research to date. There are a mere 82 sites in all. Most of the sites date to 50 million years ago. Fewer date to 20 million, 30 million, 10 million and — perhaps most important — 2 million years ago, when the human family was evolving.

“Africa is disappointingly undersampled,” say Jacobs and her colleagues. “This vast continent, roughly three times the area of the United States, has so far been documented by only a handful of Paleogene plant and vertebrate localities, and it has a Neogene record heavily biased toward the depositional basins of the East African Rift.”

Shift from descriptive to analytic approach driven by holistic view

For a continent so important for its role in the evolution of mammals, the scarcity of plant fossil data stands in sharp contrast.

“As impressive as is the contemporary mammalian diversity of Africa, it is dwarfed by that of the Cenozoic,” write the volume’s editors, paleozoologist Lars Werdelin, the Swedish Museum of Natural History, and paleontologist William Joseph Sanders, the University of Michigan. Africa today represents 20 percent of the world’s land mass, is the only continent to occupy both the north and south temperate zones, and is home now to more than 1,100 mammalian species, they write in the introduction.

Africa’s paleobotanical record is key to a holistic understanding of ancient mammals, says H.B.S. Cooke in the preface. A mammal expert, Cooke was editor of the earlier 1978 scientific reference, “Evolution of African Mammals” (Harvard University Press).

“Most striking over the past years has been a shift in studying fossils from a largely descriptive taxonomy to a more analytical approach, including consideration of faunal associations, their distribution in time and space, and the environmental and climatic factors that prevailed and changed through time,” Cooke writes. ” … African prehistory has become more a study of paleobiology than mere paleontology.”

For images from Jacobs’ fieldwork in Africa go to SMU Research on Flickr.

More scientific exploration needed to fill gaps
Scientific exploration to learn more about Africa’s ancient vegetation is on the increase, say Jacobs and her co-authors. That should start to fill gaps in understanding, including the mystery of Africa’s palms.

While palm trees are common in wet tropical forests worldwide, that’s not the case in Africa today. Palm trees have not been found in abundance in Africa for the past 24 million years, regardless of whether the regional vegetation was forest, say the authors. Oddly, though, abundant palm samples have been found in some African locations dating between 65 million and 25 million years ago, including at Chilga in Ethiopia by Jacobs and Pan.

The implications of that difference are significant for the various endemic mammals of that time, many of which were absent by 23 million years ago, say the authors.

“We are fortunate that the sampling scale of most fossil localities is at the plant community level, and larger-scale changes took place one community at a time,” they write. “Thus, as Africa becomes better sampled, the uneven record will ultimately become a more complete narrative of dynamic change at the community and ecosystem levels.”

Funding for “Cenozoic Mammals of Africa” came from the Swedish Research Council; the University of Michigan’s College of Literature, Science, and the Arts, and the Museum of Paleontology; and the Regents of the University of California. — Margaret Allen

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

National Geographic: Texas pterosaur Aetodactylus Halli in the spotlight after 95 million years

National Geographic News interviewed SMU postdoctoral researcher Timothy S. Myers about the new species and genus of pterosaur he identified and named, Aetodactylus Halli.

In the April 28 article “Toothy Texas Pterosaur Found; Soared Over Dallas” reporter John Roach talked to Myers about the 95 million-year-old jaw that was discovered by Lake Worth resident Lance Hall.

The pterosaur flew over the ancient sea that used to cover much of the Dallas-Fort Worth area. A rare species of pterosaur in North America, Myers named the new flying reptile after Hall.

Others who wrote about Myers’ Aetodactylus Halli research include:

Others who published a story about the find were: American Scientist, MSNBC, FOX News, the San Diego Tribune and many others.

EXCERPT:

By John Roach
National Geographic News

Long before six flags flew over Texas, a newfound species of winged reptile
with an exceptionally toothy grin owned the skies over what is now the Lone
Star State.

The recently discovered pterosaur, dubbed Aetodactylus halli, was identified based on a 95-million-year-old lower jawbone found outside of Dallas by amateur fossil hunter Lance Hall.

The pterosaur had a relatively slender jaw filled with thin, needlelike teeth, which might have helped the creature pluck fish from the shallow sea that once covered the region, a new study says.

“It was hanging out near the ocean, and that is probably where it derived its food from,” said study leader Timothy Myers, a paleontologist at Southern Methodist University in Dallas.

By comparing the jawbone to more complete pterosaur fossils, Myers and his team think A. halli was a medium-size animal with a nine-foot (three-meter) wingspan and a short tail.

Texas’s Toothy Pterosaur a Rare Find
Pterosaurs ruled the skies from the late Triassic period, more than 200 million years ago, until dinosaurs went extinct at the end of the Cretaceous, about 65 million years ago.

Read the full story

Categories
Fossils & Ruins Plants & Animals Slideshows

Texas discovery: Rare 95 million-year-old flying reptile Aetodactylus halli is new genus, species of pterosaur

A 95 million-year-old fossilized jaw discovered in Texas has been identified as a new genus and species of flying reptile, Aetodactylus halli.

Aetodactylus halli is a pterosaur, a group of flying reptiles commonly referred to as pterodactyls.

The rare pterosaur — literally winged lizard — is one of the youngest members in the world of the pterosaur family Ornithocheiridae, says paleontologist Timothy S. Myers, who identified and named Aetodactylus halli.

The newly identified reptile is only the second ornithocheirid ever documented in North America, Myers says. He is a postdoctoral fellow in the Roy M. Huffington Department of Earth Sciences at Southern Methodist University in Dallas.

Aetodactylus halli would have soared over what is now the Dallas-Fort Worth area during the Cretaceous Period when much of the Lone Star state was under water, covered by a vast ancient sea.

Click here to view larger image of Aetodactylus halli

While rare in North America, toothed pterosaurs belonging to the Ornithocheiridae are a major component of Cretaceous pterosaur faunas elsewhere in the world, Myers says. The Texas specimen — a nearly complete mandible with most of its 54 teeth missing — is definitively younger than most other ornithocheirid specimens from Brazil, England and China, he says. It is five million years younger than the only other known North American ornithocheirid.

Myers describes the new species in the latest issue of the Journal of Vertebrate Paleontology.

Myers named the pterosaur Aetodactylus halli after Lance Hall, a member of the Dallas Paleontological Society who hunts fossils for a hobby. Hall found the specimen in 2006 in North Texas. It was embedded in a soft, powdery shale exposed by excavation of a hillside next to a highway. The site was near the city of Mansfield, southwest of Dallas and west of Joe Pool Lake. Hall donated the specimen to SMU.

Pterosaurs ruled the skies from the late Triassic, more than 200 million years ago, to the end of the Cretaceous, about 65 million years ago, when they went extinct. They represent the earliest vertebrates capable of flying.

Fossil hunter saw long row of teeth sockets
The Aetodactylus halli jaw was discovered in the geologic unit known as the Eagle Ford Group, which comprises sediments deposited in a shallow sea, Myers says. Outcrop of the Eagle Ford Group extends northward from southwestern Texas into southern Oklahoma and southwestern Arkansas.

“I was scanning the exposure and noticed what at first I thought was a piece of oyster shell spanning across a small erosion valley,” Hall recalls of the discovery. “Only about an inch or two was exposed. I almost passed it up thinking it was oyster, but realized it was more tan-colored like bone. I started uncovering it and realized it was the jaw to something — but I had no idea what. It was upside down and when I turned over the snout portion it was nothing but a long row of teeth sockets, which was very exciting.”

SMU vertebrate paleontologist Louis L. Jacobs, a dinosaur expert internationally recognized for his fossil discoveries in Texas and Africa, and SMU paleontologist Michael J. Polcyn, recognized for his expertise on the extinct marine reptiles called mosasaurs, both told Hall it was a pterosaur and an important find.

Unique jaw differs from others
The 38.4-centimeter Aetodactylus jaw originally contained 54 slender, pointed teeth, but only two remain in their sockets, Myers says. The lower teeth were evenly spaced and extended far back along the jaw, covering nearly three quarters of the length of the mandible. The upper and lower teeth interlaced when the jaws were closed.

In Aetodactylus, changes in tooth size along the jaw follow a similar pattern to those of other ornithocheirids. However, Aetodactylus differs from all other ornithocheirids in that its jaws were thin and delicate, with a maximum thickness not much greater than 1 centimeter, Myers says. But the specimen does compare favorably with Boreopterus, a related pterosaur from the Early Cretaceous of China, in terms of the number of teeth present in the lower jaw, he says.

Myers has estimated the wingspan around roughly 3 meters, or about 9 feet, indicating Aetodactylus would have been a “medium-sized” pterosaur, he says. While it’s not known how Aetodactylus died, at the time of death the reptile was flying over the sea and fell into the water, perhaps while fishing, Jacobs says.

Find hints at new diversity of pterosaurs
North American pterosaurs that date from the Cretaceous are all toothless, except for Aetodactylus and Coloborhynchus, Myers says. The thinness of the jaws, upward angle of the back half of the mandible and the lack of a pronounced expansion of the jaw tips indicate that Aetodactylus is different from other ornithocheirids and represents a new genus and species of pterosaur.

“Discovery of another ornithocheirid species in Texas hints at a diversity of pterosaurs in the Cretaceous of North America that wasn’t previously realized,” Myers says. “Aetodactylus also represents one of the final occurrences of ornithocheirids prior to the Late Cretaceous transition to pterosaur faunas that were dominated by the edentulous, or toothless, species.”

Texas now claims the only two of their kind
Hall on April 14 was presented with the Dallas Paleontological Society’s highest honor, the Lloyd Hill award. The award is named for the late Lloyd Hill, an amateur fossil hunter and longtime member of the Dallas Paleontological Society. Hill wrote the well-regarded novel The Village of Bom Jesus.

Much of Texas was once submerged under the Western Interior Seaway. The massive sea split North America from the Gulf of Mexico to the Arctic Ocean.

On shore, the terrain was flat and flowering plants were already dominating flora communities in this part of North America, according to paleobotanist Bonnie Jacobs, associate professor of Earth Sciences at SMU.

“There were still conifers and ferns as well, but mostly of the sort that had tiny needle leaves, like junipers,” says Bonnie Jacobs. “Sycamores and their relatives would have been among the flowering plants.”

The first ornithocheirid remains from North America, discovered in Fort Worth, were described by former SMU student Young-Nam Lee and donated by amateur collector Chris Wadleigh, says SMU’s Louis Jacobs.

“The ancient sea that covered Dallas provided the right conditions to preserve marine reptiles and other denizens of the deep, as well as the delicate bones of flying reptiles that fell from their flight to the water below,” says Louis Jacobs, a professor in SMU’s Huffington Department of Earth Sciences.

“The rocks and fossils here record a time not well represented elsewhere in North America,” says Louis Jacobs. “That’s why two species of ornithocheirids have been found here but nowhere else, and that’s why discoveries of other new fossils are sure to be made by Lance Hall and other fossil lovers.”

Myers’ article in the Journal of Vertebrate Paleontology is titled “A new ornithocheirid pterosaur from the Upper Cretaceous (Cenomanian-Turonian) Eagle Ford Group of Texas.”

The research was funded by SMU’s Roy M. Huffington Department of Earth Sciences and SMU’s Institute for the Study of Earth and Man.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news

Ethiopian fossils define prehistoric ecosystems, human evolution, climate change

Leaf3%2Clr.jpgFor paleobotanist Bonnie Jacobs standing atop a mountain in the highlands of northwest Ethiopia, it’s as if she can see forever — or at least as far back as 30 million years ago.

Jacobs is part of an international team of researchers hunting scientific clues to Africa’s prehistoric ecosystems.

The researchers are among the first to combine independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia in particular, and tropical Africa in general for the time interval from 65 million years ago — when dinosaurs went extinct, to about 8 million years ago — when apes split from humans.

BonnieTreeMush3%2Clr.jpg
Paleobotanist Bonnie Jacobs in Ethiopia.

While it’s generally held that human life began in Africa, ironically there is little known about changes in the continent’s vegetation during the time when humans were evolving.

The team’s work also will help climate scientists trying to model future global warming by providing data from the tropics that up to now did not exist.

The multi-disciplinary team is studying fossils they’ve found near Chilga, a small region in the agricultural highlands.

Contrary to the common notion that vegetation decomposes in the tropics too quickly to supply evidence, sediments there have preserved an abundant variety of 28 million-year-old fossils. These include fruits, seeds, leaves, woods, pollen and spores, says Jacobs, an associate professor of Earth Sciences at Southern Methodist University and director of the Environmental Science and Studies Programs.

“There are lifetimes of work to be done in Africa on plant fossils alone, and certainly a lot more to be done with vertebrates as well,” says Jacobs, who’s done research in Africa since 1980 in Kenya, Tanzania and Ethiopia. “There’s not a well established record of plant fossils, so there’s no real context. It’s all new — so whatever you find is interesting.”

With the permission of the Ethiopian government, Jacobs — along with Ellen Currano, in the Department of Geology at Miami University, and paleobotanist Aaron Pan, curator of science at the Fort Worth Museum of Science and History — is now studying more than 1,600 fossil leaves the team gathered from two age-equivalent sites to understand climate, precipitation, vegetation and the physical landscape.

Jacobs is calculating precipitation and temperature estimates for the two Ethiopian sites using leaf traits for size and shape. While the rainfall estimates are statistically identical, the temperature estimates are not, an informative reflection of the method itself.

Pan has identified palm fossils, which help to address a big question about the timeframe for a decline in the presence of palm trees in Africa. He’s also calculating past climate using species composition of fossil leaves, fruit and flowers.

Morediggers%2Clr.jpg Currano is looking at insect damage on fossil leaves, to see if the insect fauna is as diverse and as specialized as expected for tropical forests. Neil Tabor, associate professor of Earth Sciences at SMU and an expert in sedimentology and isotope geochemistry, is calculating past climate using oxygen isotopes in minerals from fossil soils.

“We’re using multiple independent lines of evidence to get at climate reconstruction during this time interval for a place — the tropics of Africa — for which there were few data before,” Jacobs says. “The lower latitudes are especially poorly documented for fossils, which tell us about climate, so the tropical regions of Earth are poorly documented for past climate as well.”

The project is funded with a three-year, $322,000 grant from the National Science Foundation. Paleoanthropologists and vertebrate paleontologists from UT Austin, Washington University and the University of Michigan have studied the fossil bones that co-occur with the plants.

Questions they will address:

  • When and how did Africa’s rain forests evolve into the present day savannas and how did that impact human evolution?
  • What happened to the prehistoric lowland forest that’s been hypothesized across Africa in the tropical belt?
  • When did the Great Rift Valley’s formation divide the forest into eastern and western components, and how did the process evolve?
  • Why is there evidence of a large diversity of palm trees at 33 million years ago in Africa, but certain species are missing by 28 million years ago?
  • Why were palm trees abundant and diverse 100 million years ago in Africa and South America, but now rare in present-day Africa, while still prolific in the tropical forests of Southeast Asia, South America and Madagascar?
DanAfarWindow3%2Clr.jpg
SMU graduate student Daniel Danehy.

Jacobs will present her research in October at a seminar on “Cenozoic Evolution of African Landscapes” at Penn State. She and other members of the team will also report on the Ethiopian fossils in a Geological Society of America Topical Session called “Phanerozoic Paleoenvironmental Evolution of Africa,” which they’ve organized for the annual meeting from Oct. 18-21.

Jacobs’ research today expands on earlier work. She reported with her collaborators at the 2008 “Celebrating the International Year of Planet Earth” meeting of the Geological Society of America that palm trees were significant in Africa 28 million years ago

In a 2006 study that published in the “Botanical Journal of the Linnean Society,” Jacobs and lead author Pan reported that Chilga fossil leaves represent the earliest records of Africa’s characteristic palm genus “Hyphaene.”

The leaf fossils that Jacobs, Currano, and Pan are cataloging will be permanently housed in a new building now under construction at the National Museum of Ethiopia in Addis Ababa.

With a $21,600 supplemental grant from the National Science Foundation, cabinets for storing the plant and vertebrate fossils have been made in Ethiopia and Jacobs, Currano and Pan will return later this year to curate the collections. — Margaret Allen

Related links:
Ethiopia project home page
Bonnie Jacobs
Bonnie Jacobs’ research
Neil Tabor
Ellen Currano
Why fossils matter
Bonnie Jacobs’ guide to finding fossils
SMU Student Adventures blog: Research team in Ethiopia, 2007-2008
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences