Ethiopian fossils define prehistoric ecosystems, human evolution, climate change

Ellen Currano

Ethiopian fossils define prehistoric ecosystems, human evolution, climate change

Ethiopiadiggers2%2Clr.jpgFor paleobotanist Bonnie Jacobs standing atop a mountain in the highlands of northwest Ethiopia, it's as if she can see forever — or at least as far back as 30 million years ago.

Jacobs is part of an international team of researchers hunting scientific clues to Africa's prehistoric ecosystems.

The researchers are among the first to combine independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia in particular, and tropical Africa in general for the time interval from 65 million years ago — when dinosaurs went extinct, to about 8 million years ago — when apes split from humans.

Ethiopian fossils to shed light on climate change

Crew2007-2008-sm.jpgA team of researchers led by paleobotanist Bonnie Jacobs and sedimentologist Neil Tabor of Southern Methodist University returned to northwestern Ethiopia in late December 2007 to spend almost a month collecting additional plant fossils and gaining a more thorough understanding of their geological context.

In December 2006, the team collected more than 600 plant fossils, which are on loan for study in labs at SMU's Roy M. Huffington Department of Earth Sciences in Dedman College. All told, the team has documented more than 1,500 plant fossils, hundreds of vertebrate fossils and numerous examples of ancient soils. This year they widen their search to better understand the geology, landscape, plant and animal communities, and climate of Chilga, Ethiopia, 28 million years ago.