Categories
Earth & Climate Fossils & Ruins Learning & Education Researcher news SMU In The News Student researchers

Houston Chronicle: Project to protect rare dinosaur tracks

SMU alum partners with Texas to preserve tracks of huge meat-eating dinosaur that roamed San Antonio 110 million years ago.

dino3

Houston Chronicle reporter Marvin Pfiefer has written about a project led by SMU alum Thomas L. Adams to catalog and protect the tracks of a 110 million-year-old dinosaur preserved in rock at Government Canyon State Natural Area. Adams, a paleontologist, is a graduate of Dedman College’s Roy M. Huffington Department of Earth Sciences.

The story, “Project to protect rare dinosaur tracks,” published in the Thursday, Aug. 28 edition of the Houston Chronicle.

Adams is curator of paleontology and geology at the Witte Museum in San Antonio, Texas.

Adams will be joined on the project by other student volunteers from surrounding colleges to team up with the Texas Parks and Wildlife Department to catalog the tracks, which were discovered about 10 years ago.

While at SMU, Adams’ contributions to the field of paleontology included making a 3-D image of Texas’ high-profile Glen Rose dinosaur footprints using portable laser scanning technology. That research was covered by Earth magazine in the 2011 article Mapping Dino Footprints in 3D.

dino2

He also identified a 96-million-year-old crocodile Terminonaris making its first appearance in Texas. It’s narrow fossil snout was discovered along the shoreline of a lake near Dallas, which was covered by London’s Daily Mail newspaper in the article Meet the 25 ft prehistoric Texas crocodile who lived 100 million years ago in 2011.

Read the full story.

EXCERPT:

By Marvin Pfeiffer
Houston Chronicles

It walked slowly along the tidal flat, looking for something to eat that might have washed up on the shoreline. To its right were the sounds of the surf and the ancestral Gulf of Mexico. To its left was a dense forest.

Acrocanthosaurus, a fearsome meat-eating dinosaur 40 feet long and 16 feet tall, was on the move.

“It’s the size of Tyrannosaurus rex — not as bulky, but as big. And here it is, walking across the beach 110 million years ago in what is now San Antonio,” said Thomas L. Adams, Ph.D., curator of paleontology and geology at the Witte Museum.

It’s a striking discovery: the only publicly known dinosaur tracks in Bexar County. Officials have known about the tracks at Government Canyon State Natural Area for about 10 years, but it wasn’t until this summer that scientists and students began work to catalog and protect them.

Dinosaur tracks might not seem to be as interesting as fossilized bones, but scientists beg to differ.

“The hard parts of the animals that are preserved are remains of dead animals,” Adams told the San Antonio Express-News. “They tell you something about a dead animal.

“This was made by a living animal. He was moving. He was interacting with his environment. It tells you many, many things. It tells you what the shape of its foot was like because in a skeleton we can’t see that. These are the remains of living animals. They tell you a story.”

The Witte is working with the Texas Parks and Wildlife Department, which manages Government Canyon, on a joint project to bring the tracks to the public. Adams and John Koepke, natural area interpreter/volunteer coordinator at Government Canyon, are heading the research.

Read the full story.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Fossils & Ruins Learning & Education Plants & Animals Researcher news Slideshows

SMU contributes fossils, expertise to new Perot Museum in ongoing scientific collaboration

From dinosaurs to sea turtles, and from technical assistance to advisory roles, SMU faculty and students, the SMU Shuler Museum, and the SMU Innovation Gymnasium have teamed with the nation’s new premier museum of nature and science in Dallas

Fossils on loan by SMU to the new Perot Museum of Nature and Science include those of animals from an ancient sea that once covered Dallas.

The fossils represent a slice of SMU’s scientific collaboration with the Perot Museum and its predecessor, the Dallas Museum of Natural History.

Items from SMU’s scientists include a 35-foot skeletal cast of the African dinosaur Malawisaurus standing sentry in the spacious glass lobby of the Perot, which opened Dec. 1 near downtown Dallas.

“The new museum building itself is an icon, but it’s also a statement by the city about taking the advances of science to the public,” said vertebrate paleontologist Louis L. Jacobs, an SMU Earth Sciences professor, who serves on the Perot Museum’s Advisory Board and Collections Committee.

Jacobs, who was ad interim director of the Dallas Museum of Natural History in 1999, led the team that discovered Malawisaurus in Africa. He provided the cast to the museum.

A 35-foot skeletal cast of the African dinosaur Malawisaurus, discovered by a team led by SMU paleontologist Louis L. Jacobs, is on display at the Perot Museum. (Image: Rich Tate, Alford Media)

“Here at SMU we train students and create new knowledge. The museum’s mission is to take the stories of science out to the general public so they can be used,” said Jacobs. “Anthony Fiorillo, Perot Museum Curator of Earth Sciences, is a world-class scientist with whom we work. We have a junction between the mission, training and knowledge we have here, infused into and enhanced by what the museum does. That’s why the museum is important to SMU and that’s why SMU is important to the museum.”

Fossils on loan are from the collection of the Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences. SMU scientists provided technical expertise for exhibits and serve on the Perot Museum’s advisory committees.

Also on exhibit from SMU is a miniature unmanned autonomous helicopter designed for fighting fires that was built by SMU engineering students.

Herbivorous dinosaur is exhibited with ancient Texas plant fossils
Shuler Museum fossils can be viewed in the T. Boone Pickens Life Then and Now Hall. They include an unnamed 113 million-year-old herbivorous dinosaur discovered in 1985 at Proctor Lake southwest of Stephenville, Texas.

For perspective on that exhibit’s paleoenvironment in Texas at the time, SMU paleobotanist Bonnie F. Jacobs provided fossil wood, fossil cones, fossil leaves and images of microscopic pollen grains from the Shuler Museum. The fossils provided information used to create a model of an extinct tree to accompany the exhibit.

Fossil cones and leaves discovered in Hood County are from an extinct ancient tree, says SMU paleobotanist Bonnie F. Jacobs. (Image: SMU)

Plant fossils inform scientists of the ecological setting in which dinosaurs lived and died, said Bonnie Jacobs, an SMU associate professor in the Huffington Department. Her collaboration with the Perot’s Fiorillo, who also is an adjunct research professor of paleoecology in the SMU Earth sciences department, includes fossil plants from Alaska.

“Understanding past climate and climate change will help us understand what may happen in the future,” she said. Bonnie Jacobs is featured in a Perot Museum Career Inspirations video that is part of the permanent exhibit and also advised on the text of some exhibits.

“The world of the past is a test case for global climate models, which are computer driven,” she said. “If we can reconstruct climates of the ancient Earth accurately, then we can create better models of what may happen in the future.”

Understanding paleoclimate through fossil soils is the expertise of Neil Tabor, an SMU associate professor in the Earth Sciences Department whose Perot Museum video discusses ancient soils, environments and the biggest extinction event in Earth’s history.

Fossils date from period when D/FW was covered by ancient sea
The plant fossils are from the geologic period called the Cretaceous, from 146 million years ago to 66 million years ago. They were discovered at the prolific Jones Ranch fossil beds southwest of Fort Worth in Hood County.

At that time, the Jones Ranch — famous as the discovery site of Paluxysaurus jonesi, the state dinosaur of Texas — was not far inland from the muddy coastal shore of a vast shallow sea that a dozen years later would divide North America.

Giant fossil sea turtles were discovered in northeast Texas in 2006 by a 5-year-old girl, Preston Smith. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)

Other SMU fossils on loan also date from that period. They include sea turtles, as well as mosasaurs, which were ancient sea lizards that evolved flippers and streamlined bodies for life in the sea.

Stunning examples of fossil sea turtles were discovered in 2006 by a 5 year-old girl, Preston Smith, during a family outing along the North Sulphur River near Ladonia in northeast Texas. The turtles were stacked one on top of the other as if caught in sudden death 80 million years ago.

Diana Vineyard, director of administration and research associate at SMU’s Institute for the Study of Earth and Man, identified the turtles as Toxochelys while an SMU graduate student.

Also on loan from the Shuler Museum, and also identified by Vineyard, are 110-million-year-old sea turtles from the Early Cretaceous of Texas, discovered near Granbury. They represent early specimens in the transition of turtles from land and shallow marine animals to fully developed sea turtles, Vineyard said.

Exhibit includes mosasaur named for the city of Dallas

A Perot Museum exhibit includes a giant fossil sea turtle discovered in northeast Texas in 2006 by a 5-year-old girl. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)

Michael Polcyn, director of SMU’s Digital Earth Sciences Laboratory, put his expertise to work providing technical assistance for the museum’s Ocean Dallas marine reptile exhibit.

An expert in mosasaurs, Polcyn created digital reconstructions of Dallasaurus, named for the city of Dallas, and physically reconstructed the skeletons of Dallasaurus and another mosasaur, Tethysaurus, for the exhibit.

“The Ocean Dallas exhibit was a great opportunity to showcase the extraordinary story that the rocks in the Dallas area tell us about life in the deep past,” said Polcyn, whose mosasaur fieldwork extends from the United States to Angola.

“It was a great experience working with the museum’s creative and technical professionals on this project,” Polcyn said, “but it should be mentioned that many of the fossils in the exhibit were found by interested citizens walking the local creeks and rivers in search of these beasts, and it is they who deserve tremendous credit for bringing these finds to the public.”

Polcyn, who also is featured in a Perot Museum Career Inspirations video, created a skull reconstruction of the Perot Museum’s duck-billed dinosaur Protohadros, named by former SMU doctoral student Jason Head.

Other SMU fossils include dino footprint, croc egg and giant ammonite

The ammonite Parapuzosia, more than 3 feet in diameter and discovered in Dallas County, is on loan from SMU’s Shuler Museum to the Perot Museum.

SMU vertebrate paleontologist Dale A. Winkler, SMU research professor and director of the Shuler Museum, said other fossils on loan include:

  • a rare 110 million-year-old crocodile egg discovered with specimens of the crocodile Pachycheilosuchus trinquei west of Glen Rose. Pachycheilosuchus trinquei was named by Jack Rogers, a former SMU student. Rogers also found and identified the egg.
  • an ammonite, Parapuzosia, more than 3 feet in diameter and discovered in Dallas County.

In 2006, two SMU doctoral students assisted with excavation of the new species of dinosaur named for the museum’s namesakes, Margot and Ross Perot.

The dinosaur, Pachyrhinosaurus perotorum, was discovered by the Perot Museum’s Fiorillo and prepared by Perot Museum researcher Ronald Tykoski.

Using portable 3D laser technology, SMU scientists preserved electronically a rare 110 million-year-old fossilized dinosaur footprint from ichnospecies Eubrontes glenrosensis. The model is on display in the Perot Museum. (Image: SMU)

SMU doctoral student Christopher Strganac and former SMU doctoral student Thomas L. Adams helped dig Pachyrhinosaurus perotorum in Alaska. The only skeletal mount of its kind in the world, the 69 million-year-old skull is on display in the Life Then and Now Hall of the Perot Museum.

Also on view in the museum is a 3D cast of a dinosaur footprint that Adams and Strganac created from the laser scan of a 110 million-year-old fossilized dinosaur footprint, from ichnospecies Eubrontes glenrosensis, that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.

Another former SMU doctoral student highlighted among the exhibits is Yoshitsugu Kobayashi, who describes in a video the mentoring he received from the Perot’s Fiorillo while the two worked together in Alaska’s Denali National Park.

SMU’s Shuler Museum is named for Ellis W. Shuler, founder of the University’s geology department. Shuler was a driving force behind the precursor to the Perot Museum, the Dallas Museum of Natural History, established in 1936, said geologist James E. Brooks, SMU professor emeritus and SMU Provost emeritus. Brooks served on the Dallas Museum of Natural History’s board of directors from the 1980s until 2005.

Perot Museum presents a strong scientific face of Dallas
“Any first-rate city needs a strong public scientific face with which it’s identified,” Brooks said. “The Perot Museum is going to be that organization.”

Brooks was instrumental in the negotiations with Egypt that enabled the Dallas Museum of Natural History to bring Ramses the Great, its first major exhibit, to Dallas in 1989.

“Museums, in addition to educating children and the general public, also have the responsibility to generate new knowledge, because that makes the city a more intellectually vibrant place,” he said.

Brooks and Louis Jacobs serve on the Perot Museum’s Collections Committee, which serves in an advisory role to Perot Earth Sciences Curator Fiorillo. He and other SMU faculty and staff collaborate on field expeditions to Alaska and Mongolia.

SMU’s Innovation Gymasium contributes to Perot exhibit

Pegasus, an unmanned autonomous helicopter that can fight fires, was designed and built by Lyle Engineering students under Innovation Gymnasium Director Nathan Huntoon. (Image: SMU)

SMU’s Innovation Gymnasium is featured in an exhibit in the Texas Instruments Engineering and Innovation Hall at the Perot Museum, said Nathan R. Huntoon, director of the Innovation Gymnasium at the SMU Bobby B. Lyle School of Engineering.

Central to the Engineering and Innovation Hall exhibit is an unmanned autonomous helicopter that can fight fires, built by SMU engineering students.

The Innovation Gym enables SMU students to hone their engineering and creative skills by working on real world, design challenges. Companies, researchers and non-profits all provide real challenges for the students to develop innovative solutions, often under intense time and financial pressure.

The firefighting helicopter featured in the new museum was the first such project.

Accompanying the helicopter is a video demonstration of the helicopter fighting simulated fires, as well as a touch-screen application with interviews of Huntoon and SMU students discussing engineering and innovation.

Huntoon has been a member of the Technology Committee and the Engineering and Innovation Committee for the Perot Museum.

James Quick, a professor of Earth sciences, as well as SMU’s associate vice president for research and dean of graduate studies, applauded the establishment of the Perot Museum, the result of decades of work by many people.

“Every great urban center should have an outstanding museum of nature and science to stimulate the imaginations of people of all ages and attract them to science,” Quick said. “The contribution the Perot Museum will make to North Texas cannot be overstated.” — Margaret Allen

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

Dallas Morning News: Prehistoric crocodile thought to have originated in Europe may be a native Texan

Dallas Morning News reporter Marc Ramirez has written about the big prehistoric crocodile identified by SMU paleontologist Thomas L. Adams, a doctoral candidate in Dedman College’s Roy M. Huffington Department of Earth Sciences.

The story, “‘Prehistoric crocodile thought to have originated in Europe may be a native Texan,” published in the Tuesday, July 20 edition of the Dallas Morning News.

Making its first appearance in Texas, the genus known as Terminonaris was thought to have originated in Europe, but Adams’ research indicates it now appears to have been a native of the Lone Star State.

The switch in origins for Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of Lake Lewisville near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, says Adams. A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

Full story available to Dallas Morning News subscribers.

EXCERPT:

By MARC RAMIREZ
Dallas Morning News

Thanks to a mail carrier’s discovery, it now appears the Beast from the East was actually a Guest from the West.

About five years ago, Brian Condon got tired of being cooped up at his Lakewood Village home and figured he’d go out and find a fossil.

What he found that day at Lewisville Lake would ultimately brand a supposedly European-based prehistoric crocodile as a native Texan instead.

Meet Terminonaris — a 25-foot-long reptile predating the Lone Star State by about 96 million years.

SMU paleontologist Thomas Adams was among the team that identified the creature. The team’s findings were published in May???s issue of the Journal of Vertebrate Paleontology.

The animal is a cousin to today’s crocodiles and alligators, the largest of which is the saltwater crocodile, which can reach 20 feet in length.

Previously, most of the few known Terminonaris specimens were from North America. The oldest known, however, was linked to a single 94 million-year-old jawbone found in Germany, leading scientists to surmise that the animal had originated in Europe and found its way westward.

That theory has probably been upended, with the Texan croc apparently outdating its German counterpart by about 2 million years.

“We have to really rethink: Did this group really originate in Europe and disperse west?” said Adams, who now has the fossilized snout stored in his office. “Or is it more likely that it originated in Texas?”

The discovery of a local Terminonaris now indicates the animals originated in what is now the southern U.S., then spread north along the shallow Western Interior Seaway, which stretched from what is now the Gulf of Mexico to Canada.

Condon, the amateur collector, was used to finding ammonites and shark teeth near the end of the peninsula dividing the two northern forks of Lewisville Lake. Ten years earlier, he’d found most of a plesiosaur.

Full story available to Dallas Morning News subscribers.

Categories
Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

Daily Mail: Meet the 25 ft prehistoric Texas crocodile who lived 100 million years ago

London Daily Mail reporter Mark Duell has written about the big prehistoric crocodile identified by SMU paleontologist Thomas L. Adams, a doctoral candidate in Dedman College’s Roy M. Huffington Department of Earth Sciences.

The story, “‘Its fossil looked like a loaf of bread from Subway’: Meet the 25ft prehistoric Texas crocodile who lived 100 MILLION years ago,” published in the Sunday, July 17 edition of the Daily Mail.

Making its first appearance in Texas, the genus known as Terminonaris was thought to have originated in Europe, but Adams’ research indicates it now appears to have been a native of the Lone Star State.

The switch in origins for Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of Lake Lewisville near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, says Adams. A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

Read the full story.

EXCERPT:

Mark Duell
London Daily Mail

He measured 25ft, weighed more than a ton and lived almost 100 million years ago.

A palaeontologist has identified the oldest prehistoric crocodile of its kind in the world after the fossil of a Terminonaris was found at Lake Lewisville near Dallas, Texas.

The realisation by Thomas L. Adams has also changed what we know about the species originally thought to have originated in Europe, because it now appears it was a native of Texas.

Mr Adams, of Southern Methodist University in Dallas, identified the reptile from its long snout which is more than 2ft long and 7in wide, reported Physorg.com.

It was discovered by Dallas amateur fossil enthusiast Brian Condon, who found the heavy pieces of the snout and a vertebrate in 2005 while fossil hunting, and donated them to the university.

Mr Condon had originally thought the pieces were petrified wood.

‘This piece looked like a loaf of bread from Subway,’ he said. ‘It was all wrinkled. Then I picked it up and turned it over and saw it had big round conical teeth. I thought: “This is amazing. It’s a jaw.'”

The discovery of the 96-million-year-old reptile’s fossil suggested that its head would have been about one metre long, Mr Adams said.

The Terminonaris is a cousin of the modern-day Indian gharial but was much larger — and it is a distant cousin of modern-day crocodiles and alligators, reported Southern Methodist University.

Mr Adams revealed the find ‘changes a lot about what we thought we knew about this group.’

‘Now we know the group had a wider distribution range, and that it’s much older,’ he said. ‘It represents a unique find for Texas. This is the first occurrence of Terminonaris in Texas.

‘It’s also the oldest occurrence of Terminonaris in the world and it’s also the southernmost occurrence of Terminonaris anywhere.’

Read the full story.

Categories
Fossils & Ruins Plants & Animals Slideshows Student researchers Videos

New Texas Native: 96-million-year-old crocodile Terminonaris makes its first appearance in Texas, switches origins

Rare find alters origins and distribution of Terminonaris; first home was Texas and North America — not Europe

http://www.youtube.com/watch?v=oHS6vE4o3XY

Making its first appearance in Texas, a prehistoric crocodile thought to have originated in Europe now appears to have been a native of the Lone Star State.

The switch in origins for the genus known as Terminonaris is based on the identification of a well-preserved, narrow fossil snout that was discovered along the shoreline of a lake near Dallas.

The 96-million-year-old fossil from Texas is the oldest prehistoric crocodile of its kind in the world, according to paleontologist Thomas L. Adams at Southern Methodist University, Dallas, who identified the reptile.

A distant cousin of modern crocodiles and alligators, Terminonaris was similar to the modern-day Indian gharial, only much larger.

“With the recognition of Terminonaris here in Texas, this actually changes a lot about what we thought we knew about this group,” Adams said.

“Now we know the group had a wider distribution range, and that it’s much older. It represents a unique find for Texas. This is the first occurrence of Terminonaris in Texas. It’s also the oldest occurrence of Terminonaris in the world, and it’s also the southernmost occurrence of Terminonaris anywhere.”

There are six other known Terminonaris fossil specimens: five from North America and one from Europe. The European specimen, from Germany, previously was thought to be the oldest. Scientists had concluded that Terminonaris originated in Europe and then traversed the Atlantic and dispersed throughout North America.

“Now we know Terminonaris most likely originated here in Texas and dispersed northward,” said Adams, a doctoral candidate in SMU’s Roy M. Huffington Department of Earth Sciences at SMU.

Big Texas crocodile swam the shores of North America’s prehistoric seaway
Adams identified the reptile primarily from its long snout, which measures more than 2 feet long and 7 inches wide, or 62 centimeters. With a snout that long, Adams estimates the head would have been about one meter long.

Book a live interview

To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.

Related Links

More SMU Research news

Mothers’ self-recorded audio gives real-time view of spanking
Birch mouse is 9 million years older than previously known; migrated from Asia to N.A.
Faking It: Vivid print ads create false memories about nonexistant product
Antibiotics, not surgery, may sometimes better treat appendicitis
3-D mapping of Guatemala’s “Head of Stone” confirms ancient Maya buildings
Bamboo tool-making study shines light on scarcity of Stone Age tools in East Asia
Pilot study to look at needs, stress, anxiety of women with Triple Negative breast cancer
Human foraging societies are unique among primates and a window to past
Blood anomaly may explain Henry VIII’s physical, mental health woes

“Based on Nile crocodiles and the Indian gharial, which are both large crocodiles, a regression analysis indicates this Terminonaris probably would have been 23 to 25 feet long,” said Adams. “The largest living crocodile today is the saltwater crocodile, which can reach up to 20 feet in length.”

The Texas Terminonaris was an adult and most likely weighed more than a ton, he said.

Adams identified the fossils in “First Occurrence of the Long-Snouted Crocodyliform Terminonaris (Pholidosauridae) from the Woodbine Formation (Cenomanian) of Texas” in the Journal of Vertebrate Paleontology.

Prehistoric crocodiles such as Terminonaris together with living crocodiles make up a large group called crocodyliformes. While technically there are differences between living crocodiles and each of the different types of fossil crocodile forms, all of them are often commonly referred to as crocodiles.

Today there are only 23 species of living crocodiles, a small number compared to the many species of mammals, birds, lizards, snakes and fish alive today, Adams said. That’s in stark contrast to prehistoric times.

“In the past, the crocodilian forms were very diverse and they were very successful. There were hundreds of species. Even at the time of the Texas Terminonaris, they were found everywhere,” Adams said.

Texas specimen fills gap, expands age and range of group
Texas Terminonaris was discovered by Dallas-area amateur fossil enthusiast Brian Condon, a rural mail carrier. Condon discovered the heavy pieces of the snout and a vertebrate in 2005 while fossil hunting near his home on Lake Lewisville, a 26,000-acre recreational and fishing lake managed by the U.S. Army Corps of Engineers. He spotted the first of the pieces along the shoreline. Condon donated the fossils to SMU’s Shuler Museum of Paleontology.

In prehistoric times, Texas Terminonaris would have made its home in a marine setting, along the eastern shore of North America’s vast prehistoric Western Interior Seaway. One hundred million years ago the seaway was a wide, shallow sea that split the North American continent in half from the Arctic to the Gulf of Mexico, said Adams, lead author on the scientific article. The seaway would have covered Lake Lewisville’s location.

In its day-to-day life on the seaway, Terminonaris would have kept close to shore, perhaps in a shallow lagoon or estuary, also venturing into the seaway’s warm salty water to hunt for fish. Like modern crocodiles and alligators, Terminonaris would have eaten whatever it could catch, Adams said. Its long, slender snout was well-suited for devouring fish, small mammals and even small dinosaurs.

North America’s other Terminonaris fossil specimens also were found along the seaway. A Kansas specimen is the youngest, about 91 million years, while those from Saskatchewan, Canada, and Montana are 93 million years old. The German specimen is 94 million years old.

“Terminonaris now here in Texas fills in a gap that we didn’t have information for,” Adams said. “It tells us that as a group, as a genus, they were around much longer, because we extend the age back to 96 million years. The range for them is now expanded, because this is the most southern occurrence of them.”

Well-preserved fossil offers no clues to adult reptile’s cause of death
While the Texas fossil is well-preserved, how the reptile died remains a mystery since only the snout was found.

It probably died in the water or washed out into the open sea, where it floated to the bottom and was buried very quickly, said Adams. The discovery of seven Terminonaris fossil specimens worldwide is significant, he said.

“To be fossilized, it requires they die at the right time in the right place, be buried very quickly, then eventually be exposed and uncovered,” he said. “So the odds of being fossilized and being found as a fossil are very slim.”

Condon found one piece at the water’s edge of Lake Lewisville. The other pieces were further up a bank that sloped toward the shore, Condon said. The pieces had been deposited on the ground by receding water, pulled from the Woodbine Formation by constant waves that had washed away a soil bank and uncovered the heavy fossils. The outcrop of the Woodbine Formation visible at Lake Lewisville starts at the Red River in North Texas and thins as it nears Dallas.

Condon, who had previously found other fossils in the area, initially thought the pieces were petrified wood.

“This piece looked like a loaf of bread from Subway. It was all wrinkled,” Condon said. “Then I picked it up and turned it over and saw it had teeth — big, round conical teeth — and I thought, ‘This is amazing. It’s a jaw.'”

Co-authors on the article were SMU paleontologists Michael J. Polcyn, Dale A. Winkler and Louis L. Jacobs, and also paleontologist Octavio Mateus, Universidade Nova de Lisboa, Portugal.

The research was funded by Southern Methodist University???s Institute for the Study of Earth & Man. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Researcher news SMU In The News Student researchers

Earth magazine: “Mapping Dino Footprints in 3-D”

Earth%2C%20TAdams%2C%203D%2C%20May%202011.jpg

The May 2011 issue of Earth Magazine reports on the research of SMU paleontologists in the SMU Huffington Department of Earth Sciences.

In a project led by SMU paleontologist Thomas L. Adams, the scientists used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile.

They have shared their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.

The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says Adams. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation.

Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites. SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say. Click here to see a large image of the Earth magazine cover.

EXCERPT:

Sam Lemonick
for Earth Magazine

Dinosaurs are now leaving their footprints on computers — in 3-D. Having 3-D scans of dinosaur footprints in a computer database could be the surest form of preservation of these delicate fossils, researchers say.

Dinosaur tracks found outdoors can’t always be excavated and moved indoors for preservation and study. That includes a theropod dinosaur footprint that is embedded in a bandstand made of limestone and fossil wood in Glen Rose, Texas — a town just southeast of Dinosaur Valley State Park. So a team led by Thomas Adams of Southern Methodist University in Texas decided to create a 3-D model of the print.

They used a high-resolution laser scanner the size of a small briefcase to map the shape of the footprint with beams of laser light from multiple angles. The laser scanner produces what is known as a point cloud, with each point representing a part of the object. The point cloud is then “smoothed” by software to produce a continuous surface.

Categories
Fossils & Ruins Learning & Education Plants & Animals Slideshows Technology Videos

3D digital download of giant Glen Rose dinosaur track is roadmap for saving at-risk natural history resources

Paleontologists propose the new term “digitype” for full-resolution three-dimensional digital models that preserve and archive endangered fossils

Portable laser scanning technology allows researchers to tote their latest fossil discovery from the field to the lab in the form of lightweight digital data stored on a laptop. But sharing that data as a 3D model with others requires standard formats that are currently lacking, say paleontologists at Southern Methodist University.

The SMU researchers used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile. They share their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.

The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says SMU paleontologist Thomas L. Adams, lead author of the scientific article. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation. Click here for the download link.

“This paper demonstrates the feasibility of using portable 3D laser scanners to capture field data and create high-resolution, interactive 3D models of at-risk natural history resources,” write the authors.

“3D digitizing technology provides a high-fidelity, low-cost means of producing facsimiles that can be used in a variety of ways,” they say, adding that the data can be stored in online museums for distribution to researchers, educators and the public.

SMU paleontologist Louis L. Jacobs is one of the coauthors on the article.

“The protocol for distance scanning presented in this paper is a roadmap for establishing a virtual museum of fossil specimens from inaccessible corners across the globe,” Jacobs said.

Paleontologists propose the term “digitype” for digital models
Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites.

SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say.

Book a live interview

To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.

Related links

More SMU Research news

A new breathing therapy reduces panic and anxiety by reversing hyperventilation
Rodents were diverse and abundant in prehistoric Africa as human ancestors evolved
A new child development theory bridges nature vs. nurture
Mathematical Equation Calculates for First Time the Cost of Walking
Evidence weak for tropical rainforest 65 million years ago in Africa’s low-latitudes
Veterinary medicine shifts to more women, fewer men; pattern will repeat in medicine, law fields

The SMU paleontologists propose the term “digitype” for such facsimiles, writing in their article “High Resolution Three-Dimensional Laser-scanning of the type specimen of Eubrontes (?) Glenrosensis Shuler, 1935, from the Comanchean (Lower Cretaeous) of Texas: Implications for digital archiving and preservation.”

Laser scanning is superior to other methods commonly used to create a model because the procedure is noninvasive and doesn’t harm the original fossil, the authors say. Traditional molding and casting procedures, such as rubber or silicon molds, can damage specimens.

But the paleontologists call for development of standard formats to help ensure data accessibility.

“Currently there is no single 3D format that is universally portable and accepted by all software manufacturers and researchers,” the authors write.

Digitype is baseline for measuring future deterioration
SMU’s digital model archives a fossil that is significant within the scientific world as a type specimen — one in which the original fossil description is used to identify future specimens. The fossil also has cultural importance in Texas. The track is a favorite from well-known fossil-rich Dinosaur Valley State Park, where the iconic footprint draws tourists.

The footprint was left by a large three-toed, bipedal, meat-eating dinosaur, most likely the theropod Acrocanthosaurus. The dinosaur probably left the footprint as it walked the shoreline of an ancient shallow sea that once immersed Texas, Adams said. The track was described and named in 1935 as Eubrontes (?) glenrosensis. Tracks are named separately from the dinosaur thought to have made them, he explained.

“Since we can’t say with absolute certainty they were made by a specific dinosaur, footprints are considered unique fossils and given their own scientific name,” said Adams, a doctoral candidate in the Roy M. Huffington Department of Earth Sciences at SMU.

The fossilized footprint, preserved in limestone, was dug up in the 1930s from the bed of the Paluxy River in north central Texas about an hour’s drive southwest of Dallas. In 1933 it was put on prominent permanent display in Glen Rose, Texas, embedded in the stone base of a community bandstand on the courthouse square.

The footprint already shows visible damage from erosion, and eventually it will be destroyed by gravity and exposure to the elements, Adams said. The 3D model provides a baseline from which to measure future deterioration, he said.

In comparing the 3D model to an original 1930s photograph made of the footprint, the researchers discovered that some surface areas have fractured and fallen away. By comparing the 3D model with a synthetically altered version, the researchers were able to calculate volume change, which in turn enables reconstruction of lost volume for restoration purposes.

Model comprises 52 scans totaling 2 gigabytes
Adams and his research colleagues took a portable scanner to the bandstand site to capture the 3D images. They employed a NextEngine HD Desktop 3D scanner and ScanStudio HD PRO software running on a standard Windows XP 32 laptop. The scanner and laptop were powered from outlets on the bandstand. The researchers used a tent to control lighting and maximize laser contrast.

Because of the footprint’s size — about 2 feet by 1.4 feet (64 centimeters by 43 centimeters) — multiple overlapping images were required to capture the full footprint.

Raw scans were imported into Rapidform XOR2 Redesign to align and merge them into a single 3D model. The final 3D model was derived from 52 overlapping scans totaling 2 gigabytes, the authors said.

The full-resolution 3D digital model comprises more than 1 million poly-faces and more than 500,000 vertices with a resolution of 1.2 millimeters. It is stored in Wavefront format. In that format the model is about 145 megabytes. The model is free for downloading from a link on Palaeontologia Electronica‘s web site.

3D digital footprint also available as a QuickTime virtual object
A smaller facsimile is also available from the journal as a QuickTime Virtual Reality object. In that format, users can slide their mouse pointer over the 3D footprint image to drag it to a desired viewing angle, and zoom and pan. Click here for the link to the QuickTime video.

Besides the 3D model, included with the Palaeontologia Electronica article is a link to a pdf of the original 1935 scientific article in which SMU geology professor Ellis W. Shuler described and identified the dinosaur that made the track.

Shuler’s article, no longer in print, is “Dinosaur Track Mounted in the Band Stand at Glen Rose, Texas,” published in Field & Laboratory. The clay molds and plaster casts Shuler made of the bandstand track are now lost, Adams said. Click here for the article.

Besides Adams and Jacobs, other co-authors on the article are paleontologists Christopher Strganac and Michael J. Polcyn in the Roy M. Huffington Department of Earth Sciences at SMU.

The research was funded by the Institute for the Study of Earth and Man at SMU. — Margaret Allen

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Adams or to book him in the SMU studio, call SMU News & Communications at 214-768-7650.

Categories
Fossils & Ruins Plants & Animals Slideshows Student researchers

Portable 3D laser technology preserves Texas dinosaur’s rare footprint

Using portable 3D laser technology, scientists have preserved electronically a rare 110 million-year-old fossilized dinosaur footprint that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.

The laser image preserves what is called a “type specimen” footprint — an original track used many years ago to describe a new species of dinosaur, says paleontologist Thomas L. Adams at SMU.

Portable 3D laser scanners capture original fossil morphology and texture, making it possible to use the data for rapid 3D prototyping in foam or resin, Adams says.

The footprint embedded in the bandstand has been exposed to the elements for nearly 75 years, causing portions of it to erode, Adams says. Erosional loss has affected the outer edge of the toes and heel, altering the initial shape of the track impression.

The track of the ichnospecies Eubrontes glenrosensis was excavated in 1933 from a main track layer in a riverbed in what is now 1,500-acre Dinosaur Valley State Park in Somervell County near Glen Rose. Not long after the track was excavated, the citizens of Glen Rose built a stone bandstand and embedded the track within one of its walls.

The track was described in 1935 by Ellis W. Shuler, SMU’s first geology professor.

Adams says the footprint is that of a three-toed, bipedal, meat-eating dinosaur, with the most likely candidate being the theropod named Acrocanthosaurus, found mostly in Texas, North Carolina and Oklahoma.

“The track is scientifically very important,” says Adams, who is earning his doctoral degree in paleontology at SMU. “But it’s also a historical and cultural icon for Texas.”

Dinosaur Valley State Park boasts the ancient shoreline of a 113 million-year-old sea and is renowned for some of the best preserved dinosaur footprints in the world. The bandstand track is a popular draw for tourists passing through Glen Rose, which is one hour southwest of Dallas.

In an effort to preserve the specimen, as well as to compare its present state with the original description, Adams used a portable 3D laser scanner to perform in situ digitization of the track.

The scans were post-processed to generate high-resolution 3D digital models of the track. Finally the models were rendered in various media formats such as Quicktime VR Virtual Reality and Tagged Image File Format for viewing, publication and archival purposes.

Adams will make the raw scan data and industry-standard 3D object files format available for download.

The research demonstrates the advantages of using portable laser scanners to capture field data and create high-resolution, interactive models that can be digitally archived and made accessible to others via the Internet for further research and education.

“It’s a nice way to share scientific data,” Adams says.

Adams’ research was funded by the Institute for the Study of Earth and Man at SMU. He presented the research at a scientific session of the 2009 annual meeting of The Geological Society of America in Portland, Ore., Oct. 18-21. His co-researchers are Christopher Strganac, Michael J. Polcyn and Louis L. Jacobs, all three in the Roy M. Huffington Department of Earth Sciences at SMU. — Margaret Allen