Categories
Culture, Society & Family Mind & Brain Technology Videos

Practicing assertiveness skills on virtual-reality “dates” may help women prevent sexual victimization

avatar-01-web.jpgIt’s a stormy night when a young man offers a young college woman a ride home. First he makes friendly small-talk. But then he becomes sexually aggressive and angry.

Can she get out of this situation without getting hurt?

While this could be a real experience for many women, in this case it’s virtual reality. The purpose is role-playing in a psychology laboratory at Southern Methodist University in Dallas.

Although realistic and scary, the role-playing is nevertheless a safe way to teach assertiveness skills to young women so they can resist sexual victimization, according to new research.

Read: “Can Virtual Reality Teach College Women Sexual Coercion and Rape-Resistance Skills
Read: “Extreme reality: Women avoid sexual assault in virtual zone

A pilot project in which women practiced assertiveness skills reduced sexual victimization considerably, say researchers Ernest Jouriles, Renee McDonald and Lorelei Simpson, psychologists in SMU’s Department of Psychology.

The researchers tracked participants in the assertiveness program over three months and found that women in a control group were sexually victimized at twice the rate of those who had practiced the skills.

New research in which women practice their newly learned skills on a virtual-reality “date” holds promise for making the program even stronger.

Jouriles, McDonald and Simpson will present the research in November at the annual conference of the Association for Behavioral and Cognitive Therapies.

Between 25 percent and 50 percent of American women will experience sexual coercion or sexual assault during their lifetime, according to the U.S. Department of Justice. Those in their teens and early 20s are at particularly high risk, research shows.

The toll on victims ranges from depression and anxiety to drug abuse, psychiatric symptoms and chronic medical conditions.

“Sexual assault prevention programs for young women are widely available,” says Jouriles, professor and chairman of the SMU Department of Psychology. “However, only a few have been scientifically evaluated. Although some of these programs have been shown to change young women’s knowledge and attitudes about sexual assault, they have not generally been shown to prevent actual assaults.”

mcdonald.jpg
SMU psychologists Ernest Jouriles and Renee McDonald.

Jouriles and McDonald designed the virtual reality program in collaboration with students and faculty at The Guildhall, SMU’s graduate-level video-game design program. They worked with Simpson to develop the assertiveness training program and are currently using the virtual-reality technology to enhance women’s practice experiences when they learn assertiveness skills.

To participate, a young woman wears a head-mounted display and earphones that allow her to navigate a make-believe sexually risky environment. It immerses her in a setting that feels genuinely threatening. She faces off against an avatar controlled by a live male actor, who delivers the dialogue and controls the speech and actions of the virtual date.

The department’s 10-foot-by-12-foot laboratory room is furnished with two adjoining bucket seats and a couch to replicate either the front seat of a car or a party setting.

Similar to a multi-player, interactive video game, the sophisticated head-mounted display streams computer-generated, 3D images. The perspective is first-person, which tracks and changes with the wearer’s head position. Earphones surround the wearer with the sounds of pounding rain and music from the car radio.

simpson.jpg
SMU psychologist Lorelei Simpson.

The woman experiences the make-believe environment from a seat next to the avatar. In a 10- to 12-minute role-play, the actor challenges the young woman’s assertiveness by gradually escalating the conversation from small-talk and flirtation to verbal sexual coercion and anger. The avatar’s lips move in sync with the actor’s speech, and his facial expressions and movements, such as changing the radio station and drinking beer, make the virtual interaction more natural.

Research by Jouriles and McDonald published in 2009 found that young women who practiced navigating the virtual reality environment had a stronger negative reaction to the sexual threat than did participants in conventional role-playing without virtual reality technology.

Although the study didn’t evaluate the reason for that difference, Jouriles and McDonald hypothesized that the virtual environment makes it easier for participants to become immersed in role-play. It’s possible that women in a conventional role-playing environment feel more self-conscious or that the situation is more artificial than women interacting with an avatar, which results in more guarded responses, they said.

McDonald is an associate professor. Simpson is an assistant professor.

Related links:
SMU Profile: Ernest Jouriles and Renee McDonald
Ernest Jouriles
Renee McDonald
Lorelei Simpson
SMU Department of Psychology
SMU Guildhall
Dedman College of Humanities and Sciences

Categories
Earth & Climate Technology

Cockpit audio: Listen as volcanic ash plume causes 1989 engine failure of KLM flight 867

1016225_thumbnail.jpeg
Eyjafjallajokull erupting

Floating ash plumes from Iceland’s Eyjafjallajokull volcano have caused massive disruption to the world’s air traffic, highlighting the danger that volcanic ash plumes pose to aircraft.

The threat from volcanoes has become more severe as the world’s air traffic has increased, and as more people settle closer to volcanoes, says SMU vulcanologist James Quick, a professor in the Southern Methodist University Huffington Department of Earth Sciences.

Quick previously served as program coordinator for the USGS Volcano Hazards Program.

One of the most infamous encounters between a commercial jetliner and a volcano ash plume took place in 1989.
KLM Flight 867, carrying 231 passengers in a Boeing 747, flew into an ash plume after the eruption of Redoubt volcano in Alaska. According to USGS reports, the volcano spewed enormous clouds of ash thousands of miles into the air and nearly caused the airliner to crash.
Captured on audio was the frantic conversation between KLM’s pilot and the Anchorage control tower as the aircraft’s engines began flameout. Hear the cockpit audio in this video, as well as Quick’s comments on the danger.
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick says. Winds carry plumes thousands of miles from the volcanoes and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.
Quick and other scientists from Southern Methodist University and the U.S. Geological Survey are pioneering technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty to monitor active volcanoes in the Northern Mariana Islands.
Read AOL’s coverage:Determining When The Next One Will Blow
See Guam TV’s coverage:Eye On The Volcano: Could Guam Be The Next Iceland?
Quick on Fox News:Amazing Video Shows Shockwaves Explode From Volcano
Stars and Stripes interviews Quick:Monitoring to track Guam volcanoes
Geology.com news:Volcanoes and Volcanic Eruptions
Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.
Volcano monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.
The islands are near Guam, which soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.
The two-year, $250,000 project will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow.
The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.
Read more about the project.
Related links:
SMU Geophysics: Infrasound and seismo-acoustic sensing
NASA: Eruption of Anatahan
USGS: Anatahan volcano
Smithsonian: Anatahan volcano
Northern Mariana Islands
USGS: Volcanic Ash Advisory Centers
Alaska Volcano Observatory
James E. Quick
SMU Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Categories
Energy & Matter Researcher news SMU In The News Technology

Softpedia headlines world’s fastest chip designed by SMU physicists

The popular web site Softpedia has written about SMU’s new “world’s fastest integrated circuit” designed for use in the challenging environment of the Large Hadron Collider.

The circuit was designed by physicists in SMU’s Department of Physics. Softpedia science editor Tudor Vieru writes about the major advancement in an April 9 post “LHC to Receive Fastest Integrated Circuits Ever Made.”

The popular web site Softpedia has written about SMU’s new “world’s fastest integrated circuit” designed for use in the challenging environment of the Large Hadron Collider.

The circuit was designed by physicists in SMU’s Department of Physics. Softpedia science editor Tudor Vieru writes about the major advancement in an April 9 post “LHC to Receive Fastest Integrated Circuits Ever Made.”

Jingbo%20Ye%20SMU%20microscope.jpg
Jingbo Ye views SMU LOC serializer

The site, popular for software downloads and science and technology information, noted that the job of the new high-speed integrated circuit was designed for the LHC’s high-radiation environment, as well as for high data bandwidth, low-power dissipation and extremely high reliability. SMU physicist Jingbo Ye, an associate professor of physics, led development of the circuit.

Excerpt:
By Tudor Vieru
Science Editor
A group of experts from the Southern Methodist University (SMU), in Dallas, announces the development of a new, super-fast circuit designed specifically to augment the capabilities of one of the main particle detectors of the Large Hadron Collider. The LHC is the largest physics experiment ever designed, and its goal is to discover some of the most fundamental knowledge about the Universe and the elementary particles and forces that govern our world.

With the development of the new integrated circuits, called “link-on-chip” or LOC serializer circuits, the team hopes to be able to boost the performances of the LHC’s ATLAS particle detectors, one of the three main instruments in the 27-kilometer-long tunnel of the accelerator. The innovation was designed specifically to be used by the Liquid Argon Calorimeter, an ATLAS sub-detector that could function a lot better, and overall more efficiently, once the new application-specific integrated circuits (ASIC) are added. The SMU team is directly involved in the ATLAS collaboration.

There was a large number of factors researchers at the university needed to consider when creating the LOC. In addition, the large amount of radiation that is produced as the LHC collides beams of protons head-on at the highest energy levels ever achieved, there are also other issues to consider. The calorimeter needs to be able to handle a high data bandwidth, low power dissipation, and must feature an extremely high degree of reliability as well. There is very little room for error in an endeavor such as the LHC, and all of its components need to respect a vast array of norms and rules.

Read the full story

Categories
Energy & Matter Technology

New high-speed integrated circuit for world’s biggest physics experiment is fastest of its kind

CERN%20black%20hole%20thumb.jpg
This simulated black hole from ATLAS proton collisions would quickly decay into particle debris. Credit: CERN

A new high-speed integrated circuit to reliably transmit data in the demanding environment of the world’s largest physics experiment is the fastest of its kind.

This new “link-on-chip” — or LOC serializer circuit — was designed by physicists at Southern Methodist University in Dallas as a component for use in a key experiment of the Large Hadron Collider particle accelerator in Europe.

The miniscule SMU LOC serializer was designed for ATLAS, which is the largest particle detector at the Large Hadron Collider.

Jingbo%20Ye%20SMU%20microscope.jpg
Jingbo Ye views SMU LOC serializer

The LHC, as it’s called, is a massive, high-tech tunnel about 100 meters underground. Within the LHC’s circular, 17-mile-long tunnel, protons traveling at high energy are smashed together and broken apart so physicists worldwide can analyze the resulting particle shower detailed in a flood of electronic data.

Data holds key to bold new physics discoveries
The data transmits from the LHC via a tiny serializer circuit enabling electronic readouts. Physicists analyze the data to discover answers to unsolved scientific mysteries such as the Big Bang, dark matter, black holes, the nature of the universe and the Higgs particle that gives mass to quarks and electrons. SMU is a member of the ATLAS Experiment.

The LHC is a program of the Geneva-based international scientific consortium known as the European Organization for Nuclear Research, or CERN. In March CERN announced that the LHC had successfully begun colliding protons at an energy three and a half times higher than previously achieved at any particle accelerator.

SMU LOC designers challenged by LHC’s formidable environment
SMU’s new world’s-fastest LOC serializer is what the industry calls an integrated circuit made for a specific use, or “ASIC” for application-specific integrated circuit. It was designed for the LHC’s high-radiation environment, as well as for high data bandwidth, low-power dissipation and extremely high reliability, said physicist Jingbo Ye. An associate professor of physics, Ye led development of SMU’s LOC serializer.

More SMU Research

Simulating the Big Bang

Glimpse of dark matter?

Hunt for Higgs boson

The SMU LOC serializer was perfected over the past three years in the SMU Research Laboratory for Optoelectronics and ASIC Development in the Department of Physics. An added feature of the SMU LOC serializer is that it can operate at cryogenic temperatures and has been tested down to liquid nitrogen temperatures of -346 degrees Fahrenheit.

It was designed to transmit data for the optical link readout system of the ATLAS Liquid Argon Calorimeter, an ATLAS sub-detector that measures the energies of electrons and photons generated at the center of ATLAS where protons collide. Because the electronic readout components are in the center of the ATLAS detector, they are essentially inaccessible for routine maintenance, so reliability is paramount, Ye said.

Serializer transmits data shower from colliding protons
With a data transmission rate of 5.8 billion-bits per second, the SMU LOC serializer represents the first milestone for the SMU-led team. The team plans to develop an even faster ASIC serializer that transmits data at up to 10 billion-bits per second. Faster circuits are critical as CERN continues increasing the LHC’s luminosity, thereby generating more and more data.

“SMU’s LOC serializer is the fastest in our field for the moment,” Ye said. “CERN is developing another fast ASIC serializer that does not yet match our speed. SMU’s next goal is to increase both the data speed and the number of data lanes to produce an even faster LOC serializer. In the next few years, we hope to increase the total speed by a factor of 62 more than what is installed in ATLAS.”

Ye presented the SMU LOC serializer design in February at CERN. Made of complementary metal-oxide-semiconductor transistors in silicon-on-sapphire, the serializer’s design details also will be presented to scientists in April in Hamburg during the ATLAS Upgrade Week at the DESY laboratory, Germany’s premier research center for particle physics. The SMU LOC serializer research was funded by the National Science Foundation and the U.S. Department of Energy.

The existing LOC serializer in use at present in the ATLAS Liquid Argon Calorimeter was previously developed and installed by an SMU-led team of physicists and engineers from France, Sweden, Taiwan and the United States.

Faster serializer a critical component for Super LHC
SMU’s new LOC serializer is critical for the upgrade of the Large Hadron Collider, called the Super LHC, which is planned to go online in 2017, Ye said.

“The original ATLAS design used a commercial serializer that was purchased from Agilent Technologies,” Ye said. “But for the Super LHC there is no commercial device that would meet the requirements, so — being typical physicists — we set out to design it ourselves.”

The ATLAS Liquid Argon Calorimeter’s existing optical link system, delivered by SMU physicists, has a data bandwidth of 2.4 terabits per second over 1,524 fibers, or 1.6 billion bits per second per fiber, more than 1,000 times faster than a T1 line of 1.544 megabits per second. The next generation of this optical link system will be based on the new SMU LOC serializer, and it will reach 152.4 terabits per second for the whole system.

More selectivity with faster data transfer
“Fast information transfer from the detector to the computer processing system is a necessity for handling the significantly increasing amounts of data expected in the next round of LHC experiments,” said Ryszard Stroynowski, U.S. Coordinator for the ATLAS Liquid Argon Calorimeter, and chair and professor of physics at SMU. “It will allow ATLAS to be more selective in the choices of events sent for further analysis.”

A radiation-tolerant, high-speed and low-power LOC serializer is critical for optical link systems in particle physics experiments, Ye said, noting that specialized ASIC devices are now common components of most readout systems.

“The ever increasing complexity of particle physics experiments imposes new and challenging constraints on the electronics,” Ye said. “The LOC serializer was a formidable task, but our team was up to the challenge.” — Margaret Allen

Related links:
Jingbo Ye
SMU Department of Physics
ATLAS
Large Hadron Collider
CERN: European Organization for Nuclear Research
CERN: Recipe for a Universe
Nobel Prize: Why is there something instead of nothing?
Fermilab: Dark Universe Debate

Categories
Technology

DOD funds tiny cave camera, iris recognition technology for military, homeland security

Subiimager.jpgResearchers are expanding new miniature camera technology for military and security uses so soldiers can track combatants in dark caves or urban alleys, and security officials can unobtrusively identify a subject from an iris scan.

The two new surveillance applications both build on “Panoptes,” a platform technology developed under a project led by Marc Christensen at Southern Methodist University in Dallas and funded by the Department of Defense.

Panoptes is a compact, lightweight, high-resolution smart camera that is named for the Greek mythological character Argos Panoptes, the giant sentry with a hundred eyes.

DOD is funding development of the technology’s first two extension applications with a $1.6 million grant to SMU.

100101-F-0000T-003-660x456.jpg
Wired: DARPA’s Beady-Eyed Camera Spots the ‘Non-Cooperative’

Both the tiny cave camera and the iris recognition application will aid the military, border patrol, intelligence officials and airport security, according to Christensen and Delores Etter, a leading researcher in biometric identification.

Both are electrical engineers in SMU’s Bobby B. Lyle School of Engineering. The new applications may be ready for fielded demonstrations as soon as late 2011, said Christensen.

The Panoptes imaging system has been field-tested in tactical environment simulations by defense contractor Northrop Grumman and is currently in an independent test with Draper Laboratory.

“The Panoptes technology is sufficiently mature that it can now leave our lab, and we’re finding lots of applications for it,” said Christensen, an expert in computational imaging and optical interconnections. “This new money will allow us to explore Panoptes’ use for non-cooperative iris recognition systems for Homeland Security and other defense applications. And it will allow us to enhance the camera system to make it capable of active illumination so it can travel into dark places — like caves and urban areas.”

The new grant brings total DOD funding of Panoptes — short for “Processing Arrays of Nyquist-limited Observations to Produce a Thin Electro-optic Sensor” — to $5.5 million. The new applications have been dubbed AIM-CAMS, for “Active Illumination with Micro-mirror-arrays for Computational Adaptive Multi-resolution Sensing,” and Smart-Iris, for “SMU’s Multi-resolution Adaptive Roving Task-specific Iris Recognition Imaging System.”

Hi-rez “eyes” in caves, urban alleys

helmetcamera.jpgPanoptes initially was designed for military aerial drones and combat helmet cameras for use in daylight environments. The technology produces sharp, clear images without the size and weight of a conventional camera system because it doesn’t rely on a large, bulky, curved lens for high-resolution images.

Instead, arrays of agile and precisely controlled microelectromechanical system (MEMS) mirrors are integrated with low-resolution sub-imagers on a silicon base for the purpose of sampling a wide field of view. The analog steerable MEMS mirrors adaptively redirect plexiglas sub-imagers to zoom in on regions of interest. The captured images are stored in an onboard computer and restored to high-resolution by an information theory-based super-resolution algorithm.

The sub-imagers are tiny off-axis-shaped paraboloids, fabricated using injection molding. At 8 millimeters by 5.7 millimeters by 4 millimeters, the sub-imagers have an effective focal length of 4 millimeters and are tiny enough to fit on the surface of a small coin.

The honeycomb-shaped micro mirror array comprises 61 hexagonal mirrors, each with three actuators to mechanically move and control the mirrors. The usable circular aperture, the opening through which light travels, is 3.9 millimeters in diameter. The end result — a digitally restored image — while not super-resolution, approaches optical limit, the researchers say.

The flat sub-imagers can be tiled unobtrusively almost anywhere, from the underside of a small drone to the outside of a soldier’s helmet to the walls of a hallway.

The Panoptes architecture is unique in its ability to adapt its field of view to steer to a region of interest, capturing only images of value, Christensen said. That preserves computing power by eliminating uniform allocation of imaging resources, which is wasteful, he said.

Smart-Iris narrows from wide field-of-view to narrow field-of-view

To develop the biometric Smart-Iris, the adaptive resolution of Panoptes will be paired with iris recognition technology.

“It’s very challenging to get the resolution with a wide field-of-view camera, but with a zoom camera, it’s hard to find the iris because it’s like looking through a soda straw,” Christensen said.

Iris%20variations.jpg
Every iris is unique

Iris recognition — currently used worldwide by airports, prisons, laboratories, fitness clubs, hotels and other institutions — is the most accurate biometric available because no two irises are alike, said Etter, a former Deputy Under Secretary of Defense who leads SMU’s Biometrics Engineering Research Group. The technology is challenged, however, by interference when the iris is being scanned, she said. Problems can include glare, eyelashes, eyelids or dim lighting.

With Panoptes, the camera can start with a wide field-of-view at low resolution, find a face, then narrow to the area of interest — the iris. At the same time, Smart-Iris will extend the range of iris acquisition. Instead of one person cooperatively standing motionless with their eye pressed to a scanner, Smart-Iris will make it possible for people to pass through a standard doorway, each one getting their iris scanned — without so much as even pausing — by equipment mounted on walls or door frames. At the same time, the camera would maintain high resolution and more than 150 pixels across the iris.

Easier Smart-Iris scan is unobtrusive, but accurate

That could benefit the Department of Homeland Security. More than 600 million people pass through security to fly aboard commercial airlines each year, according to the agency. Homeland Security relies on the latest technology to monitor more than 700 security checkpoints and 7,000 baggage screening areas.

“Our goal is to develop an iris recognition system that is unobtrusive and accurate. We want to ensure that the right people have access, and that potential intruders are identified, all without impacting flow in high-traffic areas,” said Etter, who directs the Lyle School’s Caruth Institute for Engineering Education.

Into caves and dark alleys

To develop AIM-CAMS, Panoptes is being paired with new off-the-shelf pocket projector technology known as Pico. Pico projectors, often compared in size to a candy bar, make it possible to project digital pictures taken by cell phones and other portable devices onto any wall for large-format viewing.

Combining Pico with Panoptes will allow the low-resolution camera to be used in dark places, such as caves and urban alleys, providing troops with situational awareness, said Christensen, who is chair of the SMU Department of Electrical Engineering and an associate professor.

SMU is collaborating on the research with Santa Clara University in California, Northrop Grumman and Draper Laboratory. Funding came from the Defense Advanced Research Projects Agency, Office of Naval Research and Army Research Laboratory.

Watch a news video about the Panoptes research

Related links:
DOD adds $2 million to SMU’s camera research
Marc Christensen
SMU Profile: Marc Christensen
Conference paper on Panoptes
Department of Electrical Engineering
Bobby B. Lyle School of Engineering