Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News

Associated Press: Projecto PaleoAngola discovers Angola’s first dinosaur

Karen_Carr_Angolatitan%2C%20320x169.jpeg

The research of an international team co-led by SMU paleontologist Louis L. Jacobs is receiving worldwide coverage for discovery of the first fossil of a dinosaur from Angola. A paper published in the “Annals of the Brazilian Academy of Science” described the long-necked, plant-eating sauropod based on a fossilized forelimb with unique skeletal characteristics that indicates it’s from a previously unknown dinosaur.

An Associated Press story covering discovery of the 90-million-year-old fossil has been published and aired by numerous media outlets, including The New York Times, Newsday, NPR, Forbes, The Daily Mail, and the Hamburger Abendblatt,

SMU paleontologist Michael J. Polcyn is also a member of the Projecto PaleoAngola team.

The PaleoAngola researchers have described Angola as a “museum in the ground” for the abundance of fossils there.

A professor in Dedman College’s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Besides Angola, Jacobs also does field work in Mongolia. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He consulted on the new exhibit, Mysteries of the Texas Dinosaurs, which opened in 2009.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Polcyn is director of the Visualization Laboratory in SMU’s Department of Earth Sciences and an SMU adjunct research associate.

A world-recognized expert on the extinct marine reptile named Mosasaur, his research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Read the full story.

EXCERPT:

By The Associated Press
Scientists say they have discovered the first fossil of a dinosaur in Angola, and that it’s a new creature, heralding a research renaissance in a country slowly emerging from decades of war.

A paper published Wednesday in the Annals of the Brazilian Academy of Sciences describes a long-necked, plant-eating sauropod, among the largest creatures ever to have walked the earth. The international team that found and identified the fossilized forelimb bone say it is from a previously unknown dinosaur, citing unique skeletal characteristics.

The fossil was found along with fish and shark teeth in what would have been a sea bed 90 million years ago, leading its discoverers to believe the dinosaur might have been washed into the sea and torn apart by ancient sharks.

The new dinosaur has been dubbed Angolatitan adamastor — Angolatitan means “Angolan giant” and the adamastor is a sea giant from Portuguese sailing myths.

Matthew F. Bonnan, a sauropod expert at Western Illinois University, was not involved with the Angolan research. But after reading the report, he said he expected their claim to have found a new dinosaur to hold up.

“I think they’ve been very careful,” he said, adding the find could add to knowledge about how sauropods adapted to different environments.

Bonnan also said it was “really cool” to see such research coming out of Angola.

“The neat thing about dinosaur paleontology is that it’s becoming more global,” he said, saying that was giving scientists a global perspective on the evolution of dinosaurs.

“The more people and places that we involve in science, the better off we all are,” Bonnan said.

Read the full story.

Categories
Fossils & Ruins Learning & Education Plants & Animals Slideshows Technology Videos

3D digital download of giant Glen Rose dinosaur track is roadmap for saving at-risk natural history resources

Paleontologists propose the new term “digitype” for full-resolution three-dimensional digital models that preserve and archive endangered fossils

Portable laser scanning technology allows researchers to tote their latest fossil discovery from the field to the lab in the form of lightweight digital data stored on a laptop. But sharing that data as a 3D model with others requires standard formats that are currently lacking, say paleontologists at Southern Methodist University.

The SMU researchers used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile. They share their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.

The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says SMU paleontologist Thomas L. Adams, lead author of the scientific article. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation. Click here for the download link.

“This paper demonstrates the feasibility of using portable 3D laser scanners to capture field data and create high-resolution, interactive 3D models of at-risk natural history resources,” write the authors.

“3D digitizing technology provides a high-fidelity, low-cost means of producing facsimiles that can be used in a variety of ways,” they say, adding that the data can be stored in online museums for distribution to researchers, educators and the public.

SMU paleontologist Louis L. Jacobs is one of the coauthors on the article.

“The protocol for distance scanning presented in this paper is a roadmap for establishing a virtual museum of fossil specimens from inaccessible corners across the globe,” Jacobs said.

Paleontologists propose the term “digitype” for digital models
Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites.

SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say.

Book a live interview

To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.

Related links

More SMU Research news

A new breathing therapy reduces panic and anxiety by reversing hyperventilation
Rodents were diverse and abundant in prehistoric Africa as human ancestors evolved
A new child development theory bridges nature vs. nurture
Mathematical Equation Calculates for First Time the Cost of Walking
Evidence weak for tropical rainforest 65 million years ago in Africa’s low-latitudes
Veterinary medicine shifts to more women, fewer men; pattern will repeat in medicine, law fields

The SMU paleontologists propose the term “digitype” for such facsimiles, writing in their article “High Resolution Three-Dimensional Laser-scanning of the type specimen of Eubrontes (?) Glenrosensis Shuler, 1935, from the Comanchean (Lower Cretaeous) of Texas: Implications for digital archiving and preservation.”

Laser scanning is superior to other methods commonly used to create a model because the procedure is noninvasive and doesn’t harm the original fossil, the authors say. Traditional molding and casting procedures, such as rubber or silicon molds, can damage specimens.

But the paleontologists call for development of standard formats to help ensure data accessibility.

“Currently there is no single 3D format that is universally portable and accepted by all software manufacturers and researchers,” the authors write.

Digitype is baseline for measuring future deterioration
SMU’s digital model archives a fossil that is significant within the scientific world as a type specimen — one in which the original fossil description is used to identify future specimens. The fossil also has cultural importance in Texas. The track is a favorite from well-known fossil-rich Dinosaur Valley State Park, where the iconic footprint draws tourists.

The footprint was left by a large three-toed, bipedal, meat-eating dinosaur, most likely the theropod Acrocanthosaurus. The dinosaur probably left the footprint as it walked the shoreline of an ancient shallow sea that once immersed Texas, Adams said. The track was described and named in 1935 as Eubrontes (?) glenrosensis. Tracks are named separately from the dinosaur thought to have made them, he explained.

“Since we can’t say with absolute certainty they were made by a specific dinosaur, footprints are considered unique fossils and given their own scientific name,” said Adams, a doctoral candidate in the Roy M. Huffington Department of Earth Sciences at SMU.

The fossilized footprint, preserved in limestone, was dug up in the 1930s from the bed of the Paluxy River in north central Texas about an hour’s drive southwest of Dallas. In 1933 it was put on prominent permanent display in Glen Rose, Texas, embedded in the stone base of a community bandstand on the courthouse square.

The footprint already shows visible damage from erosion, and eventually it will be destroyed by gravity and exposure to the elements, Adams said. The 3D model provides a baseline from which to measure future deterioration, he said.

In comparing the 3D model to an original 1930s photograph made of the footprint, the researchers discovered that some surface areas have fractured and fallen away. By comparing the 3D model with a synthetically altered version, the researchers were able to calculate volume change, which in turn enables reconstruction of lost volume for restoration purposes.

Model comprises 52 scans totaling 2 gigabytes
Adams and his research colleagues took a portable scanner to the bandstand site to capture the 3D images. They employed a NextEngine HD Desktop 3D scanner and ScanStudio HD PRO software running on a standard Windows XP 32 laptop. The scanner and laptop were powered from outlets on the bandstand. The researchers used a tent to control lighting and maximize laser contrast.

Because of the footprint’s size — about 2 feet by 1.4 feet (64 centimeters by 43 centimeters) — multiple overlapping images were required to capture the full footprint.

Raw scans were imported into Rapidform XOR2 Redesign to align and merge them into a single 3D model. The final 3D model was derived from 52 overlapping scans totaling 2 gigabytes, the authors said.

The full-resolution 3D digital model comprises more than 1 million poly-faces and more than 500,000 vertices with a resolution of 1.2 millimeters. It is stored in Wavefront format. In that format the model is about 145 megabytes. The model is free for downloading from a link on Palaeontologia Electronica‘s web site.

3D digital footprint also available as a QuickTime virtual object
A smaller facsimile is also available from the journal as a QuickTime Virtual Reality object. In that format, users can slide their mouse pointer over the 3D footprint image to drag it to a desired viewing angle, and zoom and pan. Click here for the link to the QuickTime video.

Besides the 3D model, included with the Palaeontologia Electronica article is a link to a pdf of the original 1935 scientific article in which SMU geology professor Ellis W. Shuler described and identified the dinosaur that made the track.

Shuler’s article, no longer in print, is “Dinosaur Track Mounted in the Band Stand at Glen Rose, Texas,” published in Field & Laboratory. The clay molds and plaster casts Shuler made of the bandstand track are now lost, Adams said. Click here for the article.

Besides Adams and Jacobs, other co-authors on the article are paleontologists Christopher Strganac and Michael J. Polcyn in the Roy M. Huffington Department of Earth Sciences at SMU.

The research was funded by the Institute for the Study of Earth and Man at SMU. — Margaret Allen

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Adams or to book him in the SMU studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Researcher news SMU In The News Videos

BBC Radio: PaleoAngola project unearths ancient vertebrate fossils

BBC Radio covered the research in Angola of SMU paleontologists Louis L. Jacobs and Michael J. Polcyn.

Journalist Louise Redvers in August interviewed Jacobs and Polcyn, both members of the Projecto PaleoAngola team.

A professor in Dedman College’s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983.

Besides Angola, Jacobs also does field work in Mongolia. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He consulted on the new exhibit, Mysteries of the Texas Dinosaurs, which opened in 2009.

In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Polcyn is director of the Visualization Laboratory in SMU’s Department of Earth Sciences and an SMU adjunct research associate.

A world-recognized expert on the extinct marine reptile named Mosasaur, his research interests include the early evolution of Mosasauroidea and adaptations in secondarily aquatic tetrapods. Polcyn’s research also includes application of technology to problems in paleontology.

Listen to the podcast:

http://www.youtube.com/watch?v=Uic2WosjxWM

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

National Geographic: Texas pterosaur Aetodactylus Halli in the spotlight after 95 million years

National Geographic News interviewed SMU postdoctoral researcher Timothy S. Myers about the new species and genus of pterosaur he identified and named, Aetodactylus Halli.

In the April 28 article “Toothy Texas Pterosaur Found; Soared Over Dallas” reporter John Roach talked to Myers about the 95 million-year-old jaw that was discovered by Lake Worth resident Lance Hall.

The pterosaur flew over the ancient sea that used to cover much of the Dallas-Fort Worth area. A rare species of pterosaur in North America, Myers named the new flying reptile after Hall.

Others who wrote about Myers’ Aetodactylus Halli research include:

Others who published a story about the find were: American Scientist, MSNBC, FOX News, the San Diego Tribune and many others.

EXCERPT:

By John Roach
National Geographic News

Long before six flags flew over Texas, a newfound species of winged reptile
with an exceptionally toothy grin owned the skies over what is now the Lone
Star State.

The recently discovered pterosaur, dubbed Aetodactylus halli, was identified based on a 95-million-year-old lower jawbone found outside of Dallas by amateur fossil hunter Lance Hall.

The pterosaur had a relatively slender jaw filled with thin, needlelike teeth, which might have helped the creature pluck fish from the shallow sea that once covered the region, a new study says.

“It was hanging out near the ocean, and that is probably where it derived its food from,” said study leader Timothy Myers, a paleontologist at Southern Methodist University in Dallas.

By comparing the jawbone to more complete pterosaur fossils, Myers and his team think A. halli was a medium-size animal with a nine-foot (three-meter) wingspan and a short tail.

Texas’s Toothy Pterosaur a Rare Find
Pterosaurs ruled the skies from the late Triassic period, more than 200 million years ago, until dinosaurs went extinct at the end of the Cretaceous, about 65 million years ago.

Read the full story

Categories
Fossils & Ruins Plants & Animals Slideshows

Texas discovery: Rare 95 million-year-old flying reptile Aetodactylus halli is new genus, species of pterosaur

A 95 million-year-old fossilized jaw discovered in Texas has been identified as a new genus and species of flying reptile, Aetodactylus halli.

Aetodactylus halli is a pterosaur, a group of flying reptiles commonly referred to as pterodactyls.

The rare pterosaur — literally winged lizard — is one of the youngest members in the world of the pterosaur family Ornithocheiridae, says paleontologist Timothy S. Myers, who identified and named Aetodactylus halli.

The newly identified reptile is only the second ornithocheirid ever documented in North America, Myers says. He is a postdoctoral fellow in the Roy M. Huffington Department of Earth Sciences at Southern Methodist University in Dallas.

Aetodactylus halli would have soared over what is now the Dallas-Fort Worth area during the Cretaceous Period when much of the Lone Star state was under water, covered by a vast ancient sea.

Click here to view larger image of Aetodactylus halli

While rare in North America, toothed pterosaurs belonging to the Ornithocheiridae are a major component of Cretaceous pterosaur faunas elsewhere in the world, Myers says. The Texas specimen — a nearly complete mandible with most of its 54 teeth missing — is definitively younger than most other ornithocheirid specimens from Brazil, England and China, he says. It is five million years younger than the only other known North American ornithocheirid.

Myers describes the new species in the latest issue of the Journal of Vertebrate Paleontology.

Myers named the pterosaur Aetodactylus halli after Lance Hall, a member of the Dallas Paleontological Society who hunts fossils for a hobby. Hall found the specimen in 2006 in North Texas. It was embedded in a soft, powdery shale exposed by excavation of a hillside next to a highway. The site was near the city of Mansfield, southwest of Dallas and west of Joe Pool Lake. Hall donated the specimen to SMU.

Pterosaurs ruled the skies from the late Triassic, more than 200 million years ago, to the end of the Cretaceous, about 65 million years ago, when they went extinct. They represent the earliest vertebrates capable of flying.

Fossil hunter saw long row of teeth sockets
The Aetodactylus halli jaw was discovered in the geologic unit known as the Eagle Ford Group, which comprises sediments deposited in a shallow sea, Myers says. Outcrop of the Eagle Ford Group extends northward from southwestern Texas into southern Oklahoma and southwestern Arkansas.

“I was scanning the exposure and noticed what at first I thought was a piece of oyster shell spanning across a small erosion valley,” Hall recalls of the discovery. “Only about an inch or two was exposed. I almost passed it up thinking it was oyster, but realized it was more tan-colored like bone. I started uncovering it and realized it was the jaw to something — but I had no idea what. It was upside down and when I turned over the snout portion it was nothing but a long row of teeth sockets, which was very exciting.”

SMU vertebrate paleontologist Louis L. Jacobs, a dinosaur expert internationally recognized for his fossil discoveries in Texas and Africa, and SMU paleontologist Michael J. Polcyn, recognized for his expertise on the extinct marine reptiles called mosasaurs, both told Hall it was a pterosaur and an important find.

Unique jaw differs from others
The 38.4-centimeter Aetodactylus jaw originally contained 54 slender, pointed teeth, but only two remain in their sockets, Myers says. The lower teeth were evenly spaced and extended far back along the jaw, covering nearly three quarters of the length of the mandible. The upper and lower teeth interlaced when the jaws were closed.

In Aetodactylus, changes in tooth size along the jaw follow a similar pattern to those of other ornithocheirids. However, Aetodactylus differs from all other ornithocheirids in that its jaws were thin and delicate, with a maximum thickness not much greater than 1 centimeter, Myers says. But the specimen does compare favorably with Boreopterus, a related pterosaur from the Early Cretaceous of China, in terms of the number of teeth present in the lower jaw, he says.

Myers has estimated the wingspan around roughly 3 meters, or about 9 feet, indicating Aetodactylus would have been a “medium-sized” pterosaur, he says. While it’s not known how Aetodactylus died, at the time of death the reptile was flying over the sea and fell into the water, perhaps while fishing, Jacobs says.

Find hints at new diversity of pterosaurs
North American pterosaurs that date from the Cretaceous are all toothless, except for Aetodactylus and Coloborhynchus, Myers says. The thinness of the jaws, upward angle of the back half of the mandible and the lack of a pronounced expansion of the jaw tips indicate that Aetodactylus is different from other ornithocheirids and represents a new genus and species of pterosaur.

“Discovery of another ornithocheirid species in Texas hints at a diversity of pterosaurs in the Cretaceous of North America that wasn’t previously realized,” Myers says. “Aetodactylus also represents one of the final occurrences of ornithocheirids prior to the Late Cretaceous transition to pterosaur faunas that were dominated by the edentulous, or toothless, species.”

Texas now claims the only two of their kind
Hall on April 14 was presented with the Dallas Paleontological Society’s highest honor, the Lloyd Hill award. The award is named for the late Lloyd Hill, an amateur fossil hunter and longtime member of the Dallas Paleontological Society. Hill wrote the well-regarded novel The Village of Bom Jesus.

Much of Texas was once submerged under the Western Interior Seaway. The massive sea split North America from the Gulf of Mexico to the Arctic Ocean.

On shore, the terrain was flat and flowering plants were already dominating flora communities in this part of North America, according to paleobotanist Bonnie Jacobs, associate professor of Earth Sciences at SMU.

“There were still conifers and ferns as well, but mostly of the sort that had tiny needle leaves, like junipers,” says Bonnie Jacobs. “Sycamores and their relatives would have been among the flowering plants.”

The first ornithocheirid remains from North America, discovered in Fort Worth, were described by former SMU student Young-Nam Lee and donated by amateur collector Chris Wadleigh, says SMU’s Louis Jacobs.

“The ancient sea that covered Dallas provided the right conditions to preserve marine reptiles and other denizens of the deep, as well as the delicate bones of flying reptiles that fell from their flight to the water below,” says Louis Jacobs, a professor in SMU’s Huffington Department of Earth Sciences.

“The rocks and fossils here record a time not well represented elsewhere in North America,” says Louis Jacobs. “That’s why two species of ornithocheirids have been found here but nowhere else, and that’s why discoveries of other new fossils are sure to be made by Lance Hall and other fossil lovers.”

Myers’ article in the Journal of Vertebrate Paleontology is titled “A new ornithocheirid pterosaur from the Upper Cretaceous (Cenomanian-Turonian) Eagle Ford Group of Texas.”

The research was funded by SMU’s Roy M. Huffington Department of Earth Sciences and SMU’s Institute for the Study of Earth and Man.