Categories
Health & Medicine Learning & Education Researcher news Student researchers Technology

SMU chemist wins prestigious NSF Career Award

Alex Lippert’s research uses chemistry to develop affordable, glowing internal imaging techniques

SMU chemist Alex Lippert has received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences, is an organic chemist and adviser to four doctoral students and five undergraduates who assist in his research.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. For example, when injected into a mouse’s tumor, the compounds luminesce in response to the cancer’s pH and oxygen levels. Place that mouse in a sealed dark box with a sensitive CCD camera that can detect low levels of light, and images can be captured of the light emanating from the mouse’s tumor.

“We are developing chemiluminescent imaging agents, which basically amounts to a specialized type of glow-stick chemistry,” Lippert says. “We can use this method to image the insides of animals, kind of like an MRI, but much cheaper and easier to do.”

Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

But first, there are still a few ways the technique can be improved, and that’s where Lippert says the grant will come in handy.

“In preliminary studies, we needed to directly inject the compound into the tumor to see the chemistry in the tumor,” Lippert says. “One thing that’s funded by this grant is intravenous injection capability, where you inject a test subject and let the agent distribute through the body, then activate it in the tumor to see it light up.”

Another challenge the team will use the grant to explore is making a compound that varies by color instead of glow intensity when reacting to cancer cells. This will make it easier to read images, which can sometimes be buried under several layers of tissue, making the intensity of the glow difficult to interpret.

“We’re applying the method to tumors now, but you could use similar designs for other types of tissues,” Lippert says. “The current compound reacts to oxygen levels and pH, which are important in cancer biology, but also present in other types of biology, so it can be more wide-ranging than just looking at cancer.”

“This grant is really critical to our ability to continue the research going forward,” Lippert adds. “This will support the reagents and supplies, student stipends, and strengthen our collaboration with UT Southwestern Medical Center. Having that funding secure for five years is really nice because we can now focus our attention on the actual science instead of writing grants. It’s a huge step forward in our research progress.”

Lippert joined SMU in 2012. He was a postdoctoral researcher at the University of California, Berkeley, from 2009-12, earned his Ph.D. at the University of Pennsylvania in 2008 and earned a Bachelor of Science at the California Institute of Technology in 2003.

The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…” NSF is the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. — Kenny Ryan, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Researcher news SMU In The News Student researchers Technology

Dallas Innovates: SMU Researchers, Gamers Partner on Cancer Research

Adding the processor power of the network of “Minecraft” gamers could double the amount of computer power devoted to the SMU research project.

Reporter Lance Murray with Dallas Innovates reported on the research of biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall.

The researchers are leading an SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

They are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug. Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

A boost in computational power by adding crowdsourcing may help the researchers narrow their search.

The Dallas Innovates article, “SMU Researchers, Gamers Partner on Cancer Research,” published June 5, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Game developers and researchers at SMU are partnering with a worldwide network of gamers who play the popular game in a crowdsourcing effort to beat the disease.

The project is being led by biochemistry professors Pia Vogel and John Wise of the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, the university’s graduate video game development program.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” Vogel said in a release. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Vogel and Wise have been utilizing the university’s ManeFrame supercomputer, one of the most powerful academic supercomputers in the country, to sort through millions of compounds that potentially could work in the fight against cancer.

Now, they’re going to try crowdsourced computing.

The researchers believe that the network of gamers will be able to crunch massive amounts of data during routine game play by pooling two weapons — human intuition and the massive computing power of the networked gaming machine processors.

Adding gamers could double processing power
That should more than double the amount of processing power aimed at their research problem.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” said Clark, who is also an adjunct research associate professor in the Department of Biological Sciences.

“Integrating with the ‘Minecraft’ community should allow us to double the computing power of [SMU’s] supercomputer.”

The research labs of Vogel and Wise are part of the Center for Drug Discovery, Design, and Delivery in SMU’s Dedman College, whose mission is a multidisciplinary focus for scientific research that targets medically important problems in human health, the release said.

According to SMU, the research is partly funded by the National Institutes of Health.

The researchers narrowed a group of compounds that show potential for alleviating the issue of chemotherapy failure after repeated use.

Using gamers in research has happened before
Using human gamers to enhance data-driven research has been done before with success and is a growing practice.

Vogel cited the video game “Foldit.”

Read the full story.

Categories
Culture, Society & Family Events Learning & Education SMU In The News Student researchers

Dallas Innovates: Mobile Makerspace Once Known as SparkTruck Rolls Into Town

The big, boxy California transplant is being adopted by Southern Methodist University and will be retooled for Texas to help teachers fuel the creative spark in students.

Reporter Dave Moore with Dallas Innovates interviewed Katie Krummeck, director of SMU’s Deason Innovation Gym in the Lyle School of Engineering, and Rob Rouse, clinical assistant professor in the Department of Teaching & Learning of Simmons School about their collaboration in design-based learning environments.

The School of Engineering and SMU’s Annette Caldwell Simmons School of Education and Human Development are building a dedicated place for students to adopt a “maker-based approach” to education.

The Dallas Innovates article, “Mobile Makerspace Once Known as SparkTruck Rolls Into Town,” published May 19, 2017.

Read the full story.

EXCERPT:

By Dave Moore
Dallas Innovates

You might call it a maker truck in the making, and it’s about to hit the streets of Dallas to promote the maker movement to teachers and students alike.

Formerly called the SparkTruck, Southern Methodist University adopted the vehicle from Stanford University in California where it resided for the past five years.

The truck made a cross-country journey to Dallas where SMU students will redesign it, inside and out, to make it a teaching tool to help K-12 teachers to inspire and to pursue professional development through innovation.

“This big truck is a kind of rolling ambassador for the maker movement,” said Katie Krummeck, director of SMU’s Deason Innovation Gym. “If you’re not familiar with it, the maker movement is all about sharing creative challenges with people from very different backgrounds to build things.“

Krummeck said the truck will be a big boost in maker education.

“The explosion in easily available digital tools and software is fueling the fire, and it turns out that this kind of hands-on maker-based instruction is a great way to engage students in whatever subject they are learning,” she said.

SMU students will retrofit the truck to ensure that its educational mission is supported by things such as workflow, storage, and comfort.

During its journey from California, the truck carried this message on its side: “This is not a maker truck” — yet.

Krummeck is familiar with the truck. She managed the SparkTruck program at Stanford before coming to SMU in 2015.

“We’re going to develop teaching frameworks, open-source curriculum, tools, and resources as well as some really engaging professional development opportunities for educators,” Krummeck said in a release. “And we’re going to deliver these resources and experiences out of the back of this mobile makerspace. We’ll know what to call it after our students put their heads together during the design challenge we have planned for May 22-26.”

Read the full story.

Categories
Culture, Society & Family Researcher news SMU In The News Student researchers

SMU law research: Dallas County gun-surrender program yields few results, needs improvement

Each year, potentially thousands of domestic abusers in Dallas County should surrender firearms. Only 60 guns have been surrendered in two years.

Under Texas and Federal law, individuals convicted of domestic abuse are required to surrender any firearms they possess — but it rarely happens.

A team of SMU law students who spent the past year studying Dallas County’s gun-surrender efforts say the program can be improved and presented recommendations during the Twelfth Annual Conference on Crimes Against Women on May 24, 2017 at the downtown Dallas Sheraton hotel.

“It is estimated that between 7,000 and 8,000 cases of domestic violence go through the courts each year in Dallas County, and yet only 60 guns have been turned in over the past two years,” says SMU Law professor Natalie Nanasi, director of the Judge Elmo B. Hunter Legal Center for Victims of Crimes Against Women. Nanasi advised law students Laura Choi, Rachel Elkin and Monica Harasim in assembling the report.

“We spent the past year looking at other programs around the country, like El Paso, Los Angeles and Portland, Ore. and developed recommendations on how to improve what’s being done in Dallas County,” Harasim says.

Proposed solutions include best-practice training for judges, the creation of a centralized office to coordinate efforts and increasing funding. The students compiled their recommendations in Taking Aim at Violence: A Report on the Dallas County Gun Surrender Program.

“Statistics show that the presence of a firearm in a domestic violence situation increases the likelihood of death by 500 percent,” Elkin says. “We hope that this report can be a tool for Dallas County leaders to use to expand and improve the Gun Surrender Program.”

The students presented their findings alongside Dallas County Criminal Court Judge Roberto Cañas, who first attempted to tackle the gun-surrender problem in Dallas County in 2015 by soliciting a grant and launching a program responsible for collecting the 60 guns over two years.

Before that, there were no organized efforts to collect guns from domestic abusers.

“Initial estimates suggested that Judge Cañas’ program would collect approximately 800 guns per year, but those estimates assumed that all judges in Dallas County would participate in the program equally, (which didn’t turn out to be the case),” says Choi. “There’s no question that the program sends an important message just by existing. The fact that the program is here and is collecting weapons speaks volumes to Dallas County’s commitment to survivor safety.”

The research and report were covered by the Dallas Morning News in the article Dallas County plan to disarm domestic abusers seizes just 60 guns in 2 years — a fraction of goal, and by Fox 4 News in their TV report Study: Dallas County gun confiscation program from domestic violence offenders falls shortKenny Ryan, SMU

Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news Student researchers Technology Videos

SMU Guildhall and cancer researchers level up to tap human intuition of video gamers in quest to beat cancer

Massive computational power of online “Minecraft” gaming community bests supercomputers

Video gamers have the power to beat cancer, according to cancer researchers and video game developers at Southern Methodist University, Dallas.

SMU researchers and game developers are partnering with the world’s vast network of gamers in hopes of discovering a new cancer-fighting drug.

Biochemistry professors Pia Vogel and John Wise in the SMU Department of Biological Sciences, and Corey Clark, deputy director of research at SMU Guildhall, are leading the SMU assault on cancer in partnership with fans of the popular best-selling video game “Minecraft.”

Vogel and Wise expect deep inroads in their quest to narrow the search for chemical compounds that improve the effectiveness of chemotherapy drugs.

“Crowdsourcing as well as computational power may help us narrow down our search and give us better chances at selecting a drug that will be successful,” said Vogel. “And gamers can take pride in knowing they’ve helped find answers to an important medical problem.”

Up to now, Wise and Vogel have tapped the high performance computing power of SMU’s Maneframe, one of the most powerful academic supercomputers in the nation. With ManeFrame, Wise and Vogel have sorted through millions of compounds that have the potential to work. Now, the biochemists say, it’s time to take that research to the next level — crowdsourced computing.

A network of gamers can crunch massive amounts of data during routine gameplay by pairing two powerful weapons: the best of human intuition combined with the massive computing power of networked gaming machine processors.

Taking their research to the gaming community will more than double the amount of machine processing power attacking their research problem.

“With the distributed computing of the actual game clients, we can theoretically have much more computing power than even the supercomputer here at SMU,” said Clark, also adjunct research associate professor in the Department of Biological Sciences. SMU Guildhall in March was named No. 1 among the Top 25 Top Graduate Schools for Video Game Design by The Princeton Review.

“If we take a small percentage of the computing power from 25,000 gamers playing our mod we can match ManeFrame’s 120 teraflops of processing power,” Clark said. “Integrating with the ‘Minecraft’ community should allow us to double the computing power of that supercomputer.”

Even more importantly, the gaming community adds another important component — human intuition.

Wise believes there’s a lot of brainpower eager to be tapped in the gaming community. And human brains, when tackling a problem or faced with a challenge, can make creative and intuitive leaps that machines can’t.

“What if we learn things that we never would have learned any other way? And even if it doesn’t work it’s still a good idea and the kids will still get their endorphin kicks playing the game,” Wise said. “It also raises awareness of the research. Gamers will be saying ‘Mom don’t tell me to go to bed, I’m doing scientific research.”

The Vogel and Wise research labs are part of the Center for Drug Discovery, Design and Delivery (CD4) in SMU’s Dedman College. The center’s mission is a novel multi-disciplinary focus for scientific research targeting medically important problems in human health. Their research is funded in part by the National Institutes of Health.

The research question in play
Vogel and Wise have narrowed a group of compounds that show promise for alleviating the problem of chemotherapy failure after repeated use. Each one of those compounds has 50 to 100 — or even more — characteristics that contribute to their efficacy.

“Corey’s contribution will hopefully tell us which dozen perhaps of these 100 characteristics are the important ones,” Vogel said. “Right now of those 100 characteristics, we don’t know which ones are good ones. We want to see if there’s a way with what we learn from Corey’s gaming system to then apply what we learn to millions of other compounds to separate the wheat from the chaff.”

James McCormick — a fifth year Ph.D. student in cellular molecular biology who earned his doctoral degree this spring and is a researcher with the Center for Drug Discovery, Design and Delivery — produced the data set for Clark and Guildhall.

Lauren Ammerman, a first-year Ph.D. student in cellular and molecular biology and also working in the Center for Drug Discovery, Design and Delivery, is taking up the computational part of the project.

Machines can learn from human problem solving
Crowdsourcing video gamers to solve real scientific problems is a growing practice.

Machine learning and algorithms by themselves don’t always find the best solution, Clark said. There are already examples of researchers who for years sought answers with machine learning, then switched to actual human gamers.

Gamers take unstructured data and attack it with human problem-solving skills to quickly find an answer.

“So we’re combining both,” Clark said. “We’re going to have both computers and humans trying to find relationships and clustering the data. Each of those human decisions will also be supplied as training input into a deep neural network that is learning the ‘human heuristic’ — the technique and processes humans are using to make their decisions.”

Gamers already have proven they can solve research problems that have stymied scientists, says Vogel. She cites the video game “Foldit” created by the University of Washington specifically to unlock the structure of an AIDS-related enzyme.

Some other Games With A Purpose, as they’re called, have produced similar results. Humans outperform computers when it comes to tasks in the computational process that are particularly suited to the human intellect.

“With ‘Foldit,’ researchers worked on a problem for 15 years using machine learning techniques and were unable to find a solution,” Clark said. “Once they created the game, 57,000 players found a solution in three weeks.”

Modifying the “Minecraft” game and embedding research data inside
Gamers will access the research problem using the version of “Minecraft” they purchased, then install a “mod” or “plugin” — gamer jargon for modifying game code to expand a game’s possibilities — that incorporates SMUs research problem and was developed in accordance with “Minecraft” terms of service. Players will be fully aware of their role in the research, including ultimately leaderboards that show where players rank toward analyzing the data set in the research problem.

SMU is partnering with leaders in the large “Minecraft” modding community to develop a functioning mod by the end of 2017. The game will be heavily tested before release to the public the second quarter of 2018, Clark said.

The SMU “Minecraft” mod will incorporate a data processing and distributed computing platform from game technology company Balanced Media Technology (BMT), McKinney, Texas. BMT’s HEWMEN software platform executes machine-learning algorithms coupled with human guided interactions. It will integrate Wise and Vogel’s research directly into the SMU “Minecraft” mod.

SMU Guildhall will provide the interface enabling modders to develop their own custom game mechanic that visualizes and interacts with the research problem data within the “Minecraft” game environment. Guildhall research is funded in part by Balanced Media Technology.

“We expect to have over 25,000 people continuously online during our testing period,” Clark said. “That should probably double the computing power of the supercomputer here.”

That many players and that much computing power is a massive resource attacking the research problem, Wise said.

“The SMU computational system has 8,000 computer cores. Even if I had all of ManeFrame to myself, that’s still less computing and brainpower than the gaming community,” he said. “Here we’ve got more than 25,000 different brains at once. So even if 24,000 don’t find an answer, there are maybe 1,000 geniuses playing ‘Minecraft’ that may find a solution. This is the most creative thing I’ve heard in a long time.” — Margaret Allen, SMU