Categories
Culture, Society & Family Fossils & Ruins Researcher news SMU In The News

Nature: Oldest American Artifact Unearthed

Nature Magazine journalist Rex Dalton interviewed SMU archaeologist David J. Meltzer as an expert source to weigh in on the claim by University of Oregon archaeologists who say they’ve found the oldest known artifact in the Americas.

Dalton’s Nov. 5 article, “Oldest American Artifact Unearthed,” quotes a number of expert sources on the discovery of a scraper-like tool in an Oregon cave. The discovery team dates the tool to 14,230 years ago.

Meltzer, a member of the National Academy of Sciences, researches the origins, antiquity, and adaptations of the first Americans — Paleoindians — who colonized the North American continent at the end of the Ice Age. He focuses on how these hunter-gatherers met the challenges of moving across and adapting to the vast, ecologically diverse landscape of Late Glacial North America during a time of significant climate change.

Meltzer is chair of SMU’s Department of Anthropology and the Henderson-Morrison Professor of Prehistory in SMU’s Dedman College.

Read the full story at Nature Magazine.

EXCERPT:

By Rex Dalton
Nature Magazine

Archaeologists claim to have found the oldest known artefact in the Americas, a scraper-like tool in an Oregon cave that dates back 14,230 years.

The tool shows that people were living in North America well before the widespread Clovis culture of 12,900 to 12,400 years ago, says archaeologist Dennis Jenkins of the University of Oregon in Eugene.

Studies of sediment and radiocarbon dating showed the bone’s age. Jenkins presented the finding late last month in a lecture at the University of Oregon.

His team found the tool in a rock shelter overlooking a lake in south-central Oregon, one of a series of caves near the town of Paisley.

Laid to rest?
The dating of the bone tool, and the finding that the sediments encasing it range from 11,930 to 14,480 years old, might put these questions to rest. “You couldn’t ask for better dated stratigraphy,” Jenkins told the Oregon meeting.

“They have definitely made their argument even stronger,” says Todd Surovell, an archaeologist at the University of Wyoming in Laramie who was not involved in the research.

Other researchers questioned whether the cave’s inhabitants would have been mainly vegetarian, as the coprolites suggested4. (Editor’s note: Please see the comments thread of this article for the authors of this reference weighing in on the significance of their work.) In his recent lecture Jenkins noted other evidence reflecting a diet short on meat but including edible plants such as the fernleaf biscuitroot Lomatium dissectum.

In late September, a group of archaeologists who study the peopling of the Americas met with federal officials and a representative of the local Klamath tribe to review the evidence at Paisley Caves. The specialists spent two days examining sediments, checking the tool, and assessing other plant and animal evidence.

“It was an impressive presentation,” says David Meltzer, an archaeologist at Southern Methodist University in Dallas, Texas, who attended the meeting. “This is clearly an important site, but there are some tests that need to be done to seal the deal.” One key, he says, is to better understand how the specimens got to the cave.

Read the full story at Nature Magazine.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Daily Mail: How energy from under the ground could power American homes with existing technology

The Daily Mail has covered the geothermal energy research of SMU Hamilton Professor of Geophysics David Blackwell, Maria Richards and the SMU Geothermal Laboratory.

Blackwell and Richards, the Geothermal Lab coordinator, released a new map earlier this week that documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power — 10 times the installed capacity of coal power plants today.

Funded with a grant from Google.org, sophisticated mapping produced from the research demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

The results of the new research confirm and refine locations for resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions, including significant areas in the eastern two-thirds of the United States.

Read the full story.

EXCERPT:

By LUCY BUCKLAND
Daily Mail

America could be standing on the most powerful renewable energy resource, which can be tapped into with existing technology — new research has revealed.

Buried deep below the surface scientists have discovered hot rocks across the U.S., which could provide up to 10 times the amount of energy given out by existing power plants.

Although this energy, called geothermal, is already generated in western U.S., it had previously been thought the eastern part of the county didn’t have any hot rocks below the surface.

But researchers at Southern Methodist University, with funding from Google.org, have found huge potential to accessing this energy including ‘significant portions of the eastern two-thirds of the U.S.’ -website msnbc.com reports.

Researchers also say this unique energy resource can be accessed with existing technology.

On the university’s webiste it states areas of particular geothermal interest include Western Pennsylvania, West Virginia, South Dakota, and the areas in northern Illinois and northern Louisiana.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

MSNBC: Energy from hot rocks abounds

MSNBC.com has covered the geothermal energy research of SMU Hamilton Professor of Geophysics David Blackwell, Maria Richards and the SMU Geothermal Laboratory.

Blackwell and Richards, the Geothermal Lab coordinator, released a new map earlier this week that documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power — 10 times the installed capacity of coal power plants today.

Funded with a grant from Google.org, sophisticated mapping produced from the research demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

The results of the new research confirm and refine locations for resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions, including significant areas in the eastern two-thirds of the United States.

Read MSNBC’s full story.

EXCERPT:

By John Roach
Clean, accessible, reliable and renewable energy equivalent to 10 times the installed capacity of coal power plants in the U.S. is available from the hot rocks under our feet, according to the results of a new mapping study.

The energy, called geothermal, is generated from heat found deep below the Earth’s surface. While there’s some geothermal developed in the western U.S., it was previously thought lacking in the eastern portion of the country.

Now, researchers at Southern Methodist University, with funding from Google.org, have compiled geological data from 35,000 sites across the U.S. and found that there’s massive potential all across the country, including significant portions of the eastern two-thirds of the U.S.

What’s more, the energy can be tapped with existing technology, according to the researchers. That’s largely due the recent development of drilling techniques that make methods such as enhanced geothermal systems (EGS) possible.

In EGS, a well is drilled several miles into the Earth’s crust, water is injected down that well to fracture hot rocks, creating thousands of small pathways for the water to flow and be heated. This hot water and steam is then piped to the surface, where it powers a turbine to generate electricity.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Forbes: Google Funded Project Confirms Vast Potential for Geothermal Energy

Forbes in its Oct. 26 online news has covered the geothermal energy research of SMU Hamilton Professor of Geophysics David Blackwell, Maria Richards and the SMU Geothermal Laboratory.

Blackwell and Richards, the Geothermal Lab coordinator, released a new map earlier this week that documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power — 10 times the installed capacity of coal power plants today.

Funded with a grant from Google.org, sophisticated mapping produced from the research demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

Read the full story.

EXCERPT:

By Alex Knapp
Forbes.com

When people talk about alternative energy, they typically discuss the potential of wind and solar projects. Don’t get me wrong – there’s a vast potential in those technologies. But often left out of the discussion is the vast potential for geothermal energy – using the natural heat under the Earth’s surface to produce electricity. Harnessing that energy is one of the cleanest, sustainable ways to produce electricity, and it also has the benefit of being more space efficient than, say, a wind farm.

Of course, like any natural resource, the question becomes – where best to build geothermal plants? To answer that question, researchers at Southern Methodist University, funded by Google.org, compiled data from over 35,000 sites to build a complete picture of geothermal potential in the United States. Their findings? There is a vast potential for geothermal energy that can be tapped with technology existing today. You can check out the mapping for yourself on Google Earth by going here and downloading the info.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news Technology Videos

SMU Geothermal Lab project: Vast clean energy source confirmed by Google.org-funded geothermal mapping

Vast coast-to-coast geothermal resource

New research from the SMU Geothermal Laboratory, funded by a grant from Google.org, documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power – 10 times the installed capacity of coal power plants today.

Sophisticated mapping produced from the research, viewable via Google Earth at http://www.google.org/egs/, demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

The results of the new research, from SMU Hamilton Professor of Geophysics David Blackwell and Geothermal Lab Coordinator Maria Richards, confirm and refine locations for resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions, including significant areas in the eastern two-thirds of the United States.

Resource estimations based on thousands of data sites
The estimated amounts and locations of heat stored in the Earth’s crust included in this study are based on nearly 35,000 data sites – approximately twice the number used for Blackwell and Richards’ 2004 Geothermal Map of North America, leading to improved detail and contouring at a regional level.

Based on the additional data, primarily drawn from oil and gas drilling, larger local variations can be seen in temperatures at depth, highlighting more detail for potential power sites than was previously evident in the eastern portion of the U.S. For example, eastern West Virginia has been identified as part of a larger Appalachian trend of higher heat flow and temperature.

Conventional U.S. geothermal production has been restricted largely to the western third of the country in geographically unique and tectonically active locations.

SMU Researcher to study human-fire-climate interactions

For instance, The Geysers Field north of San Francisco is home to more than a dozen large power plants that have been tapping naturally occurring steam reservoirs to produce electricity for more than 40 years.

Many new regions considered capable of geothermal energy production
However, newer technologies and drilling methods can now be used to develop resources in a wider range of geologic conditions, allowing reliable production of clean energy at temperatures as low as 100˚C (212˚F) – and in regions not previously considered suitable for geothermal energy production. Preliminary data released from the SMU study in October 2010 revealed the existence of a geothermal resource under the state of West Virginia equivalent to the state’s existing (primarily coal-based) power supply.

“Once again, SMU continues its pioneering work in demonstrating the tremendous potential of geothermal resources,” said Karl Gawell, executive director of the Geothermal Energy Association. “Both Google and the SMU researchers are fundamentally changing the way we look at how we can use the heat of the Earth to meet our energy needs, and by doing so are making significant contributions to enhancing our national security and environmental quality.”

“This assessment of geothermal potential will only improve with time,” said Blackwell. “Our study assumes that we tap only a small fraction of the available stored heat in the Earth’s crust, and our capabilities to capture that heat are expected to grow substantially as we improve upon the energy conversion and exploitation factors through technological advances and improved techniques.”

Blackwell is scheduled to release a paper with details of the results of the research to the Geothermal Resources Council in October 2011.

SMU map proposes new international standard for estimating geothermal resource
Blackwell and Richards first produced the 2004 Geothermal Map of North America using oil and gas industry data from the central U.S. Blackwell and the 2004 map played a significant role in a 2006 Future of Geothermal Energy study sponsored by the U.S. Department of Energy that concluded geothermal energy had the potential to supply a substantial portion of the future U.S. electricity needs, likely at competitive prices and with minimal environmental impact. SMU’s 2004 map has been the national standard for evaluating heat flow, temperature and thermal conductivity for potential geothermal energy projects.

In this newest SMU estimate of resource potential, researchers used additional temperature data and in-depth geological analysis for the resulting heat flow maps to create the updated temperature-at-depth maps from 3.5 kilometers to 9.5 kilometers (11,500 to 31,000 feet).

This update revealed that some conditions in the eastern two-thirds of the U.S. are actually hotter than some areas in the western portion of the country, an area long-recognized for heat-producing tectonic activity. In determining the potential for geothermal production, the new SMU study considers the practical considerations of drilling, and limits the analysis to the heat available in the top 6.5 km (21,500 ft.) of crust for predicting megawatts of available power.

This approach incorporates a newly proposed international standard for estimating geothermal resource potential that considers added practical limitations of development, such as the inaccessibility of large urban areas and national parks. Known as the “technical potential” value, it assumes producers tap only 14 percent of the “theoretical potential” of stored geothermal heat in the U.S., using currently available technology.

New technology developments have sparked geothermal development
Three recent technological developments already have sparked geothermal development in areas with little or no tectonic activity or volcanism:

1) Low Temperature Hydrothermal – Energy is produced from areas with naturally occurring high fluid volumes at temperatures ranging from less than boiling to 150°C (300°F). This application is currently producing energy in Alaska, Oregon, Idaho and Utah.

2) Geopressure and Coproduced Fluids Geothermal – Oil and/or natural gas are produced together with electricity generated from hot geothermal fluids drawn from the same well. Systems are installed or being installed in Wyoming, North Dakota, Utah, Louisiana, Mississippi and Texas.

3) Enhanced Geothermal Systems (EGS) – Areas with low fluid content, but high temperatures of more than 150°C (300°F), are “enhanced” with injection of fluid and other reservoir engineering techniques. EGS resources are typically deeper than hydrothermal and represent the largest share of total geothermal resources capable of supporting larger capacity power plants.

Goal is to aid evaluation of regional nonconventional geothermal resources
A key goal in the SMU resource assessment was to aid in evaluating these nonconventional geothermal resources on a regional to sub-regional basis.

Areas of particular geothermal interest include the Appalachian trend (Western Pennsylvania, West Virginia, to northern Louisiana), the aquifer heated area of South Dakota, and the areas of radioactive basement granites beneath sediments such as those found in northern Illinois and northern Louisiana. The Gulf Coast continues to be outlined as a huge resource area and a promising sedimentary basin for development. The Raton Basin in southeastern Colorado possesses extremely high temperatures and is being evaluated by the State of Colorado along with an area energy company.

SMU’s Geothermal Laboratory in Dedman College of Humanities and Sciences conducted this research through funding provided by Google.org, which is dedicated to using the power of information and innovation to advance breakthrough technologies in clean energy. — Kimberly Cobb

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Fossils & Ruins Researcher news SMU In The News

D Magazine: David Meltzer and other “Dallas Big Thinkers”

Chair of the department of anthropology at SMU’s Dedman College, proved a culture of people didn’t die from the impact of a comet.

D Magazine journalist Dawn McMullan reported on the accomplishments of SMU anthropologist David J. Meltzer in Undiscovering a Killer Comet in the monthly magazine’s “Dallas’ Big Thinkers” article, which published Sept. 21.

A member of the National Academy of Sciences, Meltzer researches the origins, antiquity, and adaptations of the first Americans — Paleoindians — who colonized the North American continent at the end of the Ice Age. He focuses on how these hunter-gatherers met the challenges of moving across and adapting to the vast, ecologically diverse landscape of Late Glacial North America during a time of significant climate change.

Meltzer is chair of SMU’s Department of Anthropology and the Henderson-Morrison Professor of Prehistory in SMU’s Dedman College.

McMullan’s D Magazine piece focuses on six of the region’s scientists who are making a difference in their scientific field: “We gave the world the microchip and the margarita machine. Here are six cool scientists whose brains are making waves,” McMullan writes.

Read the full story at D Magazine.

EXCERPT:

By Dawn McMullan
D Magazine

In the summer of 1971, David Meltzer’s mom was looking for something to get her 15-year-old son out of the house. She asked him his plans. He said he was going to watch TV. “That,” she said, “isn’t good enough.” She read that archaeological excavations would begin the next week in the Shenandoah Valley. She convinced the project director that he needed to take her son. The next week, Meltzer had shovel in hand at the Thunderbird Paleoindian site.

He continued for four summers and is now a world-renowned archaeologist. Meltzer has recently been in the news for disproving a theory that a comet crash killed a culture, but his career research focuses on the first people who came to North America at the end of the Ice Age. It appears they adapted at breathtaking speed.

“What I’m trying to understand is what were the challenges they faced?” he says. “What happened the first time a wayward Siberian encountered a rattlesnake? How did they do all this while figuring out this utterly new landscape?”

In the midst of this research, which got him elected to the National Academy of Sciences, comes the “silliness” of the comet.

A controversial theory was put forth in 2006 that the ancient Clovis culture of North America was killed by a comet crashing. Meltzer and his colleague Vance Holliday were honored for the Undiscovery of the Year by the Archaeological Institute of America after refuting the concept with archaeological evidence proving the population of North America didn’t drop when the comet allegedly hit.

Read the full story at D Magazine.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

D Magazine: Bonnie Jacobs and other “Dallas Big Thinkers”

D Magazine journalist Dawn McMullan reported on the accomplishments of SMU paleobotanist Bonnie F. Jacobs in the monthly magazine’s “Dallas’ Big Thinkers” article, which published Sept. 21.

Jacobs, one of a handful of the world’s experts on the fossil plants of ancient Africa, is part of a team of paleontologists hunting plant and animal fossils in Ethiopia’s prolific Mush Valley, as well as elsewhere in Africa. Jacobs is an associate professor in SMU’s Roy M. Huffington Department of Earth Sciences.

In January Jacobs’ blogged from the field in Ethiopia for The New York Times’ “Scientist at Work” blog, which features scientists’ first-person accounts of their field work as it unfolds day-by-day.

McMullan’s D Magazine piece focuses on six of the region’s scientists who are making a difference in their scientific field: “We gave the world the microchip and the margarita machine. Here are six cool scientists whose brains are making waves,” McMullan writes.

Read the full story at D Magazine.

EXCERPT:

By Dawn McMullan
D Magazine

27-Million-Year-Old Pollen | Dr. Bonnie Jacobs
Associate professor in the Roy M. Huffington Department of Earth Sciences at SMU and blogger for the New York Times

Bonnie Jacobs’ favorite place to go as a kid was the American Museum of Natural History. She also had a thing for Egyptian artifacts. During visits to the beach, she collected snails and shells, which her mother later discovered, usually by following the smell.

“Growing up, I didn’t know the difference between paleontology and archeology,” she says. “My parents, as wonderful as they are, didn’t know the difference either.”

She eventually became a noted paleobotanist. Earlier this year, she wrote for the New York Times’ Scientist at Work blog, chronicling her work in Ethiopia, where she studies plant fossils to learn about the history of our changing climate. Her work there began years ago, when her husband, Louis Jacobs, a vertebrate paleontologist at SMU, got a job in Kenya. At the time, Jacobs was near the beginning of her Ph.D. research. This was before email. She worried about how she was going to transport boxes of manuscripts from Arizona to Africa. She worried that she wouldn’t finish her Ph.D. She even worried she wouldn’t find a good microscope.

Read the full story at D Magazine.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

Dallas Morning News: Prehistoric crocodile thought to have originated in Europe may be a native Texan

Dallas Morning News reporter Marc Ramirez has written about the big prehistoric crocodile identified by SMU paleontologist Thomas L. Adams, a doctoral candidate in Dedman College’s Roy M. Huffington Department of Earth Sciences.

The story, “‘Prehistoric crocodile thought to have originated in Europe may be a native Texan,” published in the Tuesday, July 20 edition of the Dallas Morning News.

Making its first appearance in Texas, the genus known as Terminonaris was thought to have originated in Europe, but Adams’ research indicates it now appears to have been a native of the Lone Star State.

The switch in origins for Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of Lake Lewisville near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, says Adams. A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

Full story available to Dallas Morning News subscribers.

EXCERPT:

By MARC RAMIREZ
Dallas Morning News

Thanks to a mail carrier’s discovery, it now appears the Beast from the East was actually a Guest from the West.

About five years ago, Brian Condon got tired of being cooped up at his Lakewood Village home and figured he’d go out and find a fossil.

What he found that day at Lewisville Lake would ultimately brand a supposedly European-based prehistoric crocodile as a native Texan instead.

Meet Terminonaris — a 25-foot-long reptile predating the Lone Star State by about 96 million years.

SMU paleontologist Thomas Adams was among the team that identified the creature. The team’s findings were published in May???s issue of the Journal of Vertebrate Paleontology.

The animal is a cousin to today’s crocodiles and alligators, the largest of which is the saltwater crocodile, which can reach 20 feet in length.

Previously, most of the few known Terminonaris specimens were from North America. The oldest known, however, was linked to a single 94 million-year-old jawbone found in Germany, leading scientists to surmise that the animal had originated in Europe and found its way westward.

That theory has probably been upended, with the Texan croc apparently outdating its German counterpart by about 2 million years.

“We have to really rethink: Did this group really originate in Europe and disperse west?” said Adams, who now has the fossilized snout stored in his office. “Or is it more likely that it originated in Texas?”

The discovery of a local Terminonaris now indicates the animals originated in what is now the southern U.S., then spread north along the shallow Western Interior Seaway, which stretched from what is now the Gulf of Mexico to Canada.

Condon, the amateur collector, was used to finding ammonites and shark teeth near the end of the peninsula dividing the two northern forks of Lewisville Lake. Ten years earlier, he’d found most of a plesiosaur.

Full story available to Dallas Morning News subscribers.

Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

Daily Mail: Meet the 25 ft prehistoric Texas crocodile who lived 100 million years ago

London Daily Mail reporter Mark Duell has written about the big prehistoric crocodile identified by SMU paleontologist Thomas L. Adams, a doctoral candidate in Dedman College’s Roy M. Huffington Department of Earth Sciences.

The story, “‘Its fossil looked like a loaf of bread from Subway’: Meet the 25ft prehistoric Texas crocodile who lived 100 MILLION years ago,” published in the Sunday, July 17 edition of the Daily Mail.

Making its first appearance in Texas, the genus known as Terminonaris was thought to have originated in Europe, but Adams’ research indicates it now appears to have been a native of the Lone Star State.

The switch in origins for Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of Lake Lewisville near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, says Adams. A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

Read the full story.

EXCERPT:

Mark Duell
London Daily Mail

He measured 25ft, weighed more than a ton and lived almost 100 million years ago.

A palaeontologist has identified the oldest prehistoric crocodile of its kind in the world after the fossil of a Terminonaris was found at Lake Lewisville near Dallas, Texas.

The realisation by Thomas L. Adams has also changed what we know about the species originally thought to have originated in Europe, because it now appears it was a native of Texas.

Mr Adams, of Southern Methodist University in Dallas, identified the reptile from its long snout which is more than 2ft long and 7in wide, reported Physorg.com.

It was discovered by Dallas amateur fossil enthusiast Brian Condon, who found the heavy pieces of the snout and a vertebrate in 2005 while fossil hunting, and donated them to the university.

Mr Condon had originally thought the pieces were petrified wood.

‘This piece looked like a loaf of bread from Subway,’ he said. ‘It was all wrinkled. Then I picked it up and turned it over and saw it had big round conical teeth. I thought: “This is amazing. It’s a jaw.'”

The discovery of the 96-million-year-old reptile’s fossil suggested that its head would have been about one metre long, Mr Adams said.

The Terminonaris is a cousin of the modern-day Indian gharial but was much larger — and it is a distant cousin of modern-day crocodiles and alligators, reported Southern Methodist University.

Mr Adams revealed the find ‘changes a lot about what we thought we knew about this group.’

‘Now we know the group had a wider distribution range, and that it’s much older,’ he said. ‘It represents a unique find for Texas. This is the first occurrence of Terminonaris in Texas.

‘It’s also the oldest occurrence of Terminonaris in the world and it’s also the southernmost occurrence of Terminonaris anywhere.’

Read the full story.

Categories
Fossils & Ruins Plants & Animals Slideshows Student researchers Videos

New Texas Native: 96-million-year-old crocodile Terminonaris makes its first appearance in Texas, switches origins

Rare find alters origins and distribution of Terminonaris; first home was Texas and North America — not Europe

http://www.youtube.com/watch?v=oHS6vE4o3XY

Making its first appearance in Texas, a prehistoric crocodile thought to have originated in Europe now appears to have been a native of the Lone Star State.

The switch in origins for the genus known as Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of a lake near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, according to paleontologist Thomas L. Adams at Southern Methodist University, Dallas, who identified the reptile.

A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

“With the recognition of Terminonaris here in Texas, this actually changes a lot about what we thought we knew about this group,” Adams said.

“Now we know the group had a wider distribution range, and that it’s much older. It represents a unique find for Texas. This is the first occurrence of Terminonaris in Texas. It’s also the oldest occurrence of Terminonaris in the world, and it’s also the southernmost occurrence of Terminonaris anywhere.”

There are six other known Terminonaris fossil specimens: five from North America and one from Europe. The European specimen, from Germany, previously was thought to be the oldest. Scientists had concluded that Terminonaris originated in Europe and then traversed the Atlantic and dispersed throughout North America.

“Now we know Terminonaris most likely originated here in Texas and dispersed northward,” said Adams, a doctoral candidate in SMU’s Roy M. Huffington Department of Earth Sciences at SMU.

Big Texas crocodile swam the shores of North America’s prehistoric seaway
Adams identified the reptile primarily from its long snout, which measures more than 2 feet long and 7 inches wide, or 62 centimeters. With a snout that long, Adams estimates the head would have been about one meter long.

Book a live interview

To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.

Related Links

More SMU Research news

Mothers’ self-recorded audio gives real-time view of spanking
Birch mouse is 9 million years older than previously known; migrated from Asia to N.A.
Faking It: Vivid print ads create false memories about nonexistant product
Antibiotics, not surgery, may sometimes better treat appendicitis
3-D mapping of Guatemala’s “Head of Stone” confirms ancient Maya buildings
Bamboo tool-making study shines light on scarcity of Stone Age tools in East Asia
Pilot study to look at needs, stress, anxiety of women with Triple Negative breast cancer
Human foraging societies are unique among primates and a window to past
Blood anomaly may explain Henry VIII’s physical, mental health woes

“Based on Nile crocodiles and the Indian gharial, which are both large crocodiles, a regression analysis indicates this Terminonaris probably would have been 23 to 25 feet long,” said Adams. “The largest living crocodile today is the saltwater crocodile, which can reach up to 20 feet in length.”

The Texas Terminonaris was an adult and most likely weighed more than a ton, he said.

Adams identified the fossils in “First Occurrence of the Long-Snouted Crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas” in the Journal of Vertebrate Paleontology.

Prehistoric crocodiles such as Terminonaris together with living crocodiles make up a large group called crocodyliformes. While technically there are differences between living crocodiles and each of the different types of fossil crocodile forms, all of them are often commonly referred to as crocodiles.

Today there are only 23 species of living crocodiles, a small number compared to the many species of mammals, birds, lizards, snakes and fish alive today, Adams said. That’s in stark contrast to prehistoric times.

“In the past, the crocodilian forms were very diverse and they were very successful. There were hundreds of species. Even at the time of the Texas Terminonaris, they were found everywhere,” Adams said.

Texas specimen fills gap, expands age and range of group
Texas Terminonaris was discovered by Dallas-area amateur fossil enthusiast Brian Condon, a rural mail carrier. Condon discovered the heavy pieces of the snout and a vertebrate in 2005 while fossil hunting near his home on Lake Lewisville, a 26,000-acre recreational and fishing lake managed by the U.S. Army Corps of Engineers. He spotted the first of the pieces along the shoreline. Condon donated the fossils to SMU’s Shuler Museum of Paleontology.

In prehistoric times, Texas Terminonaris would have made its home in a marine setting, along the eastern shore of North America’s vast prehistoric Western Interior Seaway. One hundred million years ago the seaway was a wide, shallow sea that split the North American continent in half from the Arctic to the Gulf of Mexico, said Adams, lead author on the scientific article. The seaway would have covered Lake Lewisville’s location.

In its day-to-day life on the seaway, Terminonaris would have kept close to shore, perhaps in a shallow lagoon or estuary, also venturing into the seaway’s warm salty water to hunt for fish. Like modern crocodiles and alligators, Terminonaris would have eaten whatever it could catch, Adams said. Its long, slender snout was well-suited for devouring fish, small mammals and even small dinosaurs.

North America’s other Terminonaris fossil specimens also were found along the seaway. A Kansas specimen is the youngest, about 91 million years, while those from Saskatchewan, Canada, and Montana are 93 million years old. The German specimen is 94 million years old.

“Terminonaris now here in Texas fills in a gap that we didn’t have information for,” Adams said. “It tells us that as a group, as a genus, they were around much longer, because we extend the age back to 96 million years. The range for them is now expanded, because this is the most southern occurrence of them.”

Well-preserved fossil offers no clues to adult reptile’s cause of death
While the Texas fossil is well-preserved, how the reptile died remains a mystery since only the snout was found.

It probably died in the water or washed out into the open sea, where it floated to the bottom and was buried very quickly, said Adams. The discovery of seven Terminonaris fossil specimens worldwide is significant, he said.

“To be fossilized, it requires they die at the right time in the right place, be buried very quickly, then eventually be exposed and uncovered,” he said. “So the odds of being fossilized and being found as a fossil are very slim.”

Condon found one piece at the water’s edge of Lake Lewisville. The other pieces were further up a bank that sloped toward the shore, Condon said. The pieces had been deposited on the ground by receding water, pulled from the Woodbine Formation by constant waves that had washed away a soil bank and uncovered the heavy fossils. The outcrop of the Woodbine Formation visible at Lake Lewisville starts at the Red River in North Texas and thins as it nears Dallas.

Condon, who had previously found other fossils in the area, initially thought the pieces were petrified wood.

“This piece looked like a loaf of bread from Subway. It was all wrinkled,” Condon said. “Then I picked it up and turned it over and saw it had teeth — big, round conical teeth — and I thought, ‘This is amazing. It’s a jaw.'”

Co-authors on the article were SMU paleontologists Michael J. Polcyn, Dale A. Winkler and Louis L. Jacobs, and also paleontologist Octavio Mateus, Universidade Nova de Lisboa, Portugal.

The research was funded by Southern Methodist University???s Institute for the Study of Earth & Man. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Oil & Gas: Geothermal in the oil field, the next emerging market

One of the petroleum industry’s major sources for industry news has covered the emergence of geothermal energy from existing oil and gas fields as a potential source of power generation.

The June 20 article “Geothermal in the oil field, the next emerging market” provides context for the emerging technology that is making geothermal production possible. The article cites SMU’s annual geothermal conference as a source of more information about geothermal production.

The SMU Geothermal Laboratory hosted its fifth international conference dedicated to “Geothermal Energy Utilization Associated with Oil & Gas Development” in mid-June on the SMU campus.

EXCERPT:

Oil & Gas Magazine

The petroleum industry is at a crossroads. A perfect storm of declining reserves, aging oilfields, increasing costs for exploration, operating, and decommissioning, volatile oil prices, and the uptick trending of “green” energy — it has never been more important to make the most out of existing reserves, assets and infrastructure.

Geothermal energy is an emerging worldwide energy market. Geothermal often gets overlooked in a world of PV, CSP, wind and hydro; however, geothermal offers more reliability (average 95 per cent capacity factor), lower carbon emissions and lower maintenance costs compared to these more “glamorous” renewable energy sources.

Geothermal has some major barriers to entry to the mainstream energy market. The largest barriers include the high-initial capital costs related to drilling and constructing new geothermal wells, long payback periods, and the risk associated with unknown formation performance when drilling in a new area.

Using proven technology, expertise and reservoir data from the petroleum industry, this unlikely partnership can provide a springboard for the geothermal industry to enter the mainstream renewable energy market, while at the same time benefiting the petroleum industry. If the initial capital costs for drilling geothermal wells could be reduced by utilizing existing oil field infrastructure, while also minimizing risk by using existing oilfield data, the barriers to entry for geothermal suddenly come tumbling down.

Recent advancements in energy conversion technologies and Enhanced Geothermal Systems (EGS) technology have made incorporating geothermal in the oil field a viable and exciting emerging-energy market. In 2009, the American Recovery and Reinvestment Act (ARRA) funded several projects demonstrating electricity generation from geothermal fluids, produced from active, abandoned, or marginal oil and gas wells. Federal tax incentives, the Department of Treasury Cash Grant and the DOE Loan Guarantee program combined with aggressive state renewable portfolio goals are expected to drive growth in the geothermal industry in the near term.

Read the full story.

Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News Videos

Youtube: Trailer of Projecto PaleoAngola documentary

SMU paleontologists Louis L. Jacobs and Michael J. Polcyn appear in a new documentary about Projecto PaleoAngola, a collaborative international scientific research program focused on the ancient life of Angola.

“The results of our fieldwork in the Cretaceous of Angola have been extraordinarily spectacular,” says Jacobs.

Besides the discovery of the first dinosaur of Angola the team has uncovered mosasaurs, plesiosaurs, turtles and other Cretaceous marine animals, but the aim is also to create a strong and lasting institutional and scientific collaboration that has a multiplier effect in Angolan academia.

A trailer of the upcoming documentary is available on YouTube. The film was written, directed, and produced by Kalunga Lima of LS films, based in Luanda Angola, and edited by Helena Alves. Lima interviewed Jacobs and Polcyn, who are both members of the Projecto PaleoAngola team.

Book a live interview

To book a live or taped interview with Louis Jacobs or Mike Polcyn in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu. (Photo: Octavio Mateus)

Related links

Louis L. Jacobs Michael J. Polcyn Projecto PaleoAngola Roy M. Huffington Department of Earth Sciences Dedman College of Humanities and Sciences

A professor in Dedman College’s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Besides Angola, Jacobs also does field work in Mongolia. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He also consulted on the exhibit, Mysteries of the Texas Dinosaurs.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Polcyn is director of the Visualization Laboratory in SMU’s Department of Earth Sciences and an SMU adjunct research associate.

A world-recognized expert on the extinct marine reptile named Mosasaur, his research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods.

Polcyn’s research also includes application of technology to problems in paleontology.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Plants & Animals Slideshows Student researchers Videos

Tiny teeth discovered from Inner Mongolia are new species of today’s birch mouse, rare “living fossil”

Birch mouse is now 9 million years older than previously known and migrated from Asia to North America

Tiny fossil teeth discovered in Inner Mongolia are a new species of birch mouse, indicating that ancestors of the small rodent are much older than previously reported, according to paleontologist Yuri Kimura, Southern Methodist University in Dallas.

Fossils of the new species were discovered in sediments that are 17 million years old, said Kimura, who identified the new species and named it Sicista primus to include the Latin word for “first.”

Previously the oldest prehistoric ancestor of the modern-day birch mouse was one that inhabited Inner Mongolia 8 million years ago.

Adding 9 million years to the ancestry of the rodent family that includes birch mice and jumping mice distinguishes this genus, Sicista, as a “living fossil,” Kimura said. That places the genus among some of the most unique rodents on earth — those whose ancestry spans 2 to 3 times the average, she said.

Kimura identified Sicista primus from 17 tiny teeth, whose size makes them difficult to find. A single molar is about the size of half a grain of rice. The teeth, however, are distinctive among the various genera of rodents known as Dipodidae. Cusps, valleys, ridges and other distinguishing characteristics on the surface of the teeth are identifiable through a microscope.

“We are very lucky to have these,” Kimura said. “Paleontologists usually look for bones, but a mouse is very tiny and its bones are very thin and fragile. The teeth, however, are preserved by enamel. Interestingly, small mammal teeth are very diverse in terms of their structure, so from that we can identify a species.”

Kimura reported the new species in the article “The earliest record of birch mice from the Early Miocene Nei Mongol, China” in the scientific journal Naturwissenschaften. Images of the research and expedition are posted on the SMU Research flickr site. Go to SMUVideo’s “Inner Mongolia yields ‘living fossil’” to watch Kimura discuss the research.

An SMU doctoral student in the Huffington Department of Earth Sciences, Kimura was part of the international team that discovered the fossils during expeditions to Inner Mongolia in 2004, 2005 and 2007.

Book a live interview

To book a live or taped interview with Yuri Kimura in the SMU News Broadcast Studio call SMU News at 214-768-7650 or email SMU News at news@smu.edu.

Related Links

More SMU Research news

Faking It: Vivid print ads create false memories about nonexistant product
Antibiotics, not surgery, may sometimes better treat appendicitis
3-D mapping of Guatemala’s “Head of Stone” confirms ancient Maya buildings
Bamboo tool-making study shines light on scarcity of Stone Age tools in East Asia
Pilot study to look at needs, stress, anxiety of women with Triple Negative breast cancer
Human foraging societies are unique among primates and a window to past
Blood anomaly may explain Henry VIII’s physical, mental health woes

Microscopic evidence of a living fossil
The new fossils of Sicista primus from the Early Miocene age are also now the earliest known record of Sicista, the birch mouse genus that comprises 13 modern and 7 fossil species, said Kimura. As a result, Sicista now boasts the most ancient ancestry of the 326 genera in the largest rodent suborder to which it belongs, Myomorpha. The suborder includes laboratory mice and rats.

“The birch mouse is a rare case of a small mammal genus persisting from the Early Miocene without significant morphological changes,” Kimura said in reporting the findings.

Rodents, both modern and prehistoric, rank as the most prolific mammals on earth. After the reign of dinosaurs, 65 million years ago, rodents evolved and dispersed worldwide during the Cenozoic, the “Age of Mammals.” They comprise about 42 percent of all living mammals. Scientists know now that only 1.5 percent of modern rodent genera, however, go as far back as the Early Miocene or older.

“Diversity within a rodent genus is not unusual, but the long record of the genus Sicista, first recognized at 17 million years ago, is unusual,” said Kimura. “The discovery of Early Miocene S. primus reveals that Sicista is fundamental to understanding how a long-lived genus persisted among substantially fast-evolving rodent groups.”

Birch mice migrated from Asia to North America
Previously the record for the oldest species of Sicista belonged to an 8 million-year-old species identified in Eurasia, Kimura said.

In identifying the new species, Kimura also reverses the long-held hypothesis that ancestors of birch mice migrated from North America to Asia. That hypothesis has been based on a 14.8 million-year-old specimen from South Dakota, which was identified in 1977 as the separate rodent genus Macrognathomys. Kimura’s analysis, however, concludes that Macrognathomys is actually Sicista. For that reason, she concluded, Sicista first inhabited the forests and grasslands of prehistoric Asia and then dispersed to North America via the Bering Land Bridge, Kimura said.

In a comparison of the molars and premolars from Macrognathomys and Sicista primus, Kimura reported finding 12 shared dental characteristics. In addition, phylogenetic analysis to identify evolutionary relationships indicated that both belong to the same genus, Sicista, she said.

Reconnaissance of earlier Central Asiatic Expedition localities yields small mammals
The teeth of Sicista primus were discovered in fine sediments gathered from Gashunyinadege, a fossil locality in the central region of Inner Mongolia.

Gashunyinadege is one of several fossil localities near Tunggur, a fossil site discovered in the 1920s by the Central Asiatic Expedition, which was led by Roy Chapman Andrews from the American Museum of Natural History.

Kimura is a member of an international scientific team sponsored by the Chinese Academy of Sciences Institute of Vertebrate Paleontology and Paleoanthropology and the Natural History Museum of Los Angeles County. The team’s expeditions have been led by paleontologists Qiu Zhuding, IVPP; Wang Xiaoming, Natural History Museum of Los Angeles County; and Li Qiang, IVPP. Their expeditions retrace important classic localities, as well as prospect new fossil localities.

Kimura and other members of the team discovered the birch mouse fossils by first prospecting Gashunyinadege for small mammal fossils visible to the naked eye. Those fossils indicated the possibility of even smaller mammal fossils, so the team gathered 6,000 kilograms, more than 13,000 pounds, of Early Miocene sediment. Using standing water from recent rains, they washed the sediments repeatedly through continually smaller screens to separate out small fossils. Bags of concentrate containing particles the size of mouse teeth were returned to IVPP laboratories to hunt for fossils with a microscope.

The research was funded by the Institute for the Study of Earth and Man at SMU, Dallas Paleontological Society, Geological Society of America, Chinese Academy of Sciences Institute of Vertebrate Paleontology and Paleoanthropology. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with SMU’s Yuri Kimura or to book her in the SMU studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Researcher news SMU In The News Student researchers

Earth magazine: “Mapping Dino Footprints in 3-D”

Earth%2C%20TAdams%2C%203D%2C%20May%202011.jpg

The May 2011 issue of Earth Magazine reports on the research of SMU paleontologists in the SMU Huffington Department of Earth Sciences.

In a project led by SMU paleontologist Thomas L. Adams, the scientists used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile.

They have shared their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.

The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says Adams. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation.

Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites. SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say. Click here to see a large image of the Earth magazine cover.

EXCERPT:

Sam Lemonick
for Earth Magazine

Dinosaurs are now leaving their footprints on computers — in 3-D. Having 3-D scans of dinosaur footprints in a computer database could be the surest form of preservation of these delicate fossils, researchers say.

Dinosaur tracks found outdoors can’t always be excavated and moved indoors for preservation and study. That includes a theropod dinosaur footprint that is embedded in a bandstand made of limestone and fossil wood in Glen Rose, Texas — a town just southeast of Dinosaur Valley State Park. So a team led by Thomas Adams of Southern Methodist University in Texas decided to create a 3-D model of the print.

They used a high-resolution laser scanner the size of a small briefcase to map the shape of the footprint with beams of laser light from multiple angles. The laser scanner produces what is known as a point cloud, with each point representing a part of the object. The point cloud is then “smoothed” by software to produce a continuous surface.

Categories
Earth & Climate Fossils & Ruins Researcher news SMU In The News

National Geographic: Volcano Pictures: First Descent Into a Magma Chamber

06-into-icelands-volcano_34292_600x450.jpg

Science journalist Ker Than writes on the April 8 Daily News blog of National Geographic about the first-ever scientific expedition into a volcanic magma chamber, citing analysis from SMU volcanologist James E. Quick, a professor in the Huffington Department of Earth Sciences.

The expedition into Iceland’s dormant Thrihnukagigur volcano in October charts a chamber shaped like a long-necked bottle, with the neck rising up to the surface of the earth and the massive chamber down below.

“Magma chambers supply the molten rock that oozes or bursts onto the Earth’s surface during an eruption,” wrote Than. “The bottom half is about a hundred feet (30 meters) across, while the ‘neck’ that connects to the surface is only about 10 feet (3 meters) wide. The entire chamber is about 450 feet (137 meters), from top to bottom.”

For the story — “Volcano Pictures: First Descent Into a Magma Chamber” — Than interviewed Quick, associate vice president for research, and dean of graduate studies.

Quick, who was not part of the expedition, said the magma channels the team discovered appear to be “beautiful textbook examples of how magma can be transported laterally in the Earth’s surface and stored in shallow chambers.”

Quick’s analysis about the magnitude of the expedition is excerpted below.

Read the full story.

EXCERPT:

James Quick, a volcanologist at Southern Methodist University in Dallas, Texas, said the Thrihnukagigur expedition will provide a firsthand look into a part of Earth only roughly known before.

“We knew from geophysical tools what the plumbing system inside of a volcano looked like, but we only knew it in the crudest way,” said Quick, who wasn’t part of the expedition.

While inside the Thrihnukagigur magma chamber, about a hundred miles (160 kilometers) away, the expedition team’s biggest risk was gas poisoning, SMU’s Quick said.

“Whenever you go into magmatic systems like that, you run the risk of exposure to high levels of carbon dioxide” that can well up from Earth’s interior, he said.

The University of Rhode Island’s Sigurdsson — who was prepared for such a scenario — said the thought did occur to him during his descent.

“I sniffed the air as I went down to see if I felt light-headed at all,” he said. “I had a

[gas mask] in my backpack, but we didn’t need it.”
Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News

Associated Press: Projecto PaleoAngola discovers Angola’s first dinosaur

Karen_Carr_Angolatitan%2C%20320x169.jpeg

The research of an international team co-led by SMU paleontologist Louis L. Jacobs is receiving worldwide coverage for discovery of the first fossil of a dinosaur from Angola. A paper published in the “Annals of the Brazilian Academy of Science” described the long-necked, plant-eating sauropod based on a fossilized forelimb with unique skeletal characteristics that indicates it’s from a previously unknown dinosaur.

An Associated Press story covering discovery of the 90-million-year-old fossil has been published and aired by numerous media outlets, including The New York Times, Newsday, NPR, Forbes, The Daily Mail, and the Hamburger Abendblatt,

SMU paleontologist Michael J. Polcyn is also a member of the Projecto PaleoAngola team.

The PaleoAngola researchers have described Angola as a “museum in the ground” for the abundance of fossils there.

A professor in Dedman College’s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Besides Angola, Jacobs also does field work in Mongolia. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He consulted on the new exhibit, Mysteries of the Texas Dinosaurs, which opened in 2009.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Polcyn is director of the Visualization Laboratory in SMU’s Department of Earth Sciences and an SMU adjunct research associate.

A world-recognized expert on the extinct marine reptile named Mosasaur, his research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Read the full story.

EXCERPT:

By The Associated Press
Scientists say they have discovered the first fossil of a dinosaur in Angola, and that it’s a new creature, heralding a research renaissance in a country slowly emerging from decades of war.

A paper published Wednesday in the Annals of the Brazilian Academy of Sciences describes a long-necked, plant-eating sauropod, among the largest creatures ever to have walked the earth. The international team that found and identified the fossilized forelimb bone say it is from a previously unknown dinosaur, citing unique skeletal characteristics.

The fossil was found along with fish and shark teeth in what would have been a sea bed 90 million years ago, leading its discoverers to believe the dinosaur might have been washed into the sea and torn apart by ancient sharks.

The new dinosaur has been dubbed Angolatitan adamastor — Angolatitan means “Angolan giant” and the adamastor is a sea giant from Portuguese sailing myths.

Matthew F. Bonnan, a sauropod expert at Western Illinois University, was not involved with the Angolan research. But after reading the report, he said he expected their claim to have found a new dinosaur to hold up.

“I think they’ve been very careful,” he said, adding the find could add to knowledge about how sauropods adapted to different environments.

Bonnan also said it was “really cool” to see such research coming out of Angola.

“The neat thing about dinosaur paleontology is that it’s becoming more global,” he said, saying that was giving scientists a global perspective on the evolution of dinosaurs.

“The more people and places that we involve in science, the better off we all are,” Bonnan said.

Read the full story.

Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News Videos

WFAA: North Texan finds dinosaurs in our backyards

WFAA-TV reporter Jonathan Betz has covered the flying reptile research of SMU paleontologist Timothy S. Myers and the rare discovery of the bones by amateur fossil hunter Gary Byrd. The story, North Texan finds dinosaurs in our backyards, aired March 17.

Myers identified fossilized bones discovered in Texas from a flying reptile that died 89 million years ago. The bones may be the world’s earliest occurrence of the prehistoric creature known as Pteranodon, Myers says.

Pteranodon was a type of pterosaur that lived about the same time as some dinosaurs, about 100 million to 65 million years ago. The only reptiles to dominate the ancient skies, pterosaurs had broad leathery wings and slim torsos.

The specimen identified by Myers had a wing span between 12 and 13 feet, or 3.6 to 4 meters. It was discovered in a rock unit that dates to early in the Late Cretaceous.

Read the full story.

EXCERPT:

By Jonathan Betz
WFAA

Look up and you’ll see Gary Byrd on a roof. That’s where his work is.

But it’s what’s underground that fascinates him.

Every free moment, the contractor roams North Texas digging in the dirt.

“When I was a kid, we’d run up and down creeks and look for stuff, and wonder what it was,” he said. “I just kept doing it, kept finding more interesting things.”

For most of his life, the 55-year-old has scoured construction sites and creek beds for dinosaur bones.

Often, he finds just dirt and rocks. But on occasion, Byrd has unearthed some truly extraordinary finds.

His treasures are enough to fill cabinets at Southern Methodist University.

“This specimen is 89 million years old,” he boasted, displaying the rare remains of a pterosaur, an ancient flying reptile that until now, had not been thought to live in Texas.
Byrd plucked the fossilized bones out of a half-built Plano subdivision.

“Finding a fossil of this magnitude is a once-in-a-lifetime kind of find,” said SMU researcher Timothy Myers. “A lot of paleontologists would probably go their entire careers without finding something this significant.”

And that’s not all. Byrd has even discovered a new dinosaur species, a large duck-billed herbivore called Protohadros byrdi — yes, named after Bird himself, who found the remains near a highway.

“That really got me going,” he confessed.

Read the full story.

Categories
Fossils & Ruins Researcher news SMU In The News

Discovery News: Mystery Pterosaur in Texas Takes Flight

Science journalist Tim Wall has covered the flying reptile research of SMU’s Timothy S. Myers on his popular Discovery News Online blog. Wall’s March 2 entry aptly warns “Don’t mess with Texas Pterosaurs!”

Myers identified fossilized bones discovered in Texas from a flying reptile that died 89 million years ago. The bones may be the world’s earliest occurrence of the prehistoric creature known as Pteranodon, Myers says.

Pteranodon was a type of pterosaur that lived about the same time as some dinosaurs, about 100 million to 65 million years ago. The only reptiles to dominate the ancient skies, pterosaurs had broad leathery wings and slim torsos.

The specimen identified by Myers had a wing span between 12 and 13 feet, or 3.6 to 4 meters. It was discovered in a rock unit that dates to early in the Late Cretaceous.

Read the full story.

EXCERPT:

By Tim Wall
Discovery News Online

Don’t mess with Texas Pterosaurs! They are the oldest yet found in North America. One recently found specimen may even be the oldest Pteranodon in the world.

The mystery flying reptile a type of pterosaur, took a final plunge 89 million years ago into the waters of the inland sea that once covered the central United States. It sank to the bottom, fossilized, and lay there until amateur fossil hunter Gary Byrd found the ancient aviator’s bones. They were uncovered during the excavation of a culvert in a new subdivision north of Dallas.

Pterosaur Windsurfed Across Surface of Prehistoric Seas
“I found a couple parts of a fish, and then when I saw these my initial thought was that they weren’t fish,” Byrd, a roofing contractor by day, said in a Southern Methodist University press release. “I kind of knew it was something different — a birdlike thing. It’s very rare you find those thin, long bones.”

Byrd already has a species of duckbill dinosaur, Protohadros byrdi, named after him in 1994. He donated the fossils to Southern Methodist University’s Shuler Museum of Paleontology.

At the museum, Timothy Myers identified the bones as belonging to the left wing of a pterosaur, most likely a Pteranodon.

New Dino-Eating Pterosaur Evolved in Unusual Way
“If it wasn’t crushed so badly, it would be possible to determine if it really is Pteranodon,” Myers said in a SMU press release. “These bones are easily flattened. They are hollow inside, because they have to be lightweight to allow a pterosaur to fly. So they compress like a pancake as they’re embedded in layers of rock.”

Read the full story.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows Videos

Flying Texas reptile: World’s oldest Pteranodon? First specimen of its kind discovered as far south as Texas

Unique specimen is first of its kind discovered as far south as Texas, where it flew over a vast ancient sea

Fossilized bones discovered in Texas from a flying reptile that died 89 million years ago may be the earliest occurrence of the prehistoric creature known as Pteranodon.

Previously, Pteranodon bones have been found in Kansas, South Dakota and Wyoming in the Niobrara and Pierre geological formations. This likely Pteranodon specimen is the first of its kind found in Texas, according to paleontologist Timothy S. Myers at Southern Methodist University in Dallas, who identified the reptile. The specimen was discovered north of Dallas by an amateur fossil hunter who found various bones belonging to the left wing.

Pteranodon was a type of pterosaur that lived about the same time as some dinosaurs, about 100 million to 65 million years ago. The only reptiles to dominate the ancient skies, pterosaurs had broad leathery wings and slim torsos.

Adult pterosaur, toothless variety with about a 12-foot wing span
The specimen identified by Myers is an adult pterosaur of the toothless variety and while larger than most birds, wasn’t among the largest pterosaurs, Myers said, noting it had a wing span between 12 and 13 feet, or 3.6 to 4 meters. It was discovered in the Austin Group, a prominent rock unit in Texas that was deposited around 89 million years ago, early in the geological time period called the Late Cretaceous.

Pterosaurs, many of which survived on fish, lived at a time when a massive ancient sea cut across the central United States. The Western Interior Seaway was a shallow body of water that split North America in half from the Arctic Ocean to the Gulf of Mexico.

More than a thousand Pteranodon fossils have been unearthed from the middle part of the seaway.

No definitive Pteranodon specimens have emerged from the southern part that is now Texas.

The SMU specimen, if it is Pteranodon, would be the first discovered so far south in the Western Interior Seaway, said Myers, a postdoctoral researcher in SMU’s Huffington Department of Earth Sciences.

Myers reported and described the specimen in “Earliest Occurrence of the Pteranodontidae (Archosauria: Pterosauria) in North America; New Material from the Austin Group of Texas” in the Journal of Paleontology.

Left wing suggests Pteranodon; cause of death a mystery
Key to identifying the SMU fossils as Pteranodon is a humerus of 5.7 inches, or 14.5 centimeters. The humerus is the uppermost bone in the wing and attaches to the torso. The humerus of the SMU specimen, while complete, did suffer some damage during fossilization when it became compressed and distorted through millions of years of compaction.

“If it wasn’t crushed so badly, it would be possible to determine if it really is Pteranodon,” Myers said. “These bones are easily flattened. They are hollow inside, because they have to be lightweight to allow a pterosaur to fly. So they compress like a pancake as they’re embedded in layers of rock.”

While it’s difficult to narrow the humerus definitively to a specific genus and species, some features clearly identify the specimen as part of the Pteranodontidae family, most likely the genus Pteranodon. It exhibits, for example, the prominent warped deltopectoral crest that is characteristic of members of the Pteranodontidae family, called pteranodontids, he said.

Discovered along with the humerus were parts of the elongated fourth finger that in pterosaurs forms the wing. The SMU specimen’s metacarpal — at 20 centimeters — is incomplete, missing an estimated 37 percent of its length.

The fossils do not solve the mystery of the reptile’s cause of death, Myers said. But it appears the animal probably died in flight over the sea and then fell into the water. Its carcass probably floated for some time, so that when the flesh decomposed the bones separated at the joints, known as “disarticulation,” before they settled to the sea floor and were buried.

“We know it was disarticulated when it was buried because the bones weren’t preserved in correct anatomical position,” Myers said. “Abrupt truncation of the broken end of one of the bones and infilling of the break with sediment also indicates that the breakage and disarticulation took place prior to burial.”

May be oldest Pteranodon in world
If the specimen represents Pteranodon, Myers said, it would be the oldest one in North America by 1 million to 2 million years, and the second oldest pteranodontid in the world.

Pterosaurs were alive from the Late Triassic — more than 200 million years ago — to the Late Cretaceous, evolving from small-bodied creatures to some of the largest animals to ever inhabit the skies, Myers said. An older pteranodontid specimen, belonging to the genus Ornithostoma, previously was identified in England.

“Any pterosaur material is fairly rare to find unless you have exceptional preservation conditions. They are frail, fragile bones, and they require rapid burial to be well preserved,” Myers said. “The SMU specimen was deposited relatively far offshore in deep water, perhaps 50 to 80 feet deep. It’s fairly exceptional because of the number of elements. Typically you’ll only find one piece, or one part of a piece in the local rock.”

During the Early Cretaceous, many types of pterosaurs lived around the world, Myers said. The earliest ones had thin, razor-sharp teeth. In the transition from Early to Late Cretaceous, the toothed variety disappear from the fossil record and toothless forms, like the SMU specimen, become more common, he said.

Dallas area specimens illustrate pterosaur evolution
North Texas is fortunate to have had both the toothed and toothless kinds discovered in the area, illustrating the evolutionary transition, noted Myers.

Besides the toothless specimen just identified by Myers, an older toothed pterosaur, Aetodactylus halli, previously was discovered in the Dallas area. Aetodactylus, also identified by Myers, lived 95 million years ago.

“This new specimen adds a lot more information about pterosaurs in North America,” Myers said. “It helps constrain the timing of the transition from toothed to toothless because there’s only a few million years separating this specimen and Aetodactylus.”

Amateur fossil collector Gary Byrd of Rockwall, Texas, discovered the new SMU pterosaur fossils about 10 years ago.

A roofing contractor who keeps an eye out for fossils, Byrd made the find after stopping to look at two freshly excavated culverts while driving through a new subdivision in Collin County. Using a hammer and pick he dug out the bones and brought them to SMU paleontologists Louis Jacobs and Dale Winkler. Jacobs and Winkler indicated the fossils were likely a pterosaur. Byrd donated the fossils to SMU’s Shuler Museum of Paleontology.

“I found a couple parts of a fish, and then when I saw these my initial thought was that they weren’t fish,” Byrd recalled. “I kind of knew it was something different — a birdlike thing. It’s very rare you find those thin, long bones.”

This isn’t the first time Byrd has hit it lucky finding fossils. In 1994 he discovered dinosaur bones that he donated to SMU’s Shuler Museum. The specimen was identified as a rare primitive duck-billed dinosaur and named Protohadros byrdi after Byrd. — Margaret Allen

Pteranodontid%20Wing%202.jpg
Categories
Fossils & Ruins Learning & Education Plants & Animals Slideshows Technology Videos

3D digital download of giant Glen Rose dinosaur track is roadmap for saving at-risk natural history resources

Paleontologists propose the new term “digitype” for full-resolution three-dimensional digital models that preserve and archive endangered fossils

Portable laser scanning technology allows researchers to tote their latest fossil discovery from the field to the lab in the form of lightweight digital data stored on a laptop. But sharing that data as a 3D model with others requires standard formats that are currently lacking, say paleontologists at Southern Methodist University.

The SMU researchers used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile. They share their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.

The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says SMU paleontologist Thomas L. Adams, lead author of the scientific article. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation. Click here for the download link.

“This paper demonstrates the feasibility of using portable 3D laser scanners to capture field data and create high-resolution, interactive 3D models of at-risk natural history resources,” write the authors.

“3D digitizing technology provides a high-fidelity, low-cost means of producing facsimiles that can be used in a variety of ways,” they say, adding that the data can be stored in online museums for distribution to researchers, educators and the public.

SMU paleontologist Louis L. Jacobs is one of the coauthors on the article.

“The protocol for distance scanning presented in this paper is a roadmap for establishing a virtual museum of fossil specimens from inaccessible corners across the globe,” Jacobs said.

Paleontologists propose the term “digitype” for digital models
Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites.

SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say.

Book a live interview

To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.

Related links

More SMU Research news

A new breathing therapy reduces panic and anxiety by reversing hyperventilation
Rodents were diverse and abundant in prehistoric Africa as human ancestors evolved
A new child development theory bridges nature vs. nurture
Mathematical Equation Calculates for First Time the Cost of Walking
Evidence weak for tropical rainforest 65 million years ago in Africa’s low-latitudes
Veterinary medicine shifts to more women, fewer men; pattern will repeat in medicine, law fields

The SMU paleontologists propose the term “digitype” for such facsimiles, writing in their article “High Resolution Three-Dimensional Laser-scanning of the type specimen of Eubrontes (?) Glenrosensis Shuler, 1935, from the Comanchean (Lower Cretaeous) of Texas: Implications for digital archiving and preservation.”

Laser scanning is superior to other methods commonly used to create a model because the procedure is noninvasive and doesn’t harm the original fossil, the authors say. Traditional molding and casting procedures, such as rubber or silicon molds, can damage specimens.

But the paleontologists call for development of standard formats to help ensure data accessibility.

“Currently there is no single 3D format that is universally portable and accepted by all software manufacturers and researchers,” the authors write.

Digitype is baseline for measuring future deterioration
SMU’s digital model archives a fossil that is significant within the scientific world as a type specimen — one in which the original fossil description is used to identify future specimens. The fossil also has cultural importance in Texas. The track is a favorite from well-known fossil-rich Dinosaur Valley State Park, where the iconic footprint draws tourists.

The footprint was left by a large three-toed, bipedal, meat-eating dinosaur, most likely the theropod Acrocanthosaurus. The dinosaur probably left the footprint as it walked the shoreline of an ancient shallow sea that once immersed Texas, Adams said. The track was described and named in 1935 as Eubrontes (?) glenrosensis. Tracks are named separately from the dinosaur thought to have made them, he explained.

“Since we can’t say with absolute certainty they were made by a specific dinosaur, footprints are considered unique fossils and given their own scientific name,” said Adams, a doctoral candidate in the Roy M. Huffington Department of Earth Sciences at SMU.

The fossilized footprint, preserved in limestone, was dug up in the 1930s from the bed of the Paluxy River in north central Texas about an hour’s drive southwest of Dallas. In 1933 it was put on prominent permanent display in Glen Rose, Texas, embedded in the stone base of a community bandstand on the courthouse square.

The footprint already shows visible damage from erosion, and eventually it will be destroyed by gravity and exposure to the elements, Adams said. The 3D model provides a baseline from which to measure future deterioration, he said.

In comparing the 3D model to an original 1930s photograph made of the footprint, the researchers discovered that some surface areas have fractured and fallen away. By comparing the 3D model with a synthetically altered version, the researchers were able to calculate volume change, which in turn enables reconstruction of lost volume for restoration purposes.

Model comprises 52 scans totaling 2 gigabytes
Adams and his research colleagues took a portable scanner to the bandstand site to capture the 3D images. They employed a NextEngine HD Desktop 3D scanner and ScanStudio HD PRO software running on a standard Windows XP 32 laptop. The scanner and laptop were powered from outlets on the bandstand. The researchers used a tent to control lighting and maximize laser contrast.

Because of the footprint’s size — about 2 feet by 1.4 feet (64 centimeters by 43 centimeters) — multiple overlapping images were required to capture the full footprint.

Raw scans were imported into Rapidform XOR2 Redesign to align and merge them into a single 3D model. The final 3D model was derived from 52 overlapping scans totaling 2 gigabytes, the authors said.

The full-resolution 3D digital model comprises more than 1 million poly-faces and more than 500,000 vertices with a resolution of 1.2 millimeters. It is stored in Wavefront format. In that format the model is about 145 megabytes. The model is free for downloading from a link on Palaeontologia Electronica‘s web site.

3D digital footprint also available as a QuickTime virtual object
A smaller facsimile is also available from the journal as a QuickTime Virtual Reality object. In that format, users can slide their mouse pointer over the 3D footprint image to drag it to a desired viewing angle, and zoom and pan. Click here for the link to the QuickTime video.

Besides the 3D model, included with the Palaeontologia Electronica article is a link to a pdf of the original 1935 scientific article in which SMU geology professor Ellis W. Shuler described and identified the dinosaur that made the track.

Shuler’s article, no longer in print, is “Dinosaur Track Mounted in the Band Stand at Glen Rose, Texas,” published in Field & Laboratory. The clay molds and plaster casts Shuler made of the bandstand track are now lost, Adams said. Click here for the article.

Besides Adams and Jacobs, other co-authors on the article are paleontologists Christopher Strganac and Michael J. Polcyn in the Roy M. Huffington Department of Earth Sciences at SMU.

The research was funded by the Institute for the Study of Earth and Man at SMU. — Margaret Allen

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Adams or to book him in the SMU studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Researcher news

Stump leads global consortium for seismic acquisition, management, open distribution

Brian Stump, Albritton Professor of Earth Sciences in SMU’s Dedman College of Humanities and Sciences, has been elected chair of the board of directors for a university-based consortium that operates facilities for the acquisition, management and open distribution of seismic data.

The programs of the Incorporated Research Institutes for Seismology contribute to scholarly research, education, earthquake hazard mitigation and verification of the Comprehensive Nuclear-Test-Ban Treaty. IRIS was founded in 1984 with support from the National Science Foundation: the late Eugene T. Herrin, Jr., who held the Shuler-Foscue Endowed Chair in SMU’s Roy M. Huffington Department of Earth Sciences, was a founding member. IRIS facilities primarily are operated through its more than 100 member universities and in cooperation with the U.S. Geological Survey.

IRIS supports global seismic network, shares information, ideas, equipment
Scientists from member institutions participate in IRIS management through an elected nine-member board, eight regular committees and ad hoc advisory groups. Stump’s term of office as chair of the board is for three years, and will expire at the end of 2013.

“IRIS was formed because it was realized that we needed to support the global seismic network and needed the free exchange of information and ideas,” Stump said. “Instrumentation is so expensive that the seismic community needed to find a way to make equipment available to anyone who needs it for research, regardless of the size or funding capability of their parent institution.”

More than 4000 portable monitors are available through the IRIS PASSCAL facility at New Mexico Tech in Socorro, New Mexico. These instruments proved invaluable to Stump and his SMU team in researching a series of small earthquakes that occurred in North Texas between Oct. 30, 2008, and May 16, 2009. The ability to quickly place monitors at the site of the original quakes allowed scientists to record 11 earthquakes between Nov. 9, 2008, and Jan. 2, 2009, that were too small to be felt by area residents.

“The monitors available to IRIS members are well-used assets,” Stump said. “They’re constantly in service, like library books that fly off the shelves. We never have enough equipment.”

IRIS sponsors Stump as distinguished lecturer
Stump also is one of two distinguished lecturers sponsored this year by IRIS and the Seismology Society of America. One of his four scheduled talks on “Forensic Seismology and Nuclear Testing: The Detective Work of Seismologists” will be at 1:30 p.m. Jan. 29 at the Geology Museum at Rutgers University in New Brunswick, N.J.

The Global Seismographic Network consists of more than 150 permanent stations around the world. It is operated by IRIS in cooperation with the USGS Geological Survey and allows seismologists to examine large events occurring anywhere to determine if they were caused by natural events such as earthquakes, or man-made events such as mine explosions or nuclear tests.

The connection between seismology and nuclear explosion monitoring began at the culmination of the Manhattan Project with the detonation of the first fission nuclear explosion in Southern New Mexico in July of 1945 and continues today with renewed discussions of ratification of the Comprehensive Nuclear Test Ban Treaty. All of the data from the IRIS global and portable stations are archived at the IRIS Data Management Center in Seattle, Washington, and are freely and openly available on-line to researchers, educators and the public.

Stump research includes characterization of explosions
Brian Stump’s primary research interests include seismic wave propagation, seismic source theory and shallow geophysical site characterization. Recent work has focused on characterization of explosions as sources of seismic waves. Studies have included the quantification of single-fired nuclear and chemical explosions as well as millisecond-delay-fired explosions typical of those used in the mining industry. The spatial and temporal effects of mining explosions and their signature in regional waveforms have been of particular interest. This research has application to the monitoring of a Comprehensive Test Ban Treaty where even small explosions will have to be identified using their seismic signatures.

Stump received his Ph.D. from the University of California, Berkeley, where he held a UC Regents Intern Fellowship. Immediately following his graduate education he spent four years on active duty with the US Air Force as a staff seismologist and ultimately as Chief of the Geological Siting and Seismology Section. He joined the SMU faculty in 1983.

Stump joined the technical staff of the Los Alamos National Laboratory from 1994 to 1997, where he was program manager of the Nuclear Test Monitoring Group and participated in the negotiations for the Comprehensive Nuclear Test Ban Treaty in Geneva, Switzerland, as a scientific advisor for the Department of Energy. He was a member of the team that received the Los Alamos National Laboratory Outstanding Performer Small Group Award in 1996. — Kim Cobb

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

New York Times: A Last Look at Mush Valley

SMU paleobotanist Bonnie F. Jacobs is sharing with the public her scientific field work in Ethiopia as it happens in real time through posts filed to the New York Times’ “Scientist at Work” blog.

Jacobs, one of a handful of the world’s experts on the fossil plants of ancient Africa, is part of a team of paleontologists hunting plant and animal fossils in Ethiopia’s prolific Mush Valley. Jacobs is an associate professor in SMU’s Roy M. Huffington Department of Earth Sciences.

The Times’ “Scientist at Work” blog features scientists’ first-person accounts of their field work as it unfolds day-by-day.

Jacobs filed her first post on Dec. 27 as the scientific team she is part of arrived in Ethiopia. Her most recent — and final — post of the current field season was published Jan. 21, A Last Look at Mush Valley.

Read the full text of Jacobs’ first post Dec. 27.

EXCERPT:

Bonnie F. Jacobs, a paleobotanist at Southern Methodist University, writes from Ethiopia, where she is studying fossils of ancient plant and animal life. The current field season in the Mush Valley of Ethiopia is financed by a grant to Ellen Currano of Miami University, Ohio, from the National Geographic Society Committee on Research and Exploration.

By Bonnie F. Jacobs
Monday, Dec. 27

This winter’s field season in Ethiopia is my tenth since I began working there, and despite my experience I am filled with anticipation. Our project is a relatively new one — studying rocks and fossils from an important period of history, 22 million years ago — and the location, Mush Valley, is also somewhat new to our team (last year was our first collecting trip here).

Mush Valley is only about 160 kilometers northeast of the modern capital city, Addis Ababa, but it feels as though it could be a thousand miles away. Very little of city life intrudes into the villages of Upper and Lower Mush.

What really takes me away from it all are the rocks and fossils exposed by and alongside the Mush River. They provide us an exciting opportunity to document life, climate, landscape and atmosphere 22 million years ago. As we excavate blocks of fine-grained sediment — primarily shale — looking for clues to the past, the pivotal role played by that ancient time period is always on our mind.

Read Bonnie Jacobs’ full post from Dec. 27.

Read Jacobs’ Jan. 3 post: Eureka! A Fossil Bone, and Water Ferns to Boot

Read Jacobs’ Jan. 4 post: Evidence of Mammals and Legumes, 22 Million Years Old

Read Jacobs’ Jan. 7 post: Amid the Shales, Glimpses of an Ancient Forest

Read Jacobs’ Jan. 21 post: A Last Look at Mush Valley

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Natl Geographic: Can Geothermal Energy Pick Up Real Steam?

In a story about using the potential of geothermal heat from beneath the Earth’s surface as a source of clean, renewable energy, National Geographic Daily News tapped the expertise of SMU geophysicist David Blackwell.

Blackwell is one of the foremost experts on geothermal energy. He heads SMU’s Geothermal Laboratory and his decades-long research led him to map the nation’s geothermal energy potential. The work of Blackwell and SMU Geothermal Lab coordinator Maria Richards recently received extensive news coverage after they released research showing vast geothermal energy potential beneath West Virginia.

Science journalist David LaGesse interviewed Blackwell for the Dec. 28 article “Can Geothermal Energy Pick Up Real Steam?

EXCERPT:

By David LaGesse
For National Geographic News

This story is part of a special series that explores energy issues. For more, visit The Great Energy Challenge.

Steam rising from a valley just north of San Francisco reminded early explorers of the gates of hell. Others saw the potential healing powers of the naturally heated water, and still others realized the steam could drive turbines to generate electricity.

It’s been 50 years since power plants began running off the pools of steam that sit under California’s Mayacamas Mountains. The pioneering plants in the area known as The Geysers highlighted the promise of geothermal energy, internal heat from the Earth with vastly greater energy potential than that of fossil fuels. But geothermal, virtually free of carbon emissions and more reliable than intermittent wind and solar energy, still provides only a small slice of the world’s energy.

Now amid the rush to alternative energies, geothermal advocates sense a new chance to mine the heat rising from Earth’s white-hot core. They plan to generate man-made steam by pumping water deep underground into hot, dry rocks in what’s called enhanced or engineered geothermal systems. They also despair that governments and businesses aren’t investing enough in the sophisticated technology needed to unlock the deep-seated energy.

“There’s a window of opportunity where geothermal can play a part in our energy future, and we risk missing it,” says David Blackwell, a geophysicist at Southern Methodist University.

Read the full story.

Categories
Fossils & Ruins Plants & Animals Researcher news Slideshows

Rodents, diverse and abundant in prehistoric Africa, shed light on human evolution

Identification of Africa’s rodents provides important collaborating information on the ecology of the locales and on environmental change through time,” — Winkler

Rodents get a bad rap as vermin and pests because they seem to thrive everywhere. They have been one of the most common mammals in Africa for the past 50 million years.

From deserts to rainforests, rodents flourished in prehistoric Africa, making them a stable and plentiful source of food, says paleontologist Alisa J. Winkler, an expert on rodent and rabbit fossils. Now rodent fossils are proving their usefulness to scientists as they help shed light on human evolution.

Rodents can corroborate evidence from geology and plant and animal fossils about the ancient environments of our human ancestors and other prehistoric mammals, says Winkler, a research professor at Southern Methodist University.

“Rodents are often known in abundance, and there are many different kinds from a number of famous hominid and hominoid localities,” says Winkler. “Many paleoanthropologists are very interested in the faunal and ecological context in which our own species evolved.”

Rodents: World’s most abundant mammal — and Africa’s too
Rodents — rats, mice, squirrels, porcupines, gerbils and others — are the largest order of living mammals, constituting 42 percent of the total mammalian diversity worldwide. That’s according to data drawn from the research literature in an analysis by Winkler and her paleontology colleagues Christiane Denys, of the Museum National d’Histoire Naturelle in Paris, and D. Margaret Avery of the Iziko South African Museum in Cape Town.

Their review documents more than 130 formally named genera in “Fossil Rodents of Africa,” the first comprehensive summary and distribution analysis of Africa’s fossil rodents since 1978.

The analysis is a chapter in the new 1008-page scientific reference book “Cenozoic Mammals of Africa” (University of California Press, 2010), the first comprehensive scientific review of Africa’s fossil mammals in more than three decades. The book comprises 48 chapters by 64 experts, summarizing and interpreting the published fossil research to date of Africa’s mammals, tectonics, geography, climate and flora of the past 65 million years.

Rodents are human’s best friend?
Rodents have been around much longer than humans or human ancestors in Africa, with the earliest from northern Africa dating from about 50 million years ago. Today scientists are aware of 14 families of rodents in Africa.

Winkler cites locales where fossils of the sharp-toothed, gnawing creatures have been found relevant to our human ancestors:

  • Ethiopia’s Middle Awash, where some fossils date to when the chimpanzee and human lines split 4 million to 7 million years ago and where the famous “Ardi” primate was discovered;
  • Tanzania’s Olduvai Gorge, dubbed the “Cradle of Mankind”;
  • The Tugen Hills and Lake Turkana sites of Kenya, where important human ancestor fossils have been discovered;
  • In younger southern African cave faunas dating to the Stone Age.

Their fossils also have been found in other older Eastern Africa sites, where apes and humans have been linked to the monkey lineage.

“At many of these sites, identification of Africa’s rodents provides important collaborating information on the ecology of the locales and on environmental change through time,” the authors write.

Rodent diversity likely underestimated; more fossils than scientists
The diversity of ancient Africa’s rodents most likely has been underestimated, say the authors. Just how much isn’t known, though, because the quantity of rodent fossils being discovered far exceeds the handful of scientists who specialize in identifying and studying the specimens.

That diversity continues to expand. The last exhaustive analysis of Africa’s rodents was carried out by R. Lavocat in 1978. At that time scientists recorded 54 genera, 76 fewer than those documented by Winkler, Denys and Avery in their analysis.

Winkler and her colleagues summarize the distribution and ecology of existing rodent families, as well as the systematics, biochronology and paleobiogeography of rodent families in Africa’s fossil record. The diversity they document reflects “the wide variety of habitats present on the continent” and paints a picture of Africa’s paleoecology.

Given the huge rodent diversity in modern Africa, “it is likely that such an extensive fauna was also present in the past,” the scientists write.

Tremendous diversity reflects wide variety of habitats
An example of that relationship is the scaly-tailed flying squirrel, an exclusively African group of forest-dwelling rodents that are not related to true squirrels. They are well known from about 18 million to 20 million years ago in eastern Africa, Winkler says, suggesting the presence of closed habitats, such as forests. That corroborates other evidence of forests from fossil animals, plants and geology, she says.

“Although there are even older scaly-tailed flying squirrels known from the currently arid regions of northern Africa,” says Winkler, “they do not appear to have been gliders, as are most current forms, and the question of when members of the group first developed gliding locomotion still remains.”

Funding for “Cenozoic Mammals of Africa” came from the Swedish Research Council; the University of Michigan’s College of Literature, Science, and the Arts, and Museum of Paleontology; and the Regents of the University of California.

Winkler is in the Roy M. Huffington Department of Earth Sciences at SMU, and is also an assistant professor at the University of Texas Southwestern Medical Center, Dallas. — Margaret Allen

Categories
Fossils & Ruins Researcher news SMU In The News Videos

BBC Radio: PaleoAngola project unearths ancient vertebrate fossils

BBC Radio covered the research in Angola of SMU paleontologists Louis L. Jacobs and Michael J. Polcyn.

Journalist Louise Redvers in August interviewed Jacobs and Polcyn, both members of the Projecto PaleoAngola team.

A professor in Dedman College’s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Besides Angola, Jacobs also does field work in Mongolia. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He consulted on the new exhibit, Mysteries of the Texas Dinosaurs, which opened in 2009.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Polcyn is director of the Visualization Laboratory in SMU’s Department of Earth Sciences and an SMU adjunct research associate.

A world-recognized expert on the extinct marine reptile named Mosasaur, his research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Listen to the podcast:

http://www.youtube.com/watch?v=Uic2WosjxWM

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Fast Company: How Google Cash Helped Find Geothermal Energy in West Virginia

The business innovation magazine Fast Company took note of the SMU Geothermal Laboratory‘s recent report on the large green-energy geothermal resource underground in West Virginia. The research was funded by Google.org.

SMU geologist David Blackwell leads the lab and its research.

The Oct. 8 article “How Google Cash Helped Find Geothermal Energy in West Virginia” by reporter Ariel Schwartz notes that Google.org’s foray into geothermal is the latest step in its renewable energy investments.

EXCERPT:

By Ariel Schwartz
Fast Company
Google has already spent a lot of money on renewable energy investments. Now the search giant can be credited with bringing green energy to a state that mostly relies on coal-fired power. A project from Southern Methodist University, funded by a $481,500 grant from Google.org, has found that West Virginia has 78% more geothermal energy than previously estimated. That means the state could double its electrical generation capacity without bringing more coal power online.

Now we know that West Virginia could produce up to 18,890 MW of clean energy if just two percent of its geothermal energy resources were used. The state currently has a generating capacity of 16,350 MW — and 97% of that comes from coal.


Read the full story.

Journalist Robert Wilonsky at The Dallas Observer also covered the SMU Geothermal Lab’s release of the West Virginia mother lode of geothermal resource in his Oct. 7 Unfair Park entry: Hot Hot Heat: SMU Researchers Find West Virginia’s Just Leaking Geothermal Energy.

Wilonsky quotes Maria Richards, coordinator of the SMU Geothermal Laboratory, saying “they’ve discovered what could be enough Earth-made energy to potentially support ‘commercial baseload geothermal energy production.'”

EXCERPT:

By Robert Wilonsky
The Dallas Observer

At month’s end, researchers from SMU’s Geothermal Laboratory — among ’em, David Blackwell, Hamilton Professor of Geophysics and director of the SMU Geothermal Laboratory — will go to Sacramento for the 2010 Geothermal Resources Council annual meeting. There, the trio will present a much more detailed version of this report just posted to the Hilltop’s website, in which Blackwell, grad student Zachary Frone and geothermal expert Maria Richards say that in the western part of the Appalachian Mountains, they’ve discovered what could be enough Earth-made energy to potentially support “commercial baseload geothermal energy production.”

Read the full story.

The international news wire service Reuters also covered the report’s release with a story by Danny Bradbury of GreenBiz.com: “Google Warms to West Virginia’s Vast Geothermal Potential.”

EXCERPT:

By Danny Bradbury
GreenBiz.com

A Google-funded project has discovered a large geothermal resource under West Virginia that could more than double the electrical generation capacity of the high-profile coal state.

The research, carried out by the Southern Methodist University and funded with a $481,500 grant from Google’s philanthropic arm, found that there is 78 percent more geothermal energy under the state than originally estimated.

The researchers calculated that if 2 percent of the available geothermal energy could be harnessed, the state could produce up to 18,890 megawatts (MW) of clean energy.

The study was conducted with more detailed mapping and more data points than had been used in previous research. For example, 1,455 new thermal data points were added to existing geothermal maps using oil, gas and water wells.

The research team found that most of the high-temperature points are located in the eastern part of the state.

“The presence of a large, baseload, carbon-neutral and sustainable energy resource in West Virginia could make an important contribution to enhancing the U.S. energy security and for decreasing CO2 emissions,” the report concluded.

Read the full story.

Other coverage:

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news Slideshows

Ancient Africa mysteries: Evidence is weak for tropical rainforest 65 million years ago in Africa’s low-latitudes

Evidence is weak for tropical rainforest 65 million years ago in Africa’s low-latitudes

The landscape of Central Africa 65 million years ago was a low-elevation tropical belt, but the jury is still out on whether the region’s mammals browsed and hunted beneath the canopy of a lush rainforest.

The scientific evidence for a tropical rainforest at that time is weak and far from convincing, says paleobotanist Bonnie F. Jacobs, Southern Methodist University in Dallas.

Fossil pollen from Central and West Africa provide no definitive evidence for communities of rainforest trees at the beginning of the Cenozoic, says Jacobs, an expert in the paleobotany of Africa soon after dinosaurs had gone extinct. It was the start of the age of mammals, and Africa was largely an island continent.

Many Cenozoic mysteries remain to be solved
The rainforest mystery is characteristic of the scientific uncertainty and unknowns surrounding Africa’s ancient flora during the period called the Cenozoic.

There are large gaps in the fossil record, says Jacobs, a co-author of “A Review of the Cenozoic Vegetation History of Africa.” She is an associate professor in SMU’s Roy M. Huffington Department of Earth Sciences.

The analysis, a chapter in “Cenozoic Mammals of Africa” (University of California Press, 2010), is the first of its kind since 1978 to review and interpret the Cenozoic paleobotanical record of Africa, with paleogeographic maps showing paleobotanical site distributions through time. Jacobs co-authored the paper with Aaron D. Pan, a paleobotanist at the Fort Worth Museum of Science and History, and Christopher R. Scotese, in the Earth Sciences Department at the University of Texas at Arlington.

The 1008-page “Cenozoic Mammals of Africa” is the first scientific reference of its kind since 1978, comprising 48 chapters by 64 experts. The volume summarizes and interprets the published fossil research to date of Africa’s mammals, tectonics, geography, climate and flora of the past 65 million years.

Details sparse, but big picture emerges for past 65 million years
Paleobotanical data for Africa are generally meager and uneven for the Cenozoic, according to Jacobs and her co-authors.

In an original series of maps, they chart each Cenozoic Africa paleobotanical locale described in the published research to date. There are a mere 82 sites in all. Most of the sites date to 50 million years ago. Fewer date to 20 million, 30 million, 10 million and — perhaps most important — 2 million years ago, when the human family was evolving.

“Africa is disappointingly undersampled,” say Jacobs and her colleagues. “This vast continent, roughly three times the area of the United States, has so far been documented by only a handful of Paleogene plant and vertebrate localities, and it has a Neogene record heavily biased toward the depositional basins of the East African Rift.”

Shift from descriptive to analytic approach driven by holistic view

For a continent so important for its role in the evolution of mammals, the scarcity of plant fossil data stands in sharp contrast.

“As impressive as is the contemporary mammalian diversity of Africa, it is dwarfed by that of the Cenozoic,” write the volume’s editors, paleozoologist Lars Werdelin, the Swedish Museum of Natural History, and paleontologist William Joseph Sanders, the University of Michigan. Africa today represents 20 percent of the world’s land mass, is the only continent to occupy both the north and south temperate zones, and is home now to more than 1,100 mammalian species, they write in the introduction.

Africa’s paleobotanical record is key to a holistic understanding of ancient mammals, says H.B.S. Cooke in the preface. A mammal expert, Cooke was editor of the earlier 1978 scientific reference, “Evolution of African Mammals” (Harvard University Press).

“Most striking over the past years has been a shift in studying fossils from a largely descriptive taxonomy to a more analytical approach, including consideration of faunal associations, their distribution in time and space, and the environmental and climatic factors that prevailed and changed through time,” Cooke writes. ” … African prehistory has become more a study of paleobiology than mere paleontology.”

For images from Jacobs’ fieldwork in Africa go to SMU Research on Flickr.

More scientific exploration needed to fill gaps
Scientific exploration to learn more about Africa’s ancient vegetation is on the increase, say Jacobs and her co-authors. That should start to fill gaps in understanding, including the mystery of Africa’s palms.

While palm trees are common in wet tropical forests worldwide, that’s not the case in Africa today. Palm trees have not been found in abundance in Africa for the past 24 million years, regardless of whether the regional vegetation was forest, say the authors. Oddly, though, abundant palm samples have been found in some African locations dating between 65 million and 25 million years ago, including at Chilga in Ethiopia by Jacobs and Pan.

The implications of that difference are significant for the various endemic mammals of that time, many of which were absent by 23 million years ago, say the authors.

“We are fortunate that the sampling scale of most fossil localities is at the plant community level, and larger-scale changes took place one community at a time,” they write. “Thus, as Africa becomes better sampled, the uneven record will ultimately become a more complete narrative of dynamic change at the community and ecosystem levels.”

Funding for “Cenozoic Mammals of Africa” came from the Swedish Research Council; the University of Michigan’s College of Literature, Science, and the Arts, and the Museum of Paleontology; and the Regents of the University of California. — Margaret Allen

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Technology

Science: West Virginia is geothermal hot spot, says SMU Geothermal Lab

Science, the international weekly science journal, published by the American Association for the Advancement of Science (AAAS) has covered the geothermal mapping research of Southern Methodist University’s Geothermal Laboratory, led by SMU geologist David Blackwell and funded by Google.org.

The Oct. 4 article “West Virginia is a Geothermal Hot Spot” by science journalist Eli Kintisch quotes Maria Richards, coordinator of the SMU Geothermal Laboratory, saying discovery of vast geothermal bounty in the coal state was a unexpected. “Nobody expected West Virginia to show up as a hot spot,” Richards is quoted.

EXCERPT:

By Eli Kintisch
Science
Researchers have uncovered the largest geothermal hot spot in the eastern United States. According to a unique collaboration between Google and academic geologists, West Virginia sits atop several hot patches of Earth, some as warm as 200 degrees Celsius and as shallow as 5 kilometers. If engineers are able to tap the heat, the state could become a producer of green energy for the region.

In 2004, researchers at Southern Methodist University (SMU) in Dallas, Texas, and colleagues created the Geothermal Map of North America. The map charted the potential for geothermal energy nationwide. Two years ago Google.org, the philanthropic arm of the search engine giant, hired the SMU scientists to update the map.

The group analyzed temperature data from oil and gas firms that no one had bothered to map. Those data were collected via single thermometer readings on the end of drilling equipment, but the readings were artificially low because of water used to cool and wash the equipment. So the SMU team corrected the readings according to the rock type that was being drilled. Then the researchers estimated the temperatures of adjacent rock layers according to their geologic properties.

The work revealed surprising results for West Virginia, a state that had only four data points in the 2004 map. The Google.org-funded effort added measurements from more than 1450 wells in the state. The warm spots were found at depths of 3 to 8 kilometers over an 18,700-square-kilometer area. By comparison, geothermal hot spots in Nevada reach 200 degrees Celsius at 2 kilometers below the surface, and steam produced from them runs turbines to create electricity. Iceland, meanwhile, has 200 degrees Celsius temperatures just below the surface and uses warm water to heat buildings and showers throughout Reykjavik and elsewhere.

Read the full story.

Categories
Earth & Climate Energy & Matter Researcher news Technology

West Virginia is hot bed for geothermal resources: Green energy source in coal country, says Google-funded SMU research

New research produced by Southern Methodist University’s Geothermal Laboratory, funded by a grant from Google.org, suggests that the temperature of the Earth beneath the state of West Virginia is significantly higher than previously estimated and capable of supporting commercial baseload geothermal energy production.

Geothermal energy is the use of the Earth’s heat to produce heat and electricity. “Geothermal is an extremely reliable form of energy, and it generates power 24/7, which makes it a baseload source like coal or nuclear,” said David Blackwell, Hamilton Professor of Geophysics and Director of the SMU Geothermal Laboratory.

The SMU Geothermal Laboratory has increased its estimate of West Virginia’s geothermal generation potential to 18,890 megawatts, assuming a conservative 2 percent thermal recovery rate. The new estimate represents a 75 percent increase over estimates in MIT’s 2006 “The Future of Geothermal Energy” report and exceeds the state’s total current generating capacity, primarily coal based, of 16,350 megawatts.

Researchers from SMU’s Geothermal Laboratory will present a detailed report on the discovery at the 2010 Geothermal Resources Council annual meeting in Sacramento, Oct. 24-27. Summary of the report.

New heat discovered after adding data points to geologic model
The West Virginia discovery is the result of new detailed mapping and interpretation of temperature data derived from oil, gas, and thermal gradient wells — part of an ongoing project to update the Geothermal Map of North America that Blackwell produced with colleague Maria Richards in 2004. Temperatures below the earth almost always increase with depth, but the rate of increase (the thermal gradient) varies due to factors such as the thermal properties of the rock formations.

“By adding 1,455 new thermal data points from oil, gas, and water wells to our geologic model of West Virginia, we’ve discovered significantly more heat than previously thought,” Blackwell said. “The existing oil and gas fields in West Virginia provide a geological guide that could help reduce uncertainties associated with geothermal exploration and also present an opportunity for co-producing geothermal electricity from hot waste fluids generated by existing oil and gas wells.”

Eastern region of West Virginia hot enough for commercial production
The high temperature zones beneath West Virginia revealed by the new mapping are concentrated in the eastern portion of the state (Figure 1). Starting at depths of 4.5 km (greater than 15,000 feet), temperatures reach over 150°C (300°F), which is hot enough for commercial geothermal power production.

Traditionally, commercial geothermal energy production has depended on high temperatures in existing subsurface reservoirs to produce electricity, requiring unique geological conditions found almost exclusively in tectonically active regions of the world, such as the western United States.

New technologies, drilling methods for wider range of geologic conditions
Newer technologies and drilling methods can be used to develop resources in wider ranges of geologic conditions. Three non-conventional geothermal resources that can be developed in areas with little or no tectonic activity or volcanism such as West Virginia are:

  • Low-Temperature Hydrothermal — Energy is produced from areas with naturally occurring high fluid volumes at temperatures ranging from 80°C (165°F) to 150°C (300°F) using advanced binary cycle technology. Low-Temperature systems have been developed in Alaska, Oregon, and Utah.
  • Geopressure and Co-produced Fluids Geothermal — Oil and/or natural gas produced together with hot geothermal fluids drawn from the same well. Geopressure and Co-produced Fluids systems are currently operating or under development in Wyoming, North Dakota, Utah, Louisiana, Mississippi, and Texas.
  • Enhanced Geothermal Systems (EGS) — Areas with low natural rock permeability but high temperatures of more than 150°C (300°F) are “enhanced” by injecting fluid and other reservoir engineering techniques. EGS resources are typically deeper than hydrothermal and represent the largest share of total geothermal resources. EGS is being pursued globally in Germany, Australia, France, the United Kingdom, and the U.S. EGS is being tested in deep sedimentary basins similar to West Virginia’s in Germany and Australia.

Next: More geological information needed to refine estimates
“The early West Virginia research is very promising,” Blackwell said, “but we still need more information about local geological conditions to refine estimates of the magnitude, distribution, and commercial significance of their geothermal resource.”

Zachary Frone, an SMU graduate student researching the area said, “More detailed research on subsurface characteristics like depth, fluids, structure and rock properties will help determine the best methods for harnessing geothermal energy in West Virginia.” The next step in evaluating the resource will be to locate specific target sites for focused investigations to validate the information used to calculate the geothermal energy potential in this study.

The team’s work may also shed light on other similar geothermal resources. “We now know that two zones of Appalachian age structures are hot — West Virginia and a large zone covering the intersection of Texas, Arkansas, and Louisiana known as the Ouachita Mountain region,” said Blackwell. “Right now we don’t have the data to fill in the area in between,” Blackwell continued, “but it’s possible we could see similar results over an even larger area.”

Discovery could enhance U.S. energy security
Blackwell thinks the finding opens exciting possibilities for the region. “The proximity of West Virginia’s large geothermal resource to east coast population centers has the potential to enhance U.S. energy security, reduce CO2 emissions, and develop high paying clean energy jobs in West Virginia,” he said.

SMU’s Geothermal Laboratory conducted this research through funding provided by Google.org’s RE<C initiative, which is dedicated to using the power of information and innovation to advance breakthrough technologies in clean energy.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.Kimberly Cobb

Categories
Earth & Climate Fossils & Ruins Researcher news

Italy honors supervolcano fossil discovery; Capellini Medal to SMU’s James Quick

Award recognizes a foreign geoscientist for significant contribution to Italian geology

BRIEFLY: Italian geologists in September will award the Capellini Medal to SMU scientist James E. Quick, recognizing discovery of an enormous 280 million-year-old fossil supervolcano in the Italian Alps.

 

The discovery has sparked worldwide scientific interest and a budding regional geotourism industry. Quick led scientists from the University of Trieste to make the discovery.

“There will be another supervolcano explosion. We don’t know where,” Quick says. “Sesia Valley could help us to predict the next event.”

Sesia%20Supervolcano%20300x250.jpg
SMU geologist James E. Quick in Italy.

Italian geologists in September will award the Capellini Medal to Southern Methodist University scientist James E. Quick, recognizing the discovery of an enormous 280 million-year-old fossil supervolcano in the Italian Alps with its magmatic plumbing system exposed to an unprecedented depth of 25 kilometers.

The discovery has sparked not only worldwide scientific interest but also a budding regional geotourism industry.

Quick and his colleagues at the University of Trieste — Silvano Sinigoi, Gabriella Peressini, Gabriella Dimarchi and Andrea Sbisa — discovered the unique fossil supervolcano in northern Italy’s picturesque Sesia Valley.

The Italian Geological Society, Italy’s oldest professional organization for geologists, awards its Capellini Medal to foreign geoscientists for a significant contribution to Italian geology.

Quick, who is a professor in the SMU Roy M. Huffington Department of Earth Sciences, will be the second recipient of the award.

Supervolcanoes, also referred to as calderas, are enormous craters tens of kilometers in diameter produced by rare and massive explosive eruptions — among nature’s most violent events. Their eruptions are sparked by the explosive release of gas from molten rock, or magma, as it pushes its way to the Earth’s surface.

The eruptions — which spew hundreds to thousands of cubic kilometers of volcanic ash — generate devastation on a regional scale, possibly even triggering extreme climatic and environmental fluctuations on a global scale.

Rare uplift reveals supervolcano plumbing
The Sesia Valley fossil supervolcano lies near the villages of Gattinara and Borgosesia in northern Italy, a rural area known for fine textiles and fine wine — and increasingly the giant caldera.

As a result of the uplift of the Earth’s crust that formed the Alps, the Sesia Valley fossil reveals the never-before-seen “plumbing” of a supervolcano from the surface to the source of the magma deep within the Earth, says Quick.

The uplift reveals to an unprecedented depth of 25 kilometers rocks formed by the magma as it moved through the Earth’s crust. The Sesia Valley caldera will advance scientific understanding of active supervolcanoes, such as Yellowstone in the United States, which is the second-largest supervolcano in the world, Quick says. Yellowstone last erupted 630,000 years ago.

Sesia Valley’s caldera erupted during the “Permian” geologic time period 280 million years ago, says the discovery team. The caldera is more than 13 kilometers in diameter.

Capellini Medal recognizes scientific exchange
The Capellini Medal is named for Giovanni Capellini, founder and five-time president of the Geological Society of Italy and strong advocate of international scientific exchange.

Quick will accept the Capellini Medal at the Italian Geological Society’s annual meeting Sept. 6-8 in Pisa. On Sept. 6 he will make a scientific presentation about the discovery to society members at the conference.

“What’s new is to see the magmatic plumbing system all the way through the Earth’s crust,” says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. “Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?”

A key to understanding active calderas
Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock from the mantle invading Earth’s deep crust and explosive volcanism.

“It might lead to a better interpretation of monitoring data and improved prediction of eruptions,” says Quick. He is lead author of the scientific article that reported the discovery, “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.,” which appeared in the journal “Geology.”

Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

“We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts,” Quick says.

“Rosetta Stone” for supervolcanoes may help predict next explosion
To date, scientists have been able to study exposed caldera “plumbing” from the surface of the Earth to a depth of only about 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

“We think of the Sesia Valley find as the ‘Rosetta Stone’ for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data,” Quick says. “This is a very rare spot. The base of the Earth’s crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end.”

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia’s Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60 percent of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to Nebraska.

“There will be another supervolcano explosion. We don’t know where,” Quick says. “Sesia Valley could help us to predict the next event.”

Quick is also SMU’s associate vice president for research and dean of graduate studies. — Margaret Allen

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with James Quick or to book a live or taped interview in the studio, call SMU News & Communications at 214-768-7650 or email news@smu.edu.

Categories
Earth & Climate Fossils & Ruins Researcher news SMU In The News

Radio Netherlands covers Louis Jacobs’ research in Angola

Radio Netherlands Worldwide covered the research in Angola of SMU paleontologist Louis L. Jacobs.

Journalist Lula Ahrens writes about Projecto PaleoAngola in the Aug. 15 article “Angola key to understanding Earth history.”

A professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Currently he has projects in Mongolia and Angola. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He consulted on the new exhibit, Mysteries of the Texas Dinosaurs, which opened in 2009.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

EXCERPT:

By Lula Ahrens

Radio Netherlands Worldwide

Angola is famous for its oil and diamond wealth. But it is also a ‘last frontier’ for another, less noted treasure: a mindboggling number of prehistoric fossils.

Dozens of mosasaurs, dinosaurs, plesiosaurs, pterosaurs and turtles are excavated over one month each year by a small, international team of paleontologists (PaleoAngola). According to them, “Angola is the key to understanding the Atlantic rift which separated South America from Africa.”

“The ‘Big Five’ with the most prehistoric fossils are the US, Canada, Mongolia, China and Argentina,” Dr. Octavio Mateus from the New University of Lisbon pointed out during dinner at a Chinese restaurant in Angola’s capital Luanda with PaleoAngola and its sponsors.

“In Portugal, seventh on the list, I find a piece of a skull once every two years. Here, three a day! “Since 2005, in the South of Angola the group has discovered roughly ten species of mosasaurs, plesiosaurs, dinosaurs, pterosaurs and turtles,” said Mateus.

He uncovered the bones of a sauropod dinosaur north of Luanda in 2005. “We don’t know any other place on earth as rich as this one in vertebrates,” he said. “Paleontologists will have plenty work in Angola for generations to come.”

The exact location of the findings is a secret. Professor Louis Jacobs from the Southern Methodist University in the US: “You have to make sure nothing ends up in the wrong hands.”

Read the full story

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news

SMU Geothermal Lab and DOE host Wyoming geothermal conference

800px-Geothermal_energy_methods.pngThe U.S. Department of Energy’s Rocky Mountain Oilfield Testing Center, RMOTC, in partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory, NREL, and Southern Methodist University Geothermal Laboratory, hosted a two-day “Geothermal in the Oil Field” symposium in Casper, Wyo., Aug. 18-19, 2010.

The event highlighted the application of low-temperature geothermal power production in oil and gas operations and other settings in the western United States.

This first-of-its-kind symposium provided valuable information on this emerging domestic power source. Speakers covered low-temperature projects throughout the western U.S. and provided participants an opportunity to learn about the remarkable potential for power generation using co-produced fluids from existing oil, gas, and industrial infrastructure with minimal additional environmental impacts.

On Day 1, RMOTC hosted field tours of nearby formations at Alcova Reservoir that correlate to the producing formations at NPR-3 and the test site located at the Naval Petroleum Reserve No. 3 (NPR-3) 35 miles north of Casper, Wyoming.

Day 2 was a day of technical presentations and panel discussions by DOE and industry representatives.

To view the list of speakers and presentations, go to http://www.rmotc.doe.gov/symposium.html.

Background information on low-temperature geothermal activities at RMOTC is available at http://www.rmotc.doe.gov/press.html and http://www.rmotc.doe.gov/PDFs/geothermal.pdf.

For more information on the geothermal energy activities taking at NREL please visit http://www.nrel.gov/geothermal/.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy LLC.

Categories
Earth & Climate Researcher news SMU In The News

AGI’s Earth magazine covers SMU seismic research in Barnett Shale region

Thumbnail.jpg

Earth magazine’s Carolyn Gramling interviewed SMU geophysicist Brian Stump about the operation of a saltwater injection disposal well that was a “plausible cause” for a series of small earthquakes in the Dallas-Fort Worth area in 2008.

The May 13 article in Earth, the magazine of The American Geological Institute, explores the research into the earthquakes, which occurred in an area of North Texas where the vast Barnett Shale geological formation traps natural gas deposits in subsurface rock.

Natural gas production in the Barnett Shale relies on the injection of pressurized water into the ground to crack open the gas-bearing rock, a process known as “hydraulic fracturing.”

Some of the injected water is recovered with the produced gas in the form of waste fluids that require disposal. Research by Stump looked at incidents that occurred in an area of North Texas where the vast Barnett Shale geological formation traps natural gas deposits in subsurface rock.

See more coverage
Discover: Injection wells and quakes
WFAA: D/FW injection well is ‘Plausible’ quake source
Geology.com: Potential link between injection wells, quakes
US News: Quakes, injection wells link?

EXCERPT:
By Carolyn Gramling
Earth Web Editor, Reporter

A saltwater disposal well, a part of the natural gas production process, may have been responsible for triggering a series of minor earthquakes in the Dallas-Fort Worth area of Texas in 2008, according to a recent study.

A series of small earthquakes that shook up the Dallas-Fort Worth area may be linked to natural gas production in the nearby Barnett Shale.

From Oct. 31 to Nov. 1, 2008, several minor earthquakes rattled the walls and shook the furniture of numerous residences in the Dallas-Fort Worth area.

The earthquakes, with magnitudes between 2.5 and 3.0, prompted questions among the residents about whether drilling for natural gas in the nearby Barnett Shale was responsible for the shaking. A second series of earthquakes, with the largest a magnitude 3.3, occurred on May 16, 2009; a third occurred on June 2, 2009.

Natural gas production involves multiple steps, including drilling a natural gas well, pumping pressurized fluids into the well to crack open the rock (hydraulic fracturing), and then extracting the natural gas and used fluids.

Once the gas and fluids are extracted, the fluids are reinjected back into the ground via a different well, called a saltwater disposal well, located some distance away from the production wells.

Read the full story

Related links:
Barnett Shale
hydraulic fracturing
33TV: Five earthquakes in one week
DMN: SMU deploys seismic stations to Cleburne
Brian Stump
Brian Stump and Chris Hayward
Texas Bureau of Economic Geology
USGS National Earthquake Information Center

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

National Geographic: Texas pterosaur Aetodactylus Halli in the spotlight after 95 million years

National Geographic News interviewed SMU postdoctoral researcher Timothy S. Myers about the new species and genus of pterosaur he identified and named, Aetodactylus Halli.

In the April 28 article “Toothy Texas Pterosaur Found; Soared Over Dallas” reporter John Roach talked to Myers about the 95 million-year-old jaw that was discovered by Lake Worth resident Lance Hall.

The pterosaur flew over the ancient sea that used to cover much of the Dallas-Fort Worth area. A rare species of pterosaur in North America, Myers named the new flying reptile after Hall.

Others who wrote about Myers’ Aetodactylus Halli research include:

Others who published a story about the find were: American Scientist, MSNBC, FOX News, the San Diego Tribune and many others.

EXCERPT:

By John Roach
National Geographic News

Long before six flags flew over Texas, a newfound species of winged reptile
with an exceptionally toothy grin owned the skies over what is now the Lone
Star State.

The recently discovered pterosaur, dubbed Aetodactylus halli, was identified based on a 95-million-year-old lower jawbone found outside of Dallas by amateur fossil hunter Lance Hall.

The pterosaur had a relatively slender jaw filled with thin, needlelike teeth, which might have helped the creature pluck fish from the shallow sea that once covered the region, a new study says.

“It was hanging out near the ocean, and that is probably where it derived its food from,” said study leader Timothy Myers, a paleontologist at Southern Methodist University in Dallas.

By comparing the jawbone to more complete pterosaur fossils, Myers and his team think A. halli was a medium-size animal with a nine-foot (three-meter) wingspan and a short tail.

Texas’s Toothy Pterosaur a Rare Find
Pterosaurs ruled the skies from the late Triassic period, more than 200 million years ago, until dinosaurs went extinct at the end of the Cretaceous, about 65 million years ago.

Read the full story

Categories
Earth & Climate Researcher news SMU In The News

Guam TV: USGS-SMU project monitors Anatahan volcano

E_crater1.jpg
Anatahan volcano

News reporter Tina Chau of Guam News Watch television interviewed SMU vulcanologist James Quick about the danger of nearby Anatahan volcano to neighboring Guam. Quick leads a two-year, $250,000 volcano monitoring project of the U.S. Geological Survey and Southern Methodist University in the Northern Mariana Islands.

The project, which includes Anatahan volcano, will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs that a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the Marianas, a U.S. commonwealth near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.

The USGS-SMU team recently installed equipment on the islands that was originally designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty, an area of expertise for <a href=”https://blog.smu.edu/research/2006/06/brian_stump.html#more” target=”blank”>SMU scientists</a>. The Marianas’ project is an effort to pioneer the use of the technology to monitor active volcanoes.

Categories
Earth & Climate Technology

Cockpit audio: Listen as volcanic ash plume causes 1989 engine failure of KLM flight 867

1016225_thumbnail.jpeg
Eyjafjallajokull erupting

Floating ash plumes from Iceland’s Eyjafjallajokull volcano have caused massive disruption to the world’s air traffic, highlighting the danger that volcanic ash plumes pose to aircraft.

The threat from volcanoes has become more severe as the world’s air traffic has increased, and as more people settle closer to volcanoes, says SMU vulcanologist James Quick, a professor in the Southern Methodist University Huffington Department of Earth Sciences.

Quick previously served as program coordinator for the USGS Volcano Hazards Program.

One of the most infamous encounters between a commercial jetliner and a volcano ash plume took place in 1989.
KLM Flight 867, carrying 231 passengers in a Boeing 747, flew into an ash plume after the eruption of Redoubt volcano in Alaska. According to USGS reports, the volcano spewed enormous clouds of ash thousands of miles into the air and nearly caused the airliner to crash.
Captured on audio was the frantic conversation between KLM’s pilot and the Anchorage control tower as the aircraft’s engines began flameout. Hear the cockpit audio in this video, as well as Quick’s comments on the danger.
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick says. Winds carry plumes thousands of miles from the volcanoes and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.
Quick and other scientists from Southern Methodist University and the U.S. Geological Survey are pioneering technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty to monitor active volcanoes in the Northern Mariana Islands.
Read AOL’s coverage:Determining When The Next One Will Blow
See Guam TV’s coverage:Eye On The Volcano: Could Guam Be The Next Iceland?
Quick on Fox News:Amazing Video Shows Shockwaves Explode From Volcano
Stars and Stripes interviews Quick:Monitoring to track Guam volcanoes
Geology.com news:Volcanoes and Volcanic Eruptions
Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.
Volcano monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.
The islands are near Guam, which soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.
The two-year, $250,000 project will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow.
The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.
Read more about the project.
Related links:
SMU Geophysics: Infrasound and seismo-acoustic sensing
NASA: Eruption of Anatahan
USGS: Anatahan volcano
Smithsonian: Anatahan volcano
Northern Mariana Islands
USGS: Volcanic Ash Advisory Centers
Alaska Volcano Observatory
James E. Quick
SMU Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

SMU’s Polcyn, Jacobs in Discovery Channel’s “Prehistoric Dallas”

Dallas — and much of Texas — was once submerged by a sprawling, blue-water ecosystem called the Western Interior Seaway, which split North America in two from the Gulf of Mexico to the Arctic Ocean, according to a new video documentary by the Discovery Channel.

Prehistoric Dallas” includes commentary from two SMU paleontologists, Michael J. Polcyn and Louis L. Jacobs, both of whom have expertise in Texas’ ancient sea and the life that inhabited it from more than 90 million years ago until the extinction of the dinosaurs at 66 million years ago.

video.jpg Watch “Prehistoric Dallas”

From Dallasaurus to Mosasaur
That animal life included the three-foot-long Dallasaurus, which represents an intermediate stage between land-dwelling lizards, similar to the modern day Komodo dragon, and fully marine-adapted Mosasaurs equipped with fin-like limbs and a fish-like tail.

Starting at about 100 million years ago, these small lizards took to the water, but quickly evolved into the huge marine creatures that grew to 50 feet in length by the end of the Cretaceous.

mike-polcyn-sm2.jpg
Michael Polcyn

“(Dallasaurus) probably retained a swimming behavior very similar to what you see in modern lizards,” says Polcyn, whose appearance starts 38 seconds into the “Ocean Pioneer” segment.

The ancient sea covering Texas was clean, deep water, says SMU vertebrate paleontologist Jacobs at the start of the “Texas Submerged” segment. Evidence of that sea exists today in the 86-million-year-old fossils in the geological layer known as the Austin Chalk.

The layer is formed by plankton, Jacobs explains, which are minute organisms that live on the surface of the ocean, then die and filter down to the bottom.

ljacobs.gif
Louis Jacobs

“There was no mud and silt here, washed in from the land,” Jacobs says. “This represents the bottom of the sea, when the sea was at its deepest in this area.”

Polcyn and Jacobs are in the Roy M. Huffington Department of Earth Sciences, Dedman College.

Internationally recognized for his fossil discoveries, Jacobs joined SMU’s faculty in 1983. Currently he has projects in Mongolia, Angola and Antarctica. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state.

Jacobs consulted on the new exhibit “Mysteries of the Texas Dinosaurs” at the Fort Worth Museum of Science and History. It includes the world’s first skeletal mount of the Texas state dinosaur Paluxysaurus jonesi. Jacobs narrates the video portion of the exhibit, which also includes SMU students Yuri Kimura, Dan Danehy and Kyle Paterson.

Polcyn, director of the Visualization Laboratory in the SMU Huffington Department of Earth Sciences, is an SMU adjunct research associate.

mosasaur1-utmuseum.jpg
Mosasaur skeleton

Polcyn is a world-recognized expert on the extinct marine reptiles called Mosasaurs.

Polcyn’s research also includes application of technology to problems in paleontology.

He recently created computer models to produce life-sized physical models of some of the Paluxysaurus jonesi bones for “Mysteries of the Texas Dinosaurs” at the Fort Worth Museum of Science and History.

Related links:
Louis L. Jacobs
Michael J. Polcyn
Agence France Presse: “Angola: Final frontier for fossils”
New Scientist: “Real sea monsters; The hunt for Predator X”
video.jpg Discovery Channel: “Mega Beasts: T-Rex of the Deep”
SMU News: Dallasaurus, ancient mosasaur
Roy M. Huffington Department of Earth Sciences
Dedman College

Categories
Earth & Climate

SMU-UT study shows “plausible” connection between DFW quakes, saltwater injection well

Production in the Barnett Shale relies on the injection of pressurized water into the ground to crack open the gas-bearing rock, a process known as “hydraulic fracturing.” Some of the injected water is recovered with the produced gas in the form of waste fluids that require disposal.

Long-shot.jpg
SMU scientists place monitoring equipment. Credit: Jackson

The earthquakes do not appear to be directly connected to the drilling, hydraulic fracturing or gas production in the Barnett Shale, the study concludes.

However, re-injection of waste fluids into a zone below the Barnett Shale at the nearby saltwater disposal well began in September 2008, seven weeks before the first DFW earthquakes occurred.

No earthquakes were recorded in the area after the injection well stopped operating in August 2009.

The largest of the DFW-area earthquakes was a 3.3 magnitude event reported by the USGS National Earthquake Information Center.

Fluid injection stressed fault?
A state tectonic map prepared by the Texas Bureau of Economic Geology shows a northeast-trending fault intersects the Dallas-Tarrant county line approximately at the location where the DFW quakes occurred. The study concludes, “It is plausible that the fluid injection in the southwest saltwater disposal well could have affected the in-situ tectonic stress regime on the fault, reactivating it and generating the DFW earthquakes.”

More SMU Research

USGS funds Marianas research

Humans can run 40 mph?

Simulating the Big Bang

An SMU team led by seismologists Brian Stump and Chris Hayward placed portable, broadband seismic monitoring equipment in the area after the earthquakes began.

The seismographs recorded 11 earthquakes between Nov. 9, 2008, and Jan. 2, 2009, that were too small to be felt by area residents. Cliff Frohlich and Eric Potter of UT-Austin joined the SMU team in studying the DFW-area sequence of “felt” earthquakes as well as the 11 “non-felt” earthquakes. Their study, “Dallas-Fort Worth earthquakes coincident with activity associated with natural gas production,” appears in the March issue of The Leading Edge, a publication of the Society of Exploration Geophysicists.

The SMU team also installed temporary monitors in and around Cleburne, Texas where another series of small earthquake began June 2, 2009. Results from that study are not yet available.

Study raises more questions
Stump and Hayward caution that the DFW study raises more questions than it answers.

“What we have is a correlation between seismicity, and the time and location of saltwater injection,” Stump said. “What we don’t have is complete information about the subsurface structure in the area — things like the porosity and permeability of the rock, the fluid path and how that might induce an earthquake.”

“More than 200 saltwater disposal wells are active in the area of Barnett production,” the study notes. “If the DFW earthquakes were caused by saltwater injection or other activities associated with producing gas, it is puzzling why there are only one or two areas of felt seismicity.”

Further compounding the problem, Hayward said, is that there is not a good system in place to measure the naturally occurring seismicity in Texas: “We don’t have a baseline for study.”

Call for more fluid injection research
Enhanced geothermal projects also rely on methods of rock fracturing and fluid circulation. Geological carbon sequestration, an approach being researched to combat climate change, calls for pumping large volumes of carbon dioxide into subsurface rock formations.

“It’s important we understand why and under what circumstances fluid injection sometimes causes small, felt earthquakes so that we can minimize their effects,” Frohlich said.

The study notes that fault ruptures for typical induced earthquakes generally are too small to cause much damage.

“There needs to be collaboration between universities, the state of Texas, local government, the energy industry and possibly the federal government for study of this complicated question of induced seismicity,” Stump said. “Everyone wants quick answers. What I can tell you is the direction these questions are leading us.” — Kimberly Cobb

Click here to read the article

Report Authors:

  • Cliff Frohlich, associate director, senior research scientist, Institute for Geophysics, UT-Austin
  • Eric Potter, program director, Bureau of Economic Geology, UT-Austin
  • Chris Hayward, director, Geophysics Research Projects, Huffington Department of Earth Sciences
  • Brian Stump, Claude C. Albritton Jr. Chair, Huffington Department of Earth Sciences

Related links:
Barnett Shale
hydraulic fracturing
33TV: Five earthquakes in one week
DMN: SMU deploys seismic stations to Cleburne
Brian Stump
Brian Stump and Chris Hayward
Texas Bureau of Economic Geology
USGS National Earthquake Information Center

Categories
Earth & Climate Researcher news Slideshows Technology

USGS-SMU volcano monitoring targets hazard threat to Marianas, U.S. military, commercial jets

Technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty now will be pioneered to monitor active volcanoes in the Northern Mariana Islands near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.

The two-year, $250,000 project of the U.S. Geological Survey and Southern Methodist University will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.

The archipelago’s active volcanoes threaten not only residents of the island chain and the U.S. military, but also passenger airlines and cargo ships.

The USGS project calls for installing infrasound devices alongside more traditional volcano monitoring equipment — seismometers and global positioning systems.

SMU Researcher to study human-fire-climate interactions

Scientists at SMU, which the USGS named the prime cooperator on the project, will install the equipment and then monitor the output via remote sensing. The project is a scientific partnership of the USGS, SMU and the Marianas government.

An infrasound experiment
Infrasound hasn’t been widely used to monitor volcanoes, according to noted volcano expert and SMU geology professor James E. Quick, who is project chief. Infrasound can’t replace seismometers but may help scientists interpret volcanic signals, Quick said.

“This is an experiment to see how much information we can coax out of the infrasound signal,” he said. “My hope is that we’ll see some distinctive signals in the infrasound that will allow us to discriminate the different kinds of eruptive styles — from effusive events that produce lava flows, or small explosive events we call vulcanian eruptions, to the large ‘Plinian’ events of particular concern to aviation. They are certain to have some characteristic sonic signature.”

SMU geologists in recent decades pioneered the use of infrasound to monitor nuclear test-ban compliance, and they continue to advance the technology. For the USGS project, they’ll install equipment on three of the Marianas’ 15 islands. In the event magma begins forcing its way upward, breaking rocks underground and ultimately erupting, seismometers will measure ground vibrations throughout the process, GPS will capture any subtle changes or deformities in the surface of the Earth, and infrasound devices will record sound waves at frequencies too low to be heard by humans. Infrasound waves move slower than the speed of light but can travel for hundreds of miles and easily penetrate the earth as well as other material objects.

Volcanoes active on nine islands
Nine Mariana islands have active volcanoes. On average, the archipelago experiences about one eruption every five years, said Quick, who was previously program coordinator of the USGS Volcano Hazards Program.

Most recently a volcano erupted in 2005 on the island of Anatahan, the largest historical eruption of that volcano, according to the USGS. It expelled some 50 million cubic meters of ash, the USGS reported, noting at the time that the volcanic plume was “widespread over the western Philippine Sea, more than 1300 nautical miles west of Anatahan.” A volcano that erupted on the island of Pagan in 1981 has been showing many signs of unrest, Quick said.

Besides the USGS volcano project, SMU has been active in the Marianas through a memorandum of agreement to help the local government search for alternative energy sources, in particular geothermal.

The Marianas volcano project is part of a larger USGS program that is investing $15.2 million of American Recovery and Reinvestment Act funds to boost existing monitoring of high-risk volcanic areas in partnership with universities and state agencies nationwide.

US military deploying to nearby Guam
In targeting the Marianas, the USGS cited the evacuation of residents from the northern islands after the 1981 eruption on Pagan, as well as the threat to the main island of Saipan and to nearby Guam. A U.S. territory, Guam is expected to be home to about 40,000 U.S. military and support personnel by 2014, including 20,000 Marines and dependents redeployed from Okinawa. The Marines will use the island as a rapid-response platform for both military and humanitarian operations. The military also has proposed using the Northern Marianas for military exercises.

The USGS cited also the threat of volcanic ash plumes to commercial and military planes. Air routes connect Saipan and Guam to Asia and the rest of the Pacific Rim, as well as Northeast Asia to Australia, Indonesia, the Philippines and New Zealand.

Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.

Volcanic ash hazard to aircraft
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick said. Winds carry plumes thousands of miles from the volcanoes, he explained, and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.

Monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.

“Monitoring on the ground gives early warning when an eruption begins, as well as an indication that an eruption might be imminent,” Quick said. “The contribution by the USGS and its university partners for volcano monitoring is to provide that earliest warning — or even a pre-eruption indication — that a volcano is approaching eruption so that the volcanic ash advisory centers can get the word out and alerts can be issued.”

The USGS objective is for infrasound on Saipan, four seismometers on Anatahan, which currently has only one functioning seismometer, two seismometers on Sarigan, and GPS on Anatahan, Sarigan and Saipan.

Safer for residents
Improved monitoring, Quick said, even might allow evacuated islanders to return to their homes — especially understandable for the island of Pagan, given its freshwater lakes, lush forests, black and white sand beaches and abundant fishing.

“A lot of people would like to move back, but it’s considered unsafe absent monitoring,” he said. “If we can establish monitoring networks on these islands, then I think it becomes more practical for people to think about returning. Properly monitored, one should be able to give adequate warning so that people could evacuate.”

Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as associate vice president for research and dean of graduate studies at SMU. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com. Follow SMU Research on Twitter, @smuresearch.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Plants & Animals Researcher news Slideshows

World’s first full skeletal mount of Paluxysaurus jonesi dinosaur reveals new biology

The Early Cretaceous sauropod Paluxysaurus jonesi weighed 20 tons, was 60 feet long and had a neck 26 feet long, according to the scientists who have prepared the world’s first full skeletal mount of the dinosaur.

The massive Paluxysaurus jonesi, prepared for the Fort Worth Museum of Science and History in Fort Worth, was unveiled Nov. 20 when the museum opened in a new $80 million facility. The Paluxysaurus mount enables Texans to see their state dinosaur in three dimensions for the first time.

The reconstructed skeleton is yielding clues to the biology of the animal and its relationship to other similar dinosaurs, says Dale Winkler, lead consultant for anatomy and posture on the skeletal mount.

Winkler is director of the Shuler Museum of Paleontology at SMU and a research professor in the Roy M. Huffington Department of Earth Sciences. Winkler has worked with Paluxysaurus bones since crews from SMU and the Fort Worth museum began to unearth them in the early 1990s.

In preparing the mount, Winkler said he was surprised at how extremely long the neck was — at 26 feet — compared to the tail, and he found the head especially striking.

“It was really exciting to see what the head looked like,” Winkler says. “Paluxysaurus had very high cheeks compared to its relatives. Once the bones defining the opening of the nose were connected, it showed that the nostrils were turned up on top of the snout, instead of out like Brachiosaurus.”

Skeletal mount reveals animal’s anatomy, size and stature
A relative of Brachiosaurus and Camarasaurus, Paluxysaurus lived about 110 million to 115 million years ago. The dinosaur was identified and named in 2007 by Peter J. Rose. The Fort Worth skeleton was assembled from a combination of actual fossil bones from at least four different dinosaurs found on private ranch land in North Central Texas and from cast lightweight foam pieces modeled on original bones. The mount enables scientists to better understand the animal’s anatomy, size and stature on questions like “How were the legs situated, and how did the shoulders relate to the hips?”

From the skeletal mount, the scientists learned that Paluxysaurus was more than 6 feet wide and nearly 12 feet tall at the shoulder, although built fairly light, Winkler says. Its teeth are a lot slimmer than those of its closest relatives, indicating Paluxysaurus gathered and processed food differently, using its teeth not for chewing, but to grab food, he says.

Paluxysaurus had a long neck like Brachiosaurus, and a tail almost as long, but wasn’t quite so gigantic. Scientists also learned Paluxysaurus had relatively long front arms, unlike Diplodocus, making its back more level. The dinosaur’s shoulder turned out fairly high, and the hips were wide, Winkler says, and it had reached a more advanced stage of evolution than Late Jurassic sauropods.

Paluxysaurus’ massive pelvis and its sacrum have never before been viewed by the public, he says. Its ilium, the largest bone in the pelvis, is similar to that of titanosaurids of the Late Cretaceous, mainly found in South America. However, one titanosaurid, called Alamosaurus, entered North America and is known from Big Bend National Park in southwest Texas.

The bones assembled for Fort Worth’s Paluxysaurus mount were recovered by students, faculty, staff and hundreds of volunteers over the past 16 years.

DFW’s ancient Cretaceous past included dinosaurs along a shallow sea
Most bones were found in masses of hardened sandstone dug from a Hood County quarry on the private ranch of Bill and Decie Jones.

It took more than a decade to remove the specimens because they were embedded in a hard sandstone matrix, said Louis L. Jacobs, a world-renowned paleontologist, dinosaur fossil hunter and a professor in the Earth Sciences department at SMU. Jacobs helped unearth and prepare the bones.

The end result is a skeleton that is “absolutely awe-inspiring,” Jacobs says. “Paluxysaurus and the plants and animals it lived among show us the truly unique position Texas held in the Cretaceous world. The exhibits at the Fort Worth museum tell that story to the people who now live where the giants used to walk.”

Sauropods weren’t common during the Early Cretaceous. The Fort Worth specimen is morphologically distinct from all other sauropods described and named in North America at that time, according to the research of Rose, who is now a doctoral student at the University of Minnesota. Rose identified the type specimen and named the animal while a graduate student in geology at SMU.

The Paluxysaurus dinosaurs lived near the shore of the rising Cretaceous seas that eventually covered Texas, amid large-trunked conifer trees that are now extinct. The semi-arid environment nurtured relatives of sago palms but few flowering plants, which were just beginning to spread out across the Earth, Winkler says.

The scientists say the Jones Ranch bone bed is one of the richest accumulations of sauropod bones in North America.

A group apparently died together there in a common death, perhaps a forest fire, according to earlier research of Winkler and Rose.

The quarry has produced hundreds of bones, all within an area of 400 square meters. Fossil hunters found 60 to 70 percent of the bones needed to reconstruct a single Paluxysaurus skeleton, says Aaron Pan, curator of the Fort Worth museum. Most of the bones, however, are too fragile or deformed to be mounted 15 feet in the air, Pan says.

“We were happy to have as much of it as we do,” Pan says, noting that the museum welcomes fossil researchers. “Most of our material is available. So if a researcher did want to see any of it, we’d be happy to have them come.”

Huge, multi-year project recreated skeleton with bones and casts
Paleontologists from both the museum and SMU helped exhibit fabricator and model-maker Robert Reid Studios, located near Fort Worth, mount the bones. About 15 percent to 20 percent of the skeleton is actual fossil bone, while the remaining bones are casts, says Pan.

Preparing the fossils for mounting and modeling was a huge, multi-year project. The cast bones were computer modeled using laser scanning, says Michael J. Polcyn, director of the Earth Sciences department’s image analysis lab at SMU.

“I was able to scan available bones in 3D and manipulate them in the computer to remove distortion, create mirrored pieces — for example right or left — and model missing portions,” Polcyn says. “I was then able to use the computer models to produce life-sized physical models of the bones using computer-controlled machining techniques.”

Many of the very large bones remain all or partially embedded in blocks of quarry rock, due primarily to the logistical challenge of removing them. For example, the 11-ton block containing the pelvis and sacrum required hoisting with an industrial crane. For some large blocks, tons of rock were painstakingly cut with diamond-blade saws from around the various bones to make them manageable in the SMU labs, Winkler says.

Rock was partially removed from the pelvis and sacrum so that Polcyn could scan them. The scientists then constructed a model using dense foam that was cut to form the basic shape. Crews from Robert Reid Studios coated them with epoxy resin to give them hardness, then added a layer of bone texture and painted them to match.

In the case of the long neck, much was preserved, but many of the bones were distorted by sediment load, which essentially crushed the bone, Polcyn says. He studied the neck vertebrae and made a model. Only two of the skull bones were recovered: the left maxilla and a nasal bone, which defined the top front of the face. Polcyn worked closely with a sculptor to reconstruct the skull by studying related groups of dinosaurs.

Preparation of the skeletal mount was funded by the Fort Worth Museum of Science and History. — Margaret Allen

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Researcher news Slideshows

Tropical Central Africa — now The Congo Basin — was arid, treeless during Late Jurassic

The Congo Basin — with its massive, lush tropical rain forest — was far different 150 million to 200 million years ago.

At that time Africa and South America were part of the single continent Gondwana. The Congo Basin was arid, with a small amount of seasonal rainfall, and few bushes or trees populated the landscape, according to a new geochemical analysis of rare ancient soils.

The geochemical analysis provides new data for the Jurassic period, when very little is known about Central Africa’s paleoclimate, says Timothy S. Myers, a paleontology doctoral student in the Roy M. Huffington Department of Earth Sciences at SMU.

“There aren’t a whole lot of terrestrial deposits from that time period preserved in Central Africa,” Myers says. “Scientists have been looking at Africa’s paleoclimate for some time, but data from this time period is unique.”

There are several reasons for the scarcity of deposits: Ongoing armed conflict makes it difficult and challenging to retrieve them; and the thick vegetation, a humid climate and continual erosion prevent the preservation of ancient deposits, which would safeguard clues to Africa’s paleoclimate.

Myers’ research is based on a core sample drilled by a syndicate interested in the oil and mineral deposits in the Congo Basin. Myers accessed the sample — drilled from a depth of more than 2 kilometers — from the Royal Museum for Central Africa in Tervuren, Belgium, where it is housed. With the permission of the museum, he analyzed pieces of the core at the SMU Huffington Department of Earth Science’s Isotope Laboratory.

“I would love to look at an outcrop in the Congo,” Myers says, “but I was happy to be able to do this.”

The Samba borehole, as it’s known, was drilled near the center of the Congo Basin. The Congo Basin today is a closed canopy tropical forest — the world’s second largest after the Amazon. It’s home to elephants, great apes, many species of birds and mammals, as well as the Congo River.

Myers’ results are consistent with data from other low paleolatitude, continental, Upper Jurassic deposits in Africa, and with regional projections of paleoclimate generated by general circulation models, he says.

“It provides a good context for the vertebrate fossils found in Central Africa,” Myers says. “At times, any indications of the paleoclimate are listed as an afterthought, because climate is more abstract. But it’s important because it yields data about the ecological conditions. Climate determines the plant communities, and not just how many, but also the diversity of plants.”

While there was no evidence of terrestrial vertebrates in the deposits Myers studied, dinosaurs were present in Africa at the same time. Their fossils appear in places that were once closer to the coast and probably wetter and more hospitable, he says.

The Belgium samples yielded good evidence of the paleoclimate. Myers found minerals indicative of an extremely arid climate typical of a marshy, saline environment. With the Congo Basin at the center of Gondwana, humid marine air from the coasts would have lost much of its moisture content by the time it reached the interior of the massive continent.

“There probably wouldn’t have been a whole lot of trees; more scrubby kinds of plants,” Myers says.

The clay minerals that form in soils have an isotopic composition related to that of the local rainfall and shallow groundwater. The difference in isotopic composition between these waters and the clay minerals is a function of surface temperature, he says. By measuring the oxygen and hydrogen isotopic values of the clays in the soils, researchers can estimate the temperature at which the clays formed.

Myers presented his research, “Late Jurassic Paleoclimate of Central Africa,” at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21. The research was funded by the Roy M. Huffington Department of Earth Sciences at SMU and SMU’s Institute for the Study of Earth and Man. — Margaret Allen

Categories
Fossils & Ruins Plants & Animals Slideshows Student researchers

Portable 3D laser technology preserves Texas dinosaur’s rare footprint

Using portable 3D laser technology, scientists have preserved electronically a rare 110 million-year-old fossilized dinosaur footprint that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.

The laser image preserves what is called a “type specimen” footprint — an original track used many years ago to describe a new species of dinosaur, says paleontologist Thomas L. Adams at SMU.

Portable 3D laser scanners capture original fossil morphology and texture, making it possible to use the data for rapid 3D prototyping in foam or resin, Adams says.

The footprint embedded in the bandstand has been exposed to the elements for nearly 75 years, causing portions of it to erode, Adams says. Erosional loss has affected the outer edge of the toes and heel, altering the initial shape of the track impression.

The track of the ichnospecies Eubrontes glenrosensis was excavated in 1933 from a main track layer in a riverbed in what is now 1,500-acre Dinosaur Valley State Park in Somervell County near Glen Rose. Not long after the track was excavated, the citizens of Glen Rose built a stone bandstand and embedded the track within one of its walls.

The track was described in 1935 by Ellis W. Shuler, SMU’s first geology professor.

Adams says the footprint is that of a three-toed, bipedal, meat-eating dinosaur, with the most likely candidate being the theropod named Acrocanthosaurus, found mostly in Texas, North Carolina and Oklahoma.

“The track is scientifically very important,” says Adams, who is earning his doctoral degree in paleontology at SMU. “But it’s also a historical and cultural icon for Texas.”

Dinosaur Valley State Park boasts the ancient shoreline of a 113 million-year-old sea and is renowned for some of the best preserved dinosaur footprints in the world. The bandstand track is a popular draw for tourists passing through Glen Rose, which is one hour southwest of Dallas.

In an effort to preserve the specimen, as well as to compare its present state with the original description, Adams used a portable 3D laser scanner to perform in situ digitization of the track.

The scans were post-processed to generate high-resolution 3D digital models of the track. Finally the models were rendered in various media formats such as Quicktime VR Virtual Reality and Tagged Image File Format for viewing, publication and archival purposes.

Adams will make the raw scan data and industry-standard 3D object files format available for download.

The research demonstrates the advantages of using portable laser scanners to capture field data and create high-resolution, interactive models that can be digitally archived and made accessible to others via the Internet for further research and education.

“It’s a nice way to share scientific data,” Adams says.

Adams’ research was funded by the Institute for the Study of Earth and Man at SMU. He presented the research at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21. His co-researchers are Christopher Strganac, Michael J. Polcyn and Louis L. Jacobs, all three in the Roy M. Huffington Department of Earth Sciences at SMU. — Margaret Allen

Categories
Earth & Climate Energy & Matter Researcher news

DOE awards SMU $5.25 million to expand U.S. geothermal production

geothermal-map-of-north-america.jpgThe Geothermal Laboratory at SMU has been awarded $5.25 million by the U.S. Department of Energy to help provide data for the planned National Geothermal Data System.

The grant allocation is part of $338 million in Recovery Act funding that was announced Oct. 29 by DOE Secretary Steven Chu. The funding is intended to help dramatically expand geothermal production in the United States.

800px-Geothermal_energy_methods.pngSMU will work with a diverse team of experts from academia, industry and national labs with experience in conventional hydrothermal geothermal resource assessment, Enhanced Geothermal Systems, oil and gas data, geopressure geothermal and produced water non-conventional geothermal systems in providing the data, including:

  • An expanded and updated version of the SMU Heat Flow database that covers the whole onshore U.S. and offshore regions in the Gulf of Mexico.
  • The Geothermal Resources Council library with over 36K in documents and over 1.3 million pages on geothermal research
  • Extensive information on Enhanced Geothermal System research including legacy data files and the latest developing results of research in the northeastern U.S.
  • Core logs, well logs, and current and legacy geopressure data from the Texas Bureau of Economic Geology covering many states
  • Detailed nationwide data on produced water collected from numerous states’ oil and gas agencies and several federal agencies plus relevant geological, spatial, well bore, injection/disposal, and water well data.

blackwell.jpg
Principal investigators are SMU’s David Blackwell, Hamilton Professor of Geothermal Studies, and Fabian Moerchen of Siemens Corporate Research. The project team also includes Jefferson Tester, the Kroll Professor of Chemical Engineering at Cornell University; William Gosnold, chair of geology and geological engineering at the University of North Dakota; Seiichi Nagihara, associate professor of geosciences at Texas Tech University; John Veil, manager of the water policy program at the Argonne National Laboratory and Martin Kay, president of MLKay Technology LLC.

“The primary benefit of this project is that it will support developers of geothermal power plants by decreasing the costs of the resource identification and the risks inherent in the exploration phase,” Blackwell said. “The project will rescue important data from deterioration or complete loss and provide a set of tools to be used by other parties to submit data to the NGDS.”

A distributed network of databases, NGDS was established by the U.S. Department of Energy to collectively build a system for acquisition, management and maintenance of geothermal and related data.

The SMU Geothermal Lab is hosting its annual conference, “Geothermal Energy Utilization Associated with Oil & Gas Development,” Nov. 3-4 on the Dallas campus. Registration is available at the door. Find more information at the conference web site. — Kim Cobb

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news

Polcyn in New Scientist’s “Real Sea Monsters: Hunt for Predator X”

mike-polcyn-sm2.jpg
Paleontologist Michael J. Polcyn, director of the Visualization Laboratory in the SMU Huffington Department of Earth Sciences and SMU adjunct research associate, is quoted as an expert source in “Real Sea Monsters: The Hunt for Predator X.” The article by reporter James O’Donoghue was published in the October 2009 issue of the magazine New Scientist.

mosasaur1-utmuseum.jpgPolcyn is a world-recognized expert on the extinct marine reptile named Mosasaur.

His research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Related links:
New Scientist: “Real sea monsters; The hunt for Predator X”
Michael J. Polcyn
video.jpg Discovery Channel: “Mega Beasts: T-Rex of the Deep”
SMU News: Dallasaurus, ancient mosasaur
Huffington Department of Earth Sciences

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows Student researchers

Land snail fossils suggest eastern Canary Islands wetter, cooler 50,000 years ago

Fossil land snail shells found in ancient soils on the subtropical eastern Canary Islands show that the Spanish archipelago off the northwest coast of Africa has become progressively drier over the past 50,000 years.

Isotopic measurements performed on fossil land snail shells resulted in oxygen isotope ratios that suggest the relative humidity on the islands was higher 50,000 years ago, then experienced a long-term decrease to the time of maximum global cooling and glaciation about 15,000 to 20,000 years ago, according to new research by Yurena Yanes, a post-doctoral researcher, and Crayton J. Yapp, a geochemistry professor, both in the Roy M. Huffington Department of Earth Sciences at SMU.

With subsequent post-glacial climatic fluctuations, relative humidity seems to have oscillated somewhat, but finally decreased even further to modern values.

Consequently the eastern Canary Islands experienced an overall increase in dryness during the last 50,000 years, eventually yielding the current semiarid conditions. Today the low-altitude eastern islands are characterized by low annual rainfall and a landscape of short grasses and shrubs, Yanes says.

The research advances understanding of the global paleoclimate during an important time in human evolution, when the transition from gathering and hunting to agriculture first occurred in the fertile Middle East and subsequently spread to Asia, North Africa and Europe.

“In the Canary Archipelago, land snails are one of the rare ‘continuous’ records of paleoclimatic conditions over the last 50,000 years,” Yanes says. “The results of this study are of great relevance to biologists and paleontologists investigating the evolution of plants and animals linked to climatic fluctuation in the Islands.”

The researchers’ isotopic evidence reflects changing atmospheric and oceanic circulation associated with the waxing, waning and subsequent disappearance over the past 50,000 years of vast ice sheets at mid- to high latitudes on the continents of the Northern Hemisphere.

The research also is consistent with the observed decline in diversity of the highly moisture-sensitive land snails.

Land snail shells are abundant and sensitive to environmental change and as fossils they are well-preserved. Measurement of variations in oxygen isotope ratios of fossil shells can yield information about changes in ancient climatic conditions.

The shells are composed of the elements calcium, oxygen and carbon, which are combined to form a mineral known as aragonite. Oxygen atoms in aragonite are not all exactly alike. A small proportion of those atoms is slightly heavier than the majority, and these heavier and lighter forms of oxygen are called isotopes of oxygen.

Small changes in the ratio of heavy to light isotopes can be measured with a high degree of accuracy and precision. Variations in these ratios are related to climatic variables, including relative humidity, temperature and the oxygen isotope ratios of rainwater and water vapor in the environments in which land snails live.

Yanes presented the research at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21.

The research was funded by the government of Spain’s Ministry of Science and Innovation and the National Science Foundation.

Categories
Earth & Climate Fossils & Ruins Researcher news

Ethiopia 27 million years ago had higher rainfall, warmer soil

Thirty million years ago, before Ethiopia’s mountainous highlands split and the Great Rift Valley formed, the tropical zone had warmer soil temperatures, higher rainfall and different atmospheric circulation patterns than it does today, according to new research of fossil soils found in the central African nation.

Neil J. Tabor, associate professor of Earth Sciences at SMU and an expert in sedimentology and isotope geochemistry, calculated past climate using oxygen and hydrogen isotopes in minerals from fossil soils discovered in the highlands of northwest Ethiopia. The highlands represent the bulk of the mountains on the African continent.

tabor_lg.jpgTabor’s research supplies a picture of the paleo landscape of Ethiopia that wasn’t previously known because the fossil record for the tropics has not been well established. The fossils were discovered in the grass-covered agricultural region known as Chilga, which was a forest in prehistoric times. Tabor’s research looked at soil fossils dating from 26.7 million to 32 million years ago.

Fossil plants and vertebrates in the Chilga Beds date from 26.7 million to 28.1 million years ago, Tabor says. From his examination, Tabor determined there was a lower and older layer of coal and underclay that was a poorly drained, swampy landscape dissected by well-drained Oxisol-forming uplands. A younger upper layer of the Chilga Beds consists of mudstones and sandstones in what was an open landscape dominated by braided, meandering fluvial stream systems.

Tabor is part of a multi-disciplinary team combining independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia, as well as Africa.

The project is funded with a three-year, $322,000 grant from the National Science Foundation. The team includes paleoanthropologists, paleobotanists and vertebrate paleontologists from the University of Texas at Austin, Miami University, Southern Methodist University, the Fort Worth Museum of Science and History, Washington University and the University of Michigan.

Tabor presented the research in a topical session at the Oct. 18-21 annual meeting of the Geological Society of America. The presentation was titled “Paleoenvironments of Upper Oligocene Strata, NW Ethiopian Plateau.” His co-researcher is John W. Kappelman, Department of Anthropology, University of Texas. — Margaret Allen

Related links:
SMU Research: Ethiopian fossils define prehistoric ecosystems, human evolution, climate change
Ethiopia project home page
Neil J. Tabor
Why fossils matter
SMU Student Adventures blog: Research team in Ethiopia, 2007-2008
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news

Ethiopian fossils define prehistoric ecosystems, human evolution, climate change

Leaf3%2Clr.jpgFor paleobotanist Bonnie Jacobs standing atop a mountain in the highlands of northwest Ethiopia, it’s as if she can see forever — or at least as far back as 30 million years ago.

Jacobs is part of an international team of researchers hunting scientific clues to Africa’s prehistoric ecosystems.

The researchers are among the first to combine independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia in particular, and tropical Africa in general for the time interval from 65 million years ago — when dinosaurs went extinct, to about 8 million years ago — when apes split from humans.

BonnieTreeMush3%2Clr.jpg
Paleobotanist Bonnie Jacobs in Ethiopia.

While it’s generally held that human life began in Africa, ironically there is little known about changes in the continent’s vegetation during the time when humans were evolving.

The team’s work also will help climate scientists trying to model future global warming by providing data from the tropics that up to now did not exist.

The multi-disciplinary team is studying fossils they’ve found near Chilga, a small region in the agricultural highlands.

Contrary to the common notion that vegetation decomposes in the tropics too quickly to supply evidence, sediments there have preserved an abundant variety of 28 million-year-old fossils. These include fruits, seeds, leaves, woods, pollen and spores, says Jacobs, an associate professor of Earth Sciences at Southern Methodist University and director of the Environmental Science and Studies Programs.

“There are lifetimes of work to be done in Africa on plant fossils alone, and certainly a lot more to be done with vertebrates as well,” says Jacobs, who’s done research in Africa since 1980 in Kenya, Tanzania and Ethiopia. “There’s not a well established record of plant fossils, so there’s no real context. It’s all new — so whatever you find is interesting.”

With the permission of the Ethiopian government, Jacobs — along with Ellen Currano, in the Department of Geology at Miami University, and paleobotanist Aaron Pan, curator of science at the Fort Worth Museum of Science and History — is now studying more than 1,600 fossil leaves the team gathered from two age-equivalent sites to understand climate, precipitation, vegetation and the physical landscape.

Jacobs is calculating precipitation and temperature estimates for the two Ethiopian sites using leaf traits for size and shape. While the rainfall estimates are statistically identical, the temperature estimates are not, an informative reflection of the method itself.

Pan has identified palm fossils, which help to address a big question about the timeframe for a decline in the presence of palm trees in Africa. He’s also calculating past climate using species composition of fossil leaves, fruit and flowers.

Morediggers%2Clr.jpg Currano is looking at insect damage on fossil leaves, to see if the insect fauna is as diverse and as specialized as expected for tropical forests. Neil Tabor, associate professor of Earth Sciences at SMU and an expert in sedimentology and isotope geochemistry, is calculating past climate using oxygen isotopes in minerals from fossil soils.

“We’re using multiple independent lines of evidence to get at climate reconstruction during this time interval for a place — the tropics of Africa — for which there were few data before,” Jacobs says. “The lower latitudes are especially poorly documented for fossils, which tell us about climate, so the tropical regions of Earth are poorly documented for past climate as well.”

The project is funded with a three-year, $322,000 grant from the National Science Foundation. Paleoanthropologists and vertebrate paleontologists from UT Austin, Washington University and the University of Michigan have studied the fossil bones that co-occur with the plants.

Questions they will address:

  • When and how did Africa’s rain forests evolve into the present day savannas and how did that impact human evolution?
  • What happened to the prehistoric lowland forest that’s been hypothesized across Africa in the tropical belt?
  • When did the Great Rift Valley’s formation divide the forest into eastern and western components, and how did the process evolve?
  • Why is there evidence of a large diversity of palm trees at 33 million years ago in Africa, but certain species are missing by 28 million years ago?
  • Why were palm trees abundant and diverse 100 million years ago in Africa and South America, but now rare in present-day Africa, while still prolific in the tropical forests of Southeast Asia, South America and Madagascar?
DanAfarWindow3%2Clr.jpg
SMU graduate student Daniel Danehy.

Jacobs will present her research in October at a seminar on “Cenozoic Evolution of African Landscapes” at Penn State. She and other members of the team will also report on the Ethiopian fossils in a Geological Society of America Topical Session called “Phanerozoic Paleoenvironmental Evolution of Africa,” which they’ve organized for the annual meeting from Oct. 18-21.

Jacobs’ research today expands on earlier work. She reported with her collaborators at the 2008 “Celebrating the International Year of Planet Earth” meeting of the Geological Society of America that palm trees were significant in Africa 28 million years ago

In a 2006 study that published in the “Botanical Journal of the Linnean Society,” Jacobs and lead author Pan reported that Chilga fossil leaves represent the earliest records of Africa’s characteristic palm genus “Hyphaene.”

The leaf fossils that Jacobs, Currano, and Pan are cataloging will be permanently housed in a new building now under construction at the National Museum of Ethiopia in Addis Ababa.

With a $21,600 supplemental grant from the National Science Foundation, cabinets for storing the plant and vertebrate fossils have been made in Ethiopia and Jacobs, Currano and Pan will return later this year to curate the collections. — Margaret Allen

Related links:
Ethiopia project home page
Bonnie Jacobs
Bonnie Jacobs’ research
Neil Tabor
Ellen Currano
Why fossils matter
Bonnie Jacobs’ guide to finding fossils
SMU Student Adventures blog: Research team in Ethiopia, 2007-2008
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Earth & Climate Fossils & Ruins Researcher news

Nat Geo: Rare fossil supervolcano discovery in Italian Alps captures attention

Basalt%20Yellowstone.jpg SMU geologist James E. Quick led a team of geologists that discovered a rare fossil supervolcano in the Sesia Valley of the Italian Alps.

Now news journalists from internet, radio, television and newspaper outlets are interviewing Quick and his team, which was back at the site this September for further research. The team made the discovery two years ago and announced it in July. The discovery will advance scientific understanding of active supervolcanoes, like Yellowstone, which is the second-largest supervolcano in the world and which last erupted 630,000 years ago.

Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock moving through the Earth’s crust and explosive volcanism.

James%20Quick.jpg Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as SMU associate vice president for research and dean of graduate studies.

Co-authors of the report are Silvano Sinigoi, Gabriella Peressini and Gabriella Demarchi, all of the Universita di Trieste; John L. Wooden, Stanford University; and Andrea Sbisa, Universita di Trieste.

Excerpt from the Oct. 1, 2009 National Geographic News article “‘Supervolcano’ with twisted innards found in Italy”:

By Ker Than

Long before Vesuvius blew its top and smothered Pompeii, Italy was rocked by a “supervolcano” eruption so powerful it possibly blocked out the sun and triggered prolonged global cooling, scientists say.

The now fossilized supervolcano last erupted about 280 million years ago, leaving behind an 8-mile-wide (13-kilometer-wide) caldera, which was recently discovered in the Italian Alps’ Sesia Valley.

What’s more, seismic forces have twisted the volcano’s interior, giving scientists an unprecedented glimpse deep into the feature’s explosive plumbing — and a better shot at deciphering when the next one might blow.

Click here to read the full story.

Excerpt from the Sept. 24, 2009 MSNBC.COM/LiveScience.com article “Supervolcano plumbing revealed”:

090924-supervolcano-02.hmedium.jpg

By Rachael Rettner

The fossilized remains of a supervolcano that erupted some 280 million years ago in the Italian Alps are giving geologists a first-time glimpse at the deep “plumbing system” that brings molten rock from far underground to the Earth’s surface.

James E. Quick of Southern Methodist University in Texas and his team discovered the “fossil,” or extinct, supervolcano in the Alps’ Sesia Valley two years ago, but they are just now reporting the results after careful study.

The researchers estimate the ancient eruption sent about 1,102 cubic kilometers of volcanic ash into the atmosphere. For comparison, the supervolcano under Yellowstone National Park, which erupted 630,000 years ago, produced about 2,204 cubic kilometers.

Click here to read the full story.

Other news coverage:
video.jpg Discovery Channel: Daily Planet at 3:41 into the video
geology.com
ScienceDaily.com
Corriere della Sera
La Stampa.com
physorg.com
livescience.com
redorbit.com
dailyindia.com
scientificcomputing.com
Fox News

Related links:
National Geographic: When Yellowstone explodes
Discovery Channel: Supervolcano
BBC: Supervolcano
USGS: Yellowstone Volcano Observatory FAQ
Geology: “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.”
ScienceDaily.com: Magmatic plumbing of a large Permian caldera exposed to 25 km. depth
James E. Quick
SMU Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Fossils & Ruins Researcher news

Polcyn in Discovery Channel’s “Mega Beasts: T-Rex of the Deep”

mike-polcyn-sm2.jpg
Paleontologist Michael J. Polcyn, director of the Visualization Laboratory in the SMU Huffington Department of Earth Sciences and SMU adjunct research associate, appears as an expert source in “Mega Beasts: T-Rex of the Deep,” a science documentary that aired Sept. 13 on the Discovery Channel.

mosasaur1-utmuseum.jpgPolcyn is a world-recognized expert on the extinct marine reptile named Mosasaur.

His research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Related links:
Michael J. Polcyn
video.jpg “Mega Beasts: T-Rex of the Deep”
SMU News: Dallasaurus, ancient mosasaur
Huffington Department of Earth Sciences

Categories
Fossils & Ruins Researcher news

Angola: Final fossil frontier, museum in the ground

Angola%20006a.jpg Fossils in the rock outcrops of the coast of Angola in Africa are a “museum in the ground,” says SMU vertebrate paleontologist Louis L. Jacobs. Louise Redvers with Agence France Presse interviewed Jacobs. BBC and others published the story “Angola: Final frontier for fossils.”

“Angola is the final frontier for palaeontology,” Jacobs is quoted. “Due to the war, there has been little research carried out… but now we are getting in finally and there is so much to find.

“In some areas there are literally fossils sticking out of the rocks, it is like a museum in the ground.”

Angola%20002a.jpg

Excerpt:
By Louise Redvers
BBC News, Luanda
In the past, most people who went to Angola were searching for oil, diamonds or landmines.

Now, the country is also proving a big draw for fossil hunters — known in the scientific community as palaeontologists — who have described Angola as a “museum in the ground”.

Angola was closed off for many years because of its three-decade long civil war, which only ended in 2002, so few scientists have had the chance to visit.

We believe there are more dinosaurs to be found, we just need the facilities and means to dig for them

Those getting the chance now are not leaving disappointed. Louis Jacobs, of the Southern Methodist University in Dallas, says:

“Angola is the final frontier for palaeontology. Due to the war, there has been little research carried out… but now we are getting in finally and there is so much to find.

“In some areas there are literally fossils sticking out of the rocks, it is like a museum in the ground.”

Fossil-hunter heaven
Louis Jacobs is part of the “PaleoAngola” project whose biggest find to date was in 2005, when five bones from the front-left leg of a sauropod dinosaur were discovered on a cliff at Iembe, around 65 km (40 miles) north of the capital, Luanda.

Read the full story.

Also:
Red Orbit
Google.com
The Jakarta Globe

Jacobs’ work in Angola is jointly funded by the Petroleum Research Fund and National Geographic Society.

A professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983. Currently he has projects in Mongolia, Angola and Antarctica. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He is consulting on a new exhibit, Mysteries of the Texas Dinosaurs, which is set to open in the fall of 2009.

Related links:
Louis L. Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Jacobs in Antarctica

Categories
Earth & Climate Fossils & Ruins

“Rosetta Stone” of supervolcanoes discovered in Italian Alps, reveals rare plumbing

Fossil supervolcano in Sesia Valley, more than 200 million years old, will advance understanding of nature’s most violent eruptions

Long%20Bishop%20Tuff.jpg
“Bishop Tuff” at Long Valley resulted from a volcanic event that erupted 140 cubic miles of magma 760,000 years ago. (Photo: USGS)

Scientists have found the “Rosetta Stone” of supervolcanoes, those giant pockmarks in the Earth’s surface produced by rare and massive explosive eruptions that rank among nature’s most violent events.

The eruptions produce devastation on a regional scale — and possibly trigger climatic and environmental effects at a global scale.

A fossil supervolcano has been discovered in the Italian Alps’ Sesia Valley by a team led by James E. Quick, a geology professor at Southern Methodist University. The discovery will advance scientific understanding of active supervolcanoes, like Yellowstone, which is the second-largest supervolcano in the world and which last erupted 630,000 years ago.

A rare uplift of the Earth’s crust in the Sesia Valley reveals for the first time the actual “plumbing” of a supervolcano from the surface to the source of the magma deep within the Earth, according to a new research article reporting the discovery. The uplift reveals to an unprecedented depth of 25 kilometers the tracks and trails of the magma as it moved through the Earth’s crust.

Supervolcanoes, historically called calderas, are enormous craters tens of kilometers in diameter. Their eruptions are sparked by the explosive release of gas from molten rock or “magma” as it pushes its way to the Earth’s surface.

Calderas erupt hundreds to thousands of cubic kilometers of volcanic ash. Explosive events occur every few hundred thousand years. Supervolcanoes have spread lava and ash vast distances and scientists believe they may have set off catastrophic global cooling events at different periods in the Earth’s past.

Sesia Valley fossil caldera reveals rare magmatic plumbing
Sesia Valley’s caldera erupted during the “Permian” geologic time period, say the discovery scientists. It is more than 13 kilometers in diameter.

“What’s new is to see the magmatic plumbing system all the way through the Earth’s crust,” says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. “Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?”

Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock moving through the Earth’s crust and explosive volcanism.

“It might lead to a better interpretation of monitoring data and improved prediction of eruptions,” says Quick, lead author of the research article reporting the discovery. The article, “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.,” appears in the July issue of the peer-reviewed journal “Geology.”

Deep fossil plumbing can advance understanding of eruptions
Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

“We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts,” Quick says.

To date, scientists have been able to study exposed caldera “plumbing” from the surface of the Earth to a depth of only 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

“We think of the Sesia Valley find as the ‘Rosetta Stone’ for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data,” Quick says. “This is a very rare spot. The base of the Earth’s crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end.”

Scientists have documented fewer than two dozen caldera eruptions in last 1 million years
British researchers introduced the term “supervolcano” in the last 10 years. Scientists have documented fewer than two dozen caldera eruptions in the last 1 million years.

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia’s Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60% of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to Nebraska.

“There will be another supervolcano explosion,” Quick says. “We don’t know where. Sesia Valley could help us to predict the next event.”

Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as SMU associate vice president for research and dean of graduate studies. Co-authors of the report are Silvano Sinigoi, Gabriella Peressini and Gabriella Demarchi, all of the Universita di Trieste; John L. Wooden, Stanford University; and Andrea Sbisa, Universita di Trieste. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

News coverage:
video.jpg Discovery Channel: Daily Planet at 3:41 into the video
National Geographic News
MSNBC.COM/LiveScience.com
geology.com
ScienceDaily.com
Corriere della Sera
La Stampa.com
physorg.com
livescience.com
redorbit.com
dailyindia.com
scientificcomputing.com
Fox News

Categories
Events Fossils & Ruins Researcher news

Uncovering Angola’s ancient giants: Louis Jacobs’ presentation

Fossil finds in the rock outcrops of the coast of Angola in Africa are a “museum in the ground,” according to SMU vertebrate paleontologist Louis L. Jacobs.

Internationally recognized for his fossil discoveries, Jacobs and a team of researchers have unearthed fossils in the outcrops from Namibe, at the southern end of Angola’s coast, to Cabinda, at the northern end.

Jacobs’ work in Angola is jointly funded by the Petroleum Research Fund and National Geographic Society. He’ll present details July 9 at the monthly meeting of the Angola Field Group in Luanda.

A professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983. Currently he has projects in Mongolia, Angola and Antarctica. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He is consulting on a new exhibit, Mysteries of the Texas Dinosaurs, which is set to open in the fall of 2009.

From the Angola Field Group’s blog:

The Angola Field Group invites you to: Uncovering the Hidden Remains of Angola’s Ancient Giants, a presentation this Thursday, July 9, at 8:00 p.m. at the Viking Club with dinosaur hunter Dr. Louis Jacobs who calls the fossils of Angola a “museum in the ground.”

Dr. Jacobs and his team first came to Angola in 2005 and again in 2007 to hunt for fossils of giant marine lizards first reported in the 1960’s, but they unearthed much more than that. He will present a review of their finds from the rock outcrops of the coast of Namibe province all the way up to the coast of Cabinda, conducted in cooperation with Agostinho Neto University and ISPRA University in Lubango.

Dr. Jacobs teaches geology and paleontology at Southern Methodist University in Dallas, Texas and has conducted fieldwork worldwide. He’s internationally recognized as a dinosaur expert and six fossil species have been named after him.

Read the full entry.

Related links:
Louis L. Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Petroleum Research Fund

Categories
Earth & Climate Energy & Matter

Geothermal heat: Will Earth’s “hot rocks” become new “Texas tea”?

Texas, which has been the nation’s largest fossil-fuel producer, also has an abundant supply of another natural resource for a different kind of energy boom: clean, renewable, geothermal energy.

Like the oil and gas beneath Texas, there’s a huge quantity of naturally occurring “hot rocks” underground that could be tapped for geothermal energy to produce electricity, according to new research by SMU scientists. South and East Texas have an abundant supply, say the researchers.

iphone%20feb%205%202008%20058.jpg“There is more than enough heat below our feet to take all the state’s industrial consumption off the existing transmission grid,” says Maria Richards, program coordinator for the SMU Geothermal Laboratory.

Lab researchers recently completed an assessment of geothermal resources in South and East Texas for the Texas State Energy Conservation Office, or SECO. They found enough heat to supply Texas with clean, renewable, affordable electricity for hundreds of years, Richards says. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 and includes Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.
Maria Richards with a driller on an oil rig.

The SMU analysis will be part of The Energy Report, a SECO report on clean and renewable energy resources in Texas. SECO funded the SMU Geothermal Laboratory research with a $200,000 grant. SMU will submit the assessment to SECO later in June.

Currently Texas gets the bulk of its electricity from natural gas-, coal- and nuclear-powered generating plants. But commercial interest in geothermal energy is growing both in the state and nationwide, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU. Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, says Blackwell, who has advised the industry for the past 40 years.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists.

The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact. The MIT study’s authors said geothermal energy is especially attractive because it is widely available, doesn’t have to be stored to supply minimum demand, and has a small footprint with low or no emissions. It is also considered virtually inexhaustible, according to the Geothermal Energy Association.

The MIT study estimated the U.S. geothermal resource base at more than 13 million exajoules, which is a measurement of stored thermal energy. The extractable portion of that is estimated at more than 200,000 exajoules, or about 2,000 times the annual U.S. consumption in 2005 of primary energy, according to the report.

Currently the U.S. has more geothermal generating capacity online than any other country, about 30% of the world’s total, according to the Geothermal Energy Association.

MikePaul%5B1%5D.JPGTexas is uniquely positioned for geothermal development, according to Blackwell and Richards. That’s due in large part to the state’s thousands of existing oil and gas wells that could be developed in various ways to tap geothermal heat.

Pictured right: Michael Paul, SMU director of energy management and engineering, collects temperatures at a field near Corpus Christi

The SMU Geothermal Lab’s research has proven the potential for drawing electricity from low-temperature geothermal sources through “binary” technology. A binary power plant circulates hot groundwater through an existing oil or gas well to heat a secondary fluid. The resulting vapor then drives turbines to generate electricity.

There are thousands of oil and gas wells in Texas that could be economical for geothermal development, Richards says. That’s especially true since the technology can operate concurrently in oil and gas wells, which would significantly reduce the cost of geothermal exploration. Geothermally produced electricity could then offset the power normally required to operate oil-field production units. Additionally, excess electricity could be sold back to the statewide electric transmission grid. Depleted oil and gas wells that are slated for abandonment could again generate revenue when tapped for geothermal production.

SMU’s regional assessment for SECO covered 91 counties. It calculated the geothermal heat under South and East Texas at 921,085 exajoules, giving the state enormous geothermal potential. Anywhere from 2 percent to 10 percent of that is recoverable, depending on the efficiency of the conversion technology and the location of the resource.

“As humans we have no real concept as to how much heat is below our feet,” Richards says. “We feel the sun in our face, and the wind in our hair, but we don’t feel the Earth’s heat through our feet.”

SMU’s researchers analyzed historical temperature data for wells drilled since the early 1990s. Drilling logs for each hole include temperature recordings taken at various depths. The SMU analysis looked at wells ranging from 2,000 feet to 20,000 feet deep. The researchers were surprised that the temperature in some wells ran as hot as 450 degrees Fahrenheit, Richards says.

Wells drilled from 9,000 feet to 14,000 feet deep, with temperatures downhole of 250 degrees or greater, will likely be economical for geothermal energy. They would be sufficiently hot and reasonably close to the surface. In deeper wells, unless they flow naturally, the binary technology would require too much electricity.

The team of SMU Geothermal Laboratory researchers included six graduate and undergraduate students.

“This turned out to be a wonderful project for the students,” Richards says. “With President Barack Obama’s push for more emphasis on science and renewable energy, these are students on the leading edge of that whole process. And they are focused on a project that was funded by the state of Texas.” — Margaret Allen

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Renewable Electricity Production Tax Credit
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Technology

News reports: SMU deploys seismic stations to study earthquakes

Rare earthquake activity in the Dallas-Fort Worth area has prompted the National Science Foundation to loan SMU 10 seismic stations to study the phenomenon. News reports about the research have been filed by The Wall Street Journal, WFAA-TV Channel 8, the Dallas Morning News and others.

Excerpts:

By Ben Casselman
The Wall Street Journal
CLEBURNE, Texas — This small city at the epicenter of the region’s natural-gas boom has been shaken by another arrival from underground: earthquakes.

Five small temblors this month have some people pointing the finger at technology that drilling companies use to reach deep into the earth to shatter rock and release new stores of natural gas — the same technology that has made many of the locals rich.

Thousands of wells have been drilled in the past five years. Now, a wave of small earthquakes is leading some residents in the north Texas town to link the two developments and some seismic experts to wonder about the cause.
Read the full story.

By Jason Whitely
WFAA-TV
Geophysics researchers at SMU said they will send several portable seismic stations to Cleburne after a scheduled meeting with city officals next Monday. City officials want to begin taking more precise measurements after five minor earthquakes have shaken the Johnson County city south of Fort Worth in the last week.
Read the full story.

By David Tarrant
Dallas Morning News
The recent swarm of small earthquakes has stirred more than a passing interest among local scientists, and a team from Southern Methodist University plans to deploy portable seismic stations for a better reading on what’s shaking down below.
Read the full story.

Categories
Earth & Climate Energy & Matter Researcher news Student researchers Technology

WFAA: SMU to study recent North Texas quakes

SMU researchers will deploy seismic stations in North Texas in an effort to gather information about the recent spate of earthquakes in the area, according to a June 9 report by WFAA-TV Channel 8 news reporter Jason Whitely. Read the full story.

Excerpt

By Jason Whitely
WFAA News
DALLAS — In the frenzied pace of everyday life, few North Texans think much about what happens beneath their feet. However, the recent earthquakes in the Cleburne area have changed that for many.

There were two more earthquakes Tuesday. The first measured 2.4 and the second, which happened an hour later, was 2.1.

“This is not a place where earthquakes occur, so this is not a place where small earthquakes have been studied,” said Dr. Chris Hayward, a geophysics research projects director at SMU.

Southern Methodist University is preparing to embark on a first in the Dallas-Fort Worth area.

“This is the equipment we’ll be putting out in the field to detect earthquakes,” said Ashley Howe, a SMU earth science student, while standing over a portable hi-tech seismic station.

The university is deploying ten portable seismic stations to better pinpoint why the ground has started to rumble.

Read the full story

Related links:
State of Texas Hazards Analysis manual
WFAA: Reports on Cleburne quakes
Brian Stump’s research
Brian Stump
SMU Geophysical Imaging Laboratory
SMU Geophysics Research Archives
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Fossils & Ruins Plants & Animals Researcher news Student researchers

Discovery Channel: Dino young found safety in numbers

The work of SMU researchers Timothy Myers and Anthony Fiorillo was featured online March 19, 2009 on the Discovery Channel. “Mass Dino Graves Suggest Young Banded Together” by Jennifer Viegas highlighted findings being published in the April issue of “Science” magazine.

toni.gif

Lead author Timothy Myers, is a Ph.D. graduate student in SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College.

Co-author Anthony Fiorillo is an adjunct professor in the Huffington Department of Earth Sciences and Curator of Paleontology for the Dallas Museum of Natural History.

Anthony Fiorillo

Excerpt

By Jennifer Viegas
Discovery News

New findings on mass dinosaur graves, where several juveniles died together, suggest that young dinosaurs banded together to improve their chances for survival, according to two new studies.

Together, two new studies present three gory ways in which the young dinosaur groups probably met their end: mud traps, droughts and predators.

Paul Sereno, a University of Chicago paleontologist, and his team studied the remains of a herd of more than 25 young, bird-like dinosaurs of the species Sinornithomimus dongi that died together 90 million years ago at what is now the Gobi Desert. …

Researchers Timothy Myers and Anthony Fiorillo of the Huffington Department of Earth Sciences at Southern Methodist University focused their attention on two other juvenile dinosaur fossil sites, which are described in a paper that will be published in next month’s Palaeogeography, Palaeoclimatology, Palaeoecology.

The first, at Mother’s Day Quarry in Montana, contains the remains of several young sauropods that died en masse during the Upper Jurassic. Skin impressions indicate soft tissue was still present when the animals were buried at the site.

“During droughts, modern animals tend to cluster around water sources,” Myers told Discovery News. “The herd of sauropods preserved at the Mother’s Day Quarry may have done the same.”

He and Fiorillo also studied the remains of three juvenile Alamosaurus sanjuanensis at the Upper Cretaceous site Big Bend in Texas. The minimally weathered bones suggest the young sauropods died together in a single event.

“Given their proximity to a lake shore, it’s possible that they succumbed to drought as well,” Myers said.

Read the full story at Discovery.com …

Related links:
Anthony Fiorillo faculty site
Anthony Fiorillo web site
Abstract: Evidence for gregarious behavior, age segregation in sauropod dinosaurs
SMU Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Plants & Animals Researcher news

Discovery News: Surprise! Not all stegosaurs had short necks

Vertebrate paleontologist Louis L. Jacobs, a professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, is quoted in Discovery News online in the February 25 story “Long-Necked Stegosaur Defies Reputation.”

Jacobs is known for his work documenting changes in fossil mammals in Pakistan, which helps scholars correlate climatic changes with evolutionary changes seen in animals, and which helps calibrate the rate of DNA evolution in mammals. He’s also credited for discovery of what’s now known as “Malawisaurus,” a plant-eating dinosaur that lived in Malawi, Africa, 115 million years ago.

Excerpt

By Jennifer Viegas
Discovery News

The classic image of a stegosaur calls to mind a grazing beast with short legs and a short neck, but a newly discovered species from Portugal was found to have one of the longest necks ever recorded for a dinosaur, relative to overall body size, according to a new study.

“Miragaia longicollum,” meaning “long-necked wonderful goddess of the Earth,” had more neck vertebrae than almost any other dinosaur, tying the record previously set by three Chinese sauropods, the study found.

Octavio Mateus, who led the research, told Discovery News that the new species and other stegosaurs were four-legged plant eaters “with a row of plates and spines along the body from the neck to the tail.” One swift swing of the tail could jab the sharp spines into would-be attackers. …

Louis Jacobs, director of the Shuler Museum of Paleontology at Southern Methodist University, told Discovery News that the new study “is quite interesting because it shows a body form, and by inference, an ecological diversity among stegosaurs that was not suspected before.”

Read the full story

Related links:
Louis Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College

Categories
Fossils & Ruins Plants & Animals Researcher news

National Geographic: Rare fossil of pregnant whale is missing-link

Vertebrate paleontologist Louis L. Jacobs, a professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, is quoted in the February 3 online story “Early whales gave birth on land, fossils reveal” by National Geographic News Service.

Jacobs is known for his work documenting changes in fossil mammals in Pakistan, which helps scholars correlate climatic changes with evolutionary changes seen in animals, and which helps calibrate the rate of DNA evolution in mammals. He’s also credited for discovery of what’s now known as “Malawisaurus,” a plant-eating dinosaur that lived in Malawi, Africa, 115 million years ago.

Excerpt

By Tasha Eichenseher
National Geographic News

It’s an evolutionary discovery Darwin himself would have been proud of.

Forty-seven million years ago primitive whales gave birth on land, according to a study published this week that analyzes the fossil of a pregnant whale found in the Pakistani desert.

It is the first fetal fossil from the group of ancient amphibious whales called “Archaeoceti,” as well as the first from an extinct species called “Maiacetus inuus.”

When the fossil was discovered, nine years ago, University of Michigan paleontologist Philip Gingerich was thrown off by the jumble of adult and fetal-size bones.

“The first thing we found

[were] small teeth, then ribs going the wrong way,” Gingerich said. Later, “it was just astonishing to realize why the specimen in the field was so confusing.”

The head-first position of the fetus was especially telling.

Land mammals are generally born head first, and marine mammals are born tail first. …

Whales’ slow transition from land to sea is documented in other fossils, but this is the most complete to fill a gap during this time period…..

“This is a big discovery because it tells us about life history, or the way early whales lived their lives, [which is something] that is difficult to learn from fossils,” Gingerich said.

The most famous other seafaring animals to be found fossilized with a complete fetus were ichthyosaurs, a reptile group that lived roughly 245 to 100 million years ago.

“Not since have we seen fossils of marine-dwelling vertebrates that tell us so much about the biology of evolving an ocean dwelling way of life from a terrestrial ancestor,” said Louis Jacobs, a vertebrate paleontologist at Southern Methodist University in Texas.

“It is a missing link of the most informative sort,” Jacobs added.

“Charles Darwin would delight.”
Read the full story

Related links:
Natl Geo News: Early whales gave birth on land, fossils say
LiveScience story: Ancient whales gave birth on land
LiveScience.com: Surprising whale discoveryvideo.jpg
Louis L. Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Earth & Climate Fossils & Ruins Learning & Education Plants & Animals Researcher news

Louis Jacobs co-writes, consults for international paleo video

Vertebrate paleontologist Louis L. Jacobs is scientific consultant and co-writer of a new 33-minute video just released by the Society of Vertebrate Paleontology.

A professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, Jacobs introduces the “We Are SVP” video. An internationally known vertebrate paleontologist, he is a former president of the society.

lou-jacobs-we-are-svp-300.jpgThe video features many other respected paleontologists from around the world, all of them talking about the work they do and its importance to science and society. The goal of the video is to educate students, teachers and the public about vertebrate paleontologists and the importance of their work.

“Because we study fossils, especially dinosaurs, we capture the imagination of children, and that makes vertebrate paleontology a gateway for all science,” Jacobs says in the video.

Also appearing is SMU geology student and SMU President’s Scholar Karen Gutierrez.

1447688559_e2d9928744.jpg

The society’s 2,300 members in 54 countries are scientists who study fossils of animals with backbones and complex brains, including dinosaurs.

Vertebrate paleontology’s findings provide the evidence for environmental change and contribute to understanding everything from climate change and evolution to ecology.

“Our field expeditions and our laboratory work provide the evidence for environmental change, including its most serious consequence — extinction,” Jacobs says in the video.

Jacobs joined SMU’s faculty in 1983. Currently he has projects in Mongolia, Angola and Antarctica.

His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He is consulting on a new exhibit, Mysteries of the Texas Dinosaurs, which is set to open in the fall of 2009.

Jacobs is also known for his work documenting changes in fossil mammals in Pakistan, which helps scholars correlate climatic changes with evolutionary changes seen in animals, and which helps calibrate the rate of DNA evolution in mammals. He’s also credited for discovery of what’s now known as Malawisaurus, a plant-eating dinosaur that lived in Malawi, Africa, 115 million years ago.

In the early 1980s, Jacobs worked for paleoanthropologist Richard Leakey as head of the division of paleontology at the National Museums of Kenya.

The SVP video is narrated by “Law & Order” television star Sam Waterston. The video was produced by longtime New York theater producer Steve Cohen. Executive producer was Ray Marr of Shade Tree Studios in Dallas. Portions of the video were shot at the Museum of Nature & Science in Dallas.

Related links:
Louis L. Jacobs
Video: We Are SVPvideo.jpg
Society of Vertebrate Paleontology
Karen Gutierrez
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences

Categories
Earth & Climate Fossils & Ruins

Ethiopian fossils to shed light on climate change

Crew2007-2008-sm.jpgA team of researchers led by paleobotanist Bonnie Jacobs and sedimentologist Neil Tabor of Southern Methodist University returned to northwestern Ethiopia in late December 2007 to spend almost a month collecting additional plant fossils and gaining a more thorough understanding of their geological context.

In December 2006, the team collected more than 600 plant fossils, which are on loan for study in labs at SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College. All told, the team has documented more than 1,500 plant fossils, hundreds of vertebrate fossils and numerous examples of ancient soils. This year they widen their search to better understand the geology, landscape, plant and animal communities, and climate of Chilga, Ethiopia, 28 million years ago.

The project, which also is training Ethiopian students in geology and paleontology, is funded by a $300,000, three-year grant from the National Science Foundation.

In this second year of the grant period, the team will collect from a fruit and seed deposit — to compare with that collected last year — sample leaves to provide information about insect plant-eaters, and explore for new fossil sites, according to Jacobs, associate professor, and Tabor, assistant professor, both in the Department of Earth Sciences.

The 2007-2008 Ethiopia crew

The project is expected to help scientists understand the world’s changing climate, by knowing about that of the past based upon plant fossils and ancient soils.

Documenting past climate at low latitudes, including in Africa, helps researchers understand global climate change. In addition, the early origins of Africa’s flora are largely a mystery. What we know comes primarily from hypotheses generated by the modern distributions of plants rather than from the fossil record.

bonnie-and-neil.jpg

Angiosperms, “flowering plants,” make up nearly all living plants in today’s tropical, subtropical and temperate regions. In Africa, little is known about how they changed and adapted between their evolutionary origins 130 million years ago and recent times. Chilga fossils provide a unique view of the Earth’s plant life 28 million years ago, and fill a gap in understanding the evolution of today’s tropical floras.

The 2006 effort focused on, CH-3, which was known to produce both plant and vertebrate fossils. Until last year, only 92 plant specimens had been collected from CH-3 and these all came from the surface. These are usually bigger, less delicate specimens because they’ve been exposed to erosion and perhaps moved from their original position in the sediment.
Bonnie Jacobs, Neil Tabor and crew

The researchers excavated into the hillside at CH-3, exposing the fossiliferous deposit and, after only eight days, collected 523 specimens — mainly fruits and seeds. Their finds included some things never seen before at Chilga, such as several flowers, some very tiny seeds, and a large fruit, all of which are still being studied.

Besides Jacobs and Tabor, the 2007 team included: SMU students Dan Danehy and Harvey Herr; John Kappelman, University of Texas at Austin; and Ellen Currano, Penn State University.

Related links:
Ethiopia project home page
Bonnie Jacobs
Bonnie Jacobs’ research
Neil Tabor
Dan Danehy
John Kappelman
Ellen Currano
Why fossils matter
Bonnie Jacobs’ guide to finding fossils
SMU Student Adventures blog: Research team in Ethiopia, 2007-2008
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Mongabay.com: Climate shift in East Africa due to geology

Categories
Earth & Climate Technology

Wave research sorts earthquakes, blasts, nuclear testing

SMU seismologist Brian W. Stump has travelled far and wide to better understand the sound waves and vibrations that occasionally burp and shudder through and around the Earth.

The past several years, Stump, the Claude C. Albritton Jr. Chair in SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College, has expanded his research to China and South Korea.

His scientific view also has broadened to include the role played by the atmosphere as well as the Earth in wave propagation, an area of expertise. And serving on the board of directors of the Incorporated Research Institutions for Seismology, or IRIS, has transformed him into an advocate for the increasingly collaborative discipline.

Collaboration is one purpose of a joint U.S.-China research project, “Study of Regional Broadband waves from Earthquakes and Man-induced Events in NE China,” north of Beijing where Stump has focused research attention since 2002.

Sponsored by the U.S. Air Force Research Laboratory, SMU researchers and those from the China Earthquake Administration’s Institute of Geophysics have deployed a network of 15 seismic instrument stations to record broadband waves radiating 100 to 1,000 kilometers from earthquakes and such man-induced events as mining explosions.

borehole.jpg

The study sites incorporate areas of frequent earthquake activity, including Haicheng, where the first successful earthquake prediction was made more than 30 years ago. As forecast, a magnitude 7.3 quake struck Haicheng February 4, 1975, whereupon 90 percent of all buildings there collapsed. But “as a result of the prediction and evacuations in the days preceding the event,” Stump recalled in a Dedman College Master Lecture delivered last year, “no lives were lost in a region of three million inhabitants.”

In late July the following year, however, without any warning a magnitude 7.8 quake hit Tangshan, a city southwest across the Gulf of Liaoning from Haicheng. Nearly 250,000 people died.

Brian W. Stump

“Earthquakes in that region aren’t understood very well,” says Stump, who earned his Ph.D. in geophysics from the University of California, Berkeley. That knowledge deficit has spurred project scientists to better understand the seismicity of that part of the world, with hazard reduction as one ultimate goal. More immediately, however, “the major emphasis is trying to understand the crust and mantle in this area,” he says.

zrm1.jpg

Back to China
Stump returns to China in July for an American Geophysical Union conference in Beijing. Post doctoral fellow Rongmao Zhou will present a paper on the crust and upper mantle at each site. Stump identified Zhou, a 2004 SMU Ph.D. recipient from China, as “the key person” on the project. Zhou says he chose SMU over other universities because of Stump’s personality and reputation.

“He always is supportive of his students and colleagues,” Zhou says. “And he encourages us to explore new ideas and directions.” Although Stump and fellow SMU geophysics professors “make our geophysical program notable to the world,” Zhou says, it isn’t only with peers that Stump shares his enthusiasm.

Rongmao Zhou

Aileen Fisher served as Stump’s teaching assistant last fall for an introductory class, Earthquakes and Volcanoes.

“Even though the students were freshman and sophomore nonmajors, he made the class interesting and versatile,” Fisher says. “I know he spent at least two or three hours a week outside of class talking with some of these intro students who were just interested in the topic.”

groundbreaking_map1.jpg

Since 1999 another topic of interest to Stump and fellow SMU scientists has been a research project in South Korea, in which some experiments focused skyward. They followed sound waves through the atmosphere with acoustic gauges, as well as vibrations through the ground with seismometers.

Sponsored by the U.S. Department of Defense and conducted jointly with the Korea Institute of Geoscience and Mineral Resources, the project follows the pioneering work of SMU’s Schuler-Foscue Professor of Geological Sciences Eugene Herrin in combining seismic and acoustic observations, Stump says.

“We call it seismo-acoustic analysis,” he says.

herrin_lg.jpg

The South Korea project initially focused on locating and identifying industrial blasting events because Herrin had discovered that certain wave generators, including explosions and earthquakes, create not only seismic waves but also infrasound waves. Based on that discovery, Herrin was one of the first proponents of using seismo-acoustic analysis to identify mining explosions.

“Every country in the world uses mining explosions every day,” Stump says.

Eugene Herrin

Because blasts, a standard mining practice, are so prevalent, particularly as “small events below magnitude 4,” the ability to distinguish their wave characteristics from those of earthquakes is important, he adds. Equally important is the ability of seismologists to differentiate mining detonations from nuclear weapons tests.

Stump says that he knows of no weapons tests that have occurred since India detonated five underground nuclear explosions in May 1998, and Pakistan six. However, two seismic stations installed and operated by SMU continue in service to the International Monitoring System of the Comprehensive Nuclear Test-Ban Treaty Organization in Vienna. One is in the Big Bend area of Texas and one in Nevada.

North Korea’s recent announcement to obtain and build nuclear weapons “makes understanding such a test event even more important,” Stump says.

“Certainly stating that they will develop the weapons and actually testing are two different things,” he says. “This difference drives the continuation of negotiations with the Koreans.”

brian-stump-sm.jpg

New projects ahead
Stump, who in 2004 was honored with the yearlong Dedman Family Distinguished Professorship, joined SMU in 1983.

From 1994 to 1996 he assisted in the development of nuclear test-ban verification technology for the Department of Energy at the Los Alamos National Laboratory in New Mexico.

Stump also served as a Department of Energy technical adviser to the U.S. delegation to disarmament negotiations in Geneva, Switzerland.

That experience made it logical for the Seismological Society of America to tap Stump as one of two experts to convene special gatherings at a significant meeting in San Francisco in April.

Brian W. Stump

For the 100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake, Stump and William R. Walter of the Lawrence Livermore National Laboratory assembled studies and presenters for the “Nuclear Explosion Monitoring Anniversary Sessions.” The sessions took a retrospective look at nuclear monitoring seismology, the branch of science that came into being when seismographs detected the first atomic bomb test in New Mexico in July 1945.

groundbreaking_chart2.png

Looking forward, Stump expresses excitement about EarthScope, a more than $200 million initiative to study North America’s crust and mantle as well as the processes that control its earthquakes and volcanoes.

Funded by the National Science Foundation, EarthScope brings together space, geoscience, telecommunications, and other specialists to compile a 3-D portrait below ground using seismometers, global positioning satellite receivers, satellite radar imagery, strain meters, and other collection and analysis instruments.

groundbreaking_photo3.jpg

IRIS is a consortium of university and not-for-profit organizations committed to seismological research. Stump is a member of its board. The consortium manages the data sent in from a network of 100 fixed and 400 transportable EarthScope seismic stations.

“It’s only through collaboration and multiple participants that EarthScope is able to be accomplished,” Stump says. “The collaboration is improving the way seismology is being done. This is exciting because it changes the way my profession does business.”

Related links:
Brian Stump’s research
Brian Stump
Rongmao Zhou
Aileen Fisher
Eugene Herrin
SMU Geophysical Imaging Laboratory
SMU Geophysics Research Archives
Incorporated Research Institutions for Seismology
Explainer: Comprehensive Test Ban Treaty
Geotimes 2002 CTBT article
Explainer: Industrial mining and explosions
GeoScience World: Mining explosion article
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences