Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News Student researchers Technology

Dallas Innovates: SMU Researchers, Gamers Partner on Cancer Research

Adding the processor power of the network of “Minecraft” gamers could double the amount of computer power devoted to the SMU research project.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall.

The researchers are leading an SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

They are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug. Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

A boost in computational power by adding crowdsourcing may help the researchers narrow their search.

The Dallas Innovates article, “SMU Researchers, Gamers Partner on Cancer Research,” published June 5, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Game developers and researchers at SMU are partnering with a worldwide network of gamers who play the popular game in a crowdsourcing effort to beat the disease.

The project is being led by biochemistry professors Pia Vogel and John Wise of the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, the university’s graduate video game development program.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” Vogel said in a release. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Vogel and Wise have been utilizing the university’s ManeFrame supercomputer, one of the most powerful academic supercomputers in the country, to sort through millions of compounds that potentially could work in the fight against cancer.

Now, they’re going to try crowdsourced computing.

The researchers believe that the network of gamers will be able to crunch massive amounts of data during routine game play by pooling two weapons — human intuition and the massive computing power of the networked gaming machine processors.

Adding gamers could double processing power
That should more than double the amount of processing power aimed at their research problem.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” said Clark, who is also an adjunct research associate professor in the Department of Biological Sciences.

“Integrating with the ‘Minecraft’ community should allow us to double the computing power of [SMU’s] supercomputer.”

The research labs of Vogel and Wise are part of the Center for Drug Discovery, Design, and Delivery in SMU’s Dedman College, whose mission is a multidisciplinary focus for scientific research that targets medically important problems in human health, the release said.

According to SMU, the research is partly funded by the National Institutes of Health.

The researchers narrowed a group of compounds that show potential for alleviating the issue of chemotherapy failure after repeated use.

Using gamers in research has happened before
Using human gamers to enhance data-driven research has been done before with success and is a growing practice.

Vogel cited the video game “Foldit.”

Read the full story.

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news Student researchers Technology Videos

SMU Guildhall and cancer researchers level up to tap human intuition of video gamers in quest to beat cancer

Massive computational power of online “Minecraft” gaming community bests supercomputers

Video gamers have the power to beat cancer, according to cancer researchers and video game developers at Southern Methodist University, Dallas.

SMU researchers and game developers are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug.

Biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, are leading the SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” said Vogel. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Up to now, Wise and Vogel have tapped the high performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. With ManeFrame, Wise and Vogel have sorted through millions of compounds that have the potential to work. Now, the biochemists say, it’s time to take that research to the next level — crowdsourced computing.

A network of gamers can crunch massive amounts of data during routine gameplay by pairing two powerful weapons: the best of human intuition combined with the massive computing power of networked gaming machine processors.

Taking their research to the gaming community will more than double the amount of machine processing power attacking their research problem.

“With the distributed computing of the actual game clients, we can theoretically have much more computing power than even the supercomputer here at SMU,” said Clark, also adjunct research associate professor in the Department of Biological Sciences. SMU Guildhall in March was named No. 1 among the Top 25 Top Graduate Schools for Video Game Design by The Princeton Review.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” Clark said. “Integrating with the ‘Minecraft’ community should allow us to double the computing power of that supercomputer.”

Even more importantly, the gaming community adds another important component — human intuition.

Wise believes there’s a lot of brainpower eager to be tapped in the gaming community. And human brains, when tackling a problem or faced with a challenge, can make creative and intuitive leaps that machines can’t.

“What if we learn things that we never would have learned any other way? And even if it doesn’t work it’s still a good idea and the kids will still get their endorphin kicks playing the game,” Wise said. “It also raises awareness of the research. Gamers will be saying ‘Mom don’t tell me to go to bed, I’m doing scientific research.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery (CD4) in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. Their research is funded in part by the National Institutes of Health.

The research question in play
Vogel and Wise have narrowed a group of compounds that show promise for alleviating the problem of chemotherapy failure after repeated use. Each one of those compounds has 50 to 100 — or even more — characteristics that contribute to their efficacy.

“Corey’s contribution will hopefully tell us which dozen perhaps of these 100 characteristics are the important ones,” Vogel said. “Right now of those 100 characteristics, we don’t know which ones are good ones. We want to see if there’s a way with what we learn from Corey’s gaming system to then apply what we learn to millions of other compounds to separate the wheat from the chaff.”

James McCormick — a fifth year Ph.D. student in cellular molecular biology who earned his doctoral degree this spring and is a researcher with the Center for Drug Discovery, Design and Delivery — produced the data set for Clark and Guildhall.

Lauren Ammerman, a first-year Ph.D. student in cellular and molecular biology and also working in the Center for Drug Discovery, Design and Delivery, is taking up the computational part of the project.

Machines can learn from human problem solving
Crowdsourcing video gamers to solve real scientific problems is a growing practice.

Machine learning and algorithms by themselves don’t always find the best solution, Clark said. There are already examples of researchers who for years sought answers with machine learning, then switched to actual human gamers.

Gamers take unstructured data and attack it with human problem-solving skills to quickly find an answer.

“So we’re combining both,” Clark said. “We’re going to have both computers and humans trying to find relationships and clustering the data. Each of those human decisions will also be supplied as training input into a deep neural network that is learning the ‘human heuristic’ — the technique and processes humans are using to make their decisions.”

Gamers already have proven they can solve research problems that have stymied scientists, says Vogel. She cites the video game “Foldit” created by the University of Washington specifically to unlock the structure of an AIDS-related enzyme.

Some other Games With A Purpose, as they’re called, have produced similar results. Humans outperform computers when it comes to tasks in the computational process that are particularly suited to the human intellect.

“With ‘Foldit,’ researchers worked on a problem for 15 years using machine learning techniques and were unable to find a solution,” Clark said. “Once they created the game, 57,000 players found a solution in three weeks.”

Modifying the “Minecraft” game and embedding research data inside
Gamers will access the research problem using the version of “Minecraft” they purchased, then install a “mod” or “plugin” — gamer jargon for modifying game code to expand a game’s possibilities — that incorporates SMUs research problem and was developed in accordance with “Minecraft” terms of service. Players will be fully aware of their role in the research, including ultimately leaderboards that show where players rank toward analyzing the data set in the research problem.

SMU is partnering with leaders in the large “Minecraft” modding community to develop a functioning mod by the end of 2017. The game will be heavily tested before release to the public the second quarter of 2018, Clark said.

The SMU “Minecraft” mod will incorporate a data processing and distributed computing platform from game technology company Balanced Media Technology (BMT), McKinney, Texas. BMT’s HEWMEN software platform executes machine-learning algorithms coupled with human guided interactions. It will integrate Wise and Vogel’s research directly into the SMU “Minecraft” mod.

SMU Guildhall will provide the interface enabling modders to develop their own custom game mechanic that visualizes and interacts with the research problem data within the “Minecraft” game environment. Guildhall research is funded in part by Balanced Media Technology.

“We expect to have over 25,000 people continuously online during our testing period,” Clark said. “That should probably double the computing power of the supercomputer here.”

That many players and that much computing power is a massive resource attacking the research problem, Wise said.

“The SMU computational system has 8,000 computer cores. Even if I had all of ManeFrame to myself, that’s still less computing and brainpower than the gaming community,” he said. “Here we’ve got more than 25,000 different brains at once. So even if 24,000 don’t find an answer, there are maybe 1,000 geniuses playing ‘Minecraft’ that may find a solution. This is the most creative thing I’ve heard in a long time.” — Margaret Allen, SMU

Categories
Culture, Society & Family Learning & Education Mind & Brain Technology

Extreme reality: Women avoid sexual assault in virtual zone

avatar-01-web.jpgSMU’s Department of Psychology and The Guildhall at SMU have joined forces against dating violence.

Psychology Professors Ernest Jouriles and Renee McDonald, with Guildhall Lecturer Jeff Perryman and Deputy Director Tony Cuevas, are collaborating on a role-playing program that combines virtual reality with behavioral insight to help teach and test sexual assault avoidance techniques.

virtual-reality-dating-violence-300.jpg

The program’s environment of a rain-lashed car parked in an isolated area immerses women into not just a location, but also a “conversation” with a potential attacker.

It is the first step in what developers hope will be a program to help women practice strategies for averting sexual assault in a controlled situation that is safe, yet feels realistic.

“This is a potential breakthrough opportunity for gaming technology to help solve an important social problem,” Jouriles says.

During one session, the experience starts in a small, nondescript office where two automobile seats are bolted to a raised platform: An actor sits in the driver’s seat, and a woman sits in the passenger seat to his right. When she puts on video goggles and a headset, she suddenly finds herself in a parked car during a howling rainstorm. Rivulets of water stream down the windshield, flashes of lightning illuminate the interior of the car, and thunder beats a steady cadence.

She doesn’t see the actor beside her, she sees a three-dimensional video game character at the wheel of the car. She is drawn into small talk, but the driver turns increasingly aggressive, eventually demanding sexual intimacy. It is nothing short of frightening and, oddly enough, very real.

Role-playing is a well-established method for teaching people to deal with complex social situations, says Jouriles, professor and chair of psychology in Dedman College. But he hit a wall in his research when he tried the method to teach relationship violence avoidance techniques to a high school health class in the late 1990s.

“The role-playing produced giggles,” Jouriles says. “And from my perspective, it didn’t capture the imaginaton of the students.”

mcdonald.jpg
SMU psychologists Ernest Jouriles and Renee McDonald.

Jouriles and McDonald, associate professor of psychology in Dedman College, joined the SMU faculty in August 2003, when a handful of psychologists around the country were beginning to experiment with virtual programs to treat anxiety disorders, such as allowing people who were afraid of flying to “practice” without boarding an airplane.

They wondered whether SMU’s newly opened Guildhall could help teach and test sexual assault avoidance techniques by immersing a woman into not just a virtual location, but also a “conversation” with a potential attacker.

“We created an enclosed environment,” says Perryman, Guildhall lecturer, who worked on the program with Guildhall’s Cuevas.

“We wanted our participant to feel powerless. The rain was added to isolate her. The car is particularly creepy. We worked hard at that,” says Perryman.

The simulation requires participants to wear a head-mounted video display with tracking technology that senses head movements and an audio headset, which transmits the voice of the avatar “driver” and other sounds from the virtual environment. The avatar’s lips move in sync with the voice of the actor, who controls the character’s facial expressions and movements through a video keyboard. The virtual driver can be made to nod, shrug, even pound the steering wheel in anger when he is rebuffed.

Jouriles, McDonald and their team studied the responses of 62 undergraduate women who were randomly assigned to traditional or virtual reality role-play and outfitted with heart monitors. All were asked to complete questionnaires afterward on their moods and experience.

The women who donned the headgear and went through the virtual scenario rated the experience’s realism higher than those in the traditional role play group. Behavioral observations also suggested that women experiencing the virtual car scene appeared more angry and afraid.

Jouriles calls those results “very promising.” The next step, he says, is to develop a virtual scenario that can test techniques to avert sexual assault. He hopes to see some variation on the virtual program developed for use in high schools and colleges. — Kim Cobb

Related links:
SMU Profile: Ernest Jouriles and Renee McDonald
Ernest Jouriles
Renee McDonald
Jeff Perryman
Tony Cuevas
SMU Guildhall
SMU Department of Psychology
Dedman College of Humanities and Sciences