Categories
Culture, Society & Family Learning & Education Researcher news Technology Videos

People ForWords team named semifinalist in national XPrize competition

SMU’s puzzle-solving smartphone app selected as one of eight to move to next round in $7M Barbara Bush Foundation Adult Literacy XPRIZE competition

For Corey Clark, deputy director for research in the SMU Guildhall game development program, adult literacy became a personal challenge the moment he learned of its scope. “There are about 600,000 adults in Dallas who have less than a third-grade reading level,” he says. “If we could help 10 percent of those people, that’s 60,000 people who could learn to read proficiently. That makes a difference in a lot of people’s lives.”

This challenge is at the heart of a partnership between Southern Methodist University and Literacy Instruction for Texas (LIFT), and their work has been recognized with a semifinalist position in the $7 million Barbara Bush Foundation Adult Literacy XPRIZE presented by Dollar General Literacy Foundation competition.

The team, People ForWords, includes collaborators from SMU Guildhall, SMU Simmons School of Education and Human Development, and LIFT. People ForWords is one of eight teams chosen for the semifinals out of 109 entrants, and the only Texas team to make the cut.

In this global competition, teams develop mobile applications, compatible with smart phone devices, that have the potential to increase literacy skills among adult learners. The solutions discovered through the applications will help reveal and overcome roadblocks in improving adult literacy through providing access, retention, and a scalable product to the public.

As development lead of People ForWords, Clark recruited a cadre of Guildhall-trained artists, programmers and producers via the program’s alumni career portal. The development team came together in March 2016. By October, they had created a beta version of Codex: The Lost Words of Atlantis.

As participants in a globe-trotting adventure, English-language learners play as enterprising archaeologists and work to decipher the forgotten language of a lost civilization. As the players solve the puzzles of the Atlantean runes, audible prompts for each letter and sound help them learn the look and feel of written English<, developing and strengthening their own reading skills. Developed for English- and Spanish-speaking adults, but safe for all ages, the game also provides history lessons as it visits real locations around the world. Needs of adult literacy learners very different from other gamers
Codex: The Lost Words of Atlantis supports English literacy learners in both English and Spanish. Egypt is the first destination in a planned five-region journey across the globe; in future versions, People ForWords plans to develop additional regions with new gameplay, new characters, and new literacy skills.

An important step in the game design process came with playtesting at LIFT Academy and Dallas’ Jubilee Park community center — where the designers could reach their game’s target audience. They quickly figured out that the needs of adult literacy learners were very different from those of other gamers.

“This was the first time some participants had used a desktop computer,” Clark says. “How do you make a game that’s fun and interactive, yet simple and intuitive enough to be a first experience with technology?”

To find out, Clark collected and analyzed data on game elements such as how long players stuck with a task, how many times they repeated moves, how quickly they progressed, and whether performing the game actions translated into the desired learning outcomes. “First, games have to be fun,” he says. “From story to characters, you want to engage people enough to play over and over again. And this happens to be the exact same process that reinforces learning.”

And as Clark points out, at its core, every game is about learning. “Whether it’s a map, a system or a skill, you learn something new with every move you make,” he says. “And games are safe environments to do that, because they allow you to fail in ways that aren’t overwhelming. They let you keep trying until you succeed.”

Illiteracy plays a factor in poverty
In North Texas, the XPRIZE is more than a competition. According to LIFT, one in five adults in North Texas cannot read, a key factor in poverty. Dallas has the fourth highest concentration of poverty in the nation, with a 41 percent increase from 2000 to 2014.

“This is a dedicated effort by our team to tackle the growing issue of low literacy and poverty in our communities,” according to a People ForWords statement. “Each organization involved in the collaboration brings their expertise to the competition: knowledge in education, adult literacy, and game development. Together these skills have allowed our team to build a functional, fun application that helps improve adult literacy through sharpening reading and writing skills.”

“The faculty at SMU Guildhall bridge the gap between serious academic research and commercial video games,” says Guildhall Director Gary Brubaker. “This environment has allowed our research and development team to yield a product for the XPRIZE adult literacy competition that brings together the creative, entertaining nature of games with the impactful literacy lessons being taught.”

Research plays a large role at SMU Guildhall. Not only are large-scale research endeavors such as the XPRIZE taking place year-round, but research is also incorporated into the curriculum. Independent studies such as student theses explore a vast range of interests within video game development and its global implications and uses. Both current students and alumni are able to put their analytical and research skills to good use by participating as funded research assistants on a myriad of Guildhall’s “games for good” projects.

“Our students greatly benefit from breaking ground with new gaming technologies and expanding their usage into other fields,” said Elizabeth Stringer, Deputy Director of Academics at SMU Guildhall. “Many of our graduates continue to use their game development skills to aid society and further causes for which they are passionate.”

Testing of the eight semifinalists’ literacy software begins in mid-July with 12,000 adults who read English at a third grade level or lower. Selection of up to five finalists will depend on results of post-game testing to evaluate literacy gains among test subjects. Finalists will be named in May 2018, and the winner will be selected in 2019. — Kathleen Tibbetts, SMU

Categories
Culture, Society & Family Feature Learning & Education Researcher news Technology Videos

SMU and LIFT team named one of eight semifinalists for $7M Barbara Bush Foundation Adult Literacy XPrize

SMU’s “Codex: Lost Words of Atlantis” adult literacy video game is puzzle-solving smartphone game app to help adults develop literacy skills

The SMU and Literacy Instruction for Texas (LIFT) team was named today one of eight semifinalists in the $7 million Barbara Bush Foundation Adult Literacy XPRIZE presented by Dollar General Literacy Foundation.

The XPRIZE is a global competition that challenges teams to develop mobile applications designed to increase literacy skills in adult learners.

SMU participants include education experts from SMU’s Simmons School of Education and Human Development, along with video game developers from SMU Guildhall — a graduate school video game development program. They are working with literacy experts from LIFT to design an engaging, puzzle-solving smartphone app to help adults develop literacy skills. Students from LIFT help test the game.

The SMU and LIFT team, People ForWords, is one of 109 teams who entered the competition in 2016. The team developed “Codex: Lost Words of Atlantis.”

In the game, players become archeologists hunting for relics from the imagined once-great civilization of Atlantis. By deciphering the forgotten language of Atlantis, players develop and strengthen their own reading skills. The game targets English- and Spanish-speaking adults.

Students at LIFT, a North Texas nonprofit adult literacy provider, have tested and provided key insights for the game during its development. According to LIFT, one in five adults in North Texas cannot read, a key factor in poverty. Dallas has the fourth highest concentration of poverty in the nation, with a 41 percent increase from 2000 to 2014. LIFT is one of the largest and most widely respected adult basic education programs in Texas and offers adult basic literacy, GED preparation and English as a Second Language programs with the goal of workforce empowerment.

Testing of the eight semi-finalists’ literacy software begins in mid-July with 12,000 adults who read English at a third grade level or lower. Selection of up to five finalists will depend on results of post-game testing to evaluate literacy gains among test subjects. Finalists will be named in May of 2018 and the winner will be named in 2019. — Nancy George, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News Student researchers Technology

Dallas Innovates: SMU Researchers, Gamers Partner on Cancer Research

Adding the processor power of the network of “Minecraft” gamers could double the amount of computer power devoted to the SMU research project.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall.

The researchers are leading an SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

They are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug. Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

A boost in computational power by adding crowdsourcing may help the researchers narrow their search.

The Dallas Innovates article, “SMU Researchers, Gamers Partner on Cancer Research,” published June 5, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Game developers and researchers at SMU are partnering with a worldwide network of gamers who play the popular game in a crowdsourcing effort to beat the disease.

The project is being led by biochemistry professors Pia Vogel and John Wise of the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, the university’s graduate video game development program.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” Vogel said in a release. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Vogel and Wise have been utilizing the university’s ManeFrame supercomputer, one of the most powerful academic supercomputers in the country, to sort through millions of compounds that potentially could work in the fight against cancer.

Now, they’re going to try crowdsourced computing.

The researchers believe that the network of gamers will be able to crunch massive amounts of data during routine game play by pooling two weapons — human intuition and the massive computing power of the networked gaming machine processors.

Adding gamers could double processing power
That should more than double the amount of processing power aimed at their research problem.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” said Clark, who is also an adjunct research associate professor in the Department of Biological Sciences.

“Integrating with the ‘Minecraft’ community should allow us to double the computing power of [SMU’s] supercomputer.”

The research labs of Vogel and Wise are part of the Center for Drug Discovery, Design, and Delivery in SMU’s Dedman College, whose mission is a multidisciplinary focus for scientific research that targets medically important problems in human health, the release said.

According to SMU, the research is partly funded by the National Institutes of Health.

The researchers narrowed a group of compounds that show potential for alleviating the issue of chemotherapy failure after repeated use.

Using gamers in research has happened before
Using human gamers to enhance data-driven research has been done before with success and is a growing practice.

Vogel cited the video game “Foldit.”

Read the full story.

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news Student researchers Technology Videos

SMU Guildhall and cancer researchers level up to tap human intuition of video gamers in quest to beat cancer

Massive computational power of online “Minecraft” gaming community bests supercomputers

Video gamers have the power to beat cancer, according to cancer researchers and video game developers at Southern Methodist University, Dallas.

SMU researchers and game developers are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug.

Biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, are leading the SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” said Vogel. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Up to now, Wise and Vogel have tapped the high performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. With ManeFrame, Wise and Vogel have sorted through millions of compounds that have the potential to work. Now, the biochemists say, it’s time to take that research to the next level — crowdsourced computing.

A network of gamers can crunch massive amounts of data during routine gameplay by pairing two powerful weapons: the best of human intuition combined with the massive computing power of networked gaming machine processors.

Taking their research to the gaming community will more than double the amount of machine processing power attacking their research problem.

“With the distributed computing of the actual game clients, we can theoretically have much more computing power than even the supercomputer here at SMU,” said Clark, also adjunct research associate professor in the Department of Biological Sciences. SMU Guildhall in March was named No. 1 among the Top 25 Top Graduate Schools for Video Game Design by The Princeton Review.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” Clark said. “Integrating with the ‘Minecraft’ community should allow us to double the computing power of that supercomputer.”

Even more importantly, the gaming community adds another important component — human intuition.

Wise believes there’s a lot of brainpower eager to be tapped in the gaming community. And human brains, when tackling a problem or faced with a challenge, can make creative and intuitive leaps that machines can’t.

“What if we learn things that we never would have learned any other way? And even if it doesn’t work it’s still a good idea and the kids will still get their endorphin kicks playing the game,” Wise said. “It also raises awareness of the research. Gamers will be saying ‘Mom don’t tell me to go to bed, I’m doing scientific research.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery (CD4) in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. Their research is funded in part by the National Institutes of Health.

The research question in play
Vogel and Wise have narrowed a group of compounds that show promise for alleviating the problem of chemotherapy failure after repeated use. Each one of those compounds has 50 to 100 — or even more — characteristics that contribute to their efficacy.

“Corey’s contribution will hopefully tell us which dozen perhaps of these 100 characteristics are the important ones,” Vogel said. “Right now of those 100 characteristics, we don’t know which ones are good ones. We want to see if there’s a way with what we learn from Corey’s gaming system to then apply what we learn to millions of other compounds to separate the wheat from the chaff.”

James McCormick — a fifth year Ph.D. student in cellular molecular biology who earned his doctoral degree this spring and is a researcher with the Center for Drug Discovery, Design and Delivery — produced the data set for Clark and Guildhall.

Lauren Ammerman, a first-year Ph.D. student in cellular and molecular biology and also working in the Center for Drug Discovery, Design and Delivery, is taking up the computational part of the project.

Machines can learn from human problem solving
Crowdsourcing video gamers to solve real scientific problems is a growing practice.

Machine learning and algorithms by themselves don’t always find the best solution, Clark said. There are already examples of researchers who for years sought answers with machine learning, then switched to actual human gamers.

Gamers take unstructured data and attack it with human problem-solving skills to quickly find an answer.

“So we’re combining both,” Clark said. “We’re going to have both computers and humans trying to find relationships and clustering the data. Each of those human decisions will also be supplied as training input into a deep neural network that is learning the ‘human heuristic’ — the technique and processes humans are using to make their decisions.”

Gamers already have proven they can solve research problems that have stymied scientists, says Vogel. She cites the video game “Foldit” created by the University of Washington specifically to unlock the structure of an AIDS-related enzyme.

Some other Games With A Purpose, as they’re called, have produced similar results. Humans outperform computers when it comes to tasks in the computational process that are particularly suited to the human intellect.

“With ‘Foldit,’ researchers worked on a problem for 15 years using machine learning techniques and were unable to find a solution,” Clark said. “Once they created the game, 57,000 players found a solution in three weeks.”

Modifying the “Minecraft” game and embedding research data inside
Gamers will access the research problem using the version of “Minecraft” they purchased, then install a “mod” or “plugin” — gamer jargon for modifying game code to expand a game’s possibilities — that incorporates SMUs research problem and was developed in accordance with “Minecraft” terms of service. Players will be fully aware of their role in the research, including ultimately leaderboards that show where players rank toward analyzing the data set in the research problem.

SMU is partnering with leaders in the large “Minecraft” modding community to develop a functioning mod by the end of 2017. The game will be heavily tested before release to the public the second quarter of 2018, Clark said.

The SMU “Minecraft” mod will incorporate a data processing and distributed computing platform from game technology company Balanced Media Technology (BMT), McKinney, Texas. BMT’s HEWMEN software platform executes machine-learning algorithms coupled with human guided interactions. It will integrate Wise and Vogel’s research directly into the SMU “Minecraft” mod.

SMU Guildhall will provide the interface enabling modders to develop their own custom game mechanic that visualizes and interacts with the research problem data within the “Minecraft” game environment. Guildhall research is funded in part by Balanced Media Technology.

“We expect to have over 25,000 people continuously online during our testing period,” Clark said. “That should probably double the computing power of the supercomputer here.”

That many players and that much computing power is a massive resource attacking the research problem, Wise said.

“The SMU computational system has 8,000 computer cores. Even if I had all of ManeFrame to myself, that’s still less computing and brainpower than the gaming community,” he said. “Here we’ve got more than 25,000 different brains at once. So even if 24,000 don’t find an answer, there are maybe 1,000 geniuses playing ‘Minecraft’ that may find a solution. This is the most creative thing I’ve heard in a long time.” — Margaret Allen, SMU