Categories
Earth & Climate Feature Fossils & Ruins Learning & Education Plants & Animals Researcher news SMU In The News Student researchers

LiveScience: Newfound dino looks like creepy love child of a turkey and ostrich

A new giant bird-like dinosaur discovered in China has been named for SMU paleontologist Louis L. Jacobs, Corythoraptor jacobsi, by the scientists who identified the new oviraptorid.

Live Science Senior Writer Laura Geggel covered the discovery of a new Cretaceous Period dinosaur from China that is named for paleontologist Louis L. Jacobs, an SMU professor in SMU’s Roy M. Huffington Department of Earth Sciences.

Jacobs mentored three of the authors on the article. First author on the paper was Junchang Lü, an SMU Ph.D. alum, with co-authors Yuong–Nam Lee and Yoshitsugu Kobayashi, both SMU Ph.D. alums.

The Live Science article, Newfound dino looks like creepy love child of a turkey and ostrich, published July 27, 2017. The dinosaur’s name, Corythoraptor jacobsi, translates to Jacobs’ helmeted thief.

The scientific article “High diversity of the Ganzhou Oviraptorid Fauna increased by a new “cassowary-like” crested species” was published July 27, 2017 in Nature’s online open access mega-journal of primary research Scientific Reports.

Jacobs in 2016 co-authored an analysis of the Cretaceous Period dinosaur Pawpawsaurus based on the first CT scans ever taken of the dinosaur’s skull.

He is president of SMU’s Institute for the Study of Earth and Man.

A world-renowned vertebrate paleontologist, Jacobs in 2012 was honored by the 7,200-member Science Teachers Association of Texas with their prestigious Skoog Cup for his significant contributions to advance quality science education. He joined SMU’s faculty in 1983.

Jacobs is the author of “Quest for the African Dinosaurs: Ancient Roots of the Modern World” (Villard Books and Johns Hopkins U. Press, 2000); “Lone Star Dinosaurs” (Texas A&M U. Press, 1999), which is the basis of a Texas dinosaur exhibit at the Fort Worth Museum of Science and History; “Cretaceous Airport” (ISEM, 1993); and more than 100 scientific papers and edited volumes.

Read the full story.

EXCERPT:

By Laura Geggel
Live Science

The newly identified oviraptorid dinosaur Corythoraptor jacobsi has a cassowary-like head crest, known as a casque.

A Chinese farmer has discovered the remains of a dinosaur that could have passed for the ostrich-like cassowary in its day, sporting the flightless bird’s head crest and long thunder thighs, indicating it could run quickly, just like its modern-day lookalike, a new study finds.

The newfound dinosaur’s 6-inch-tall (15 centimeters) head crest is uncannily similar to the cassowary’s headpiece, known as a casque, the researchers said. In fact, the crests have such similar shapes, the cassowary’s may provide clues about how the dinosaur used its crest more than 66 million years ago, they said.

The findings suggest that the dinosaur, which would have towered at 5.5 feet (1.6 meters), may have had a similar lifestyle to the modern cassowary bird (Casuarius unappendiculatus), which is native to Australia and New Guinea, the study’s lead researcher, Junchang Lü, a professor at the Institute of Geology, Chinese Academy of Geological Sciences, told Live Science in an email.

Researchers found the oviraptorid — a type of giant, bird-like dinosaur — in Ganzhou, a city in southern China, in 2013. The specimen was in remarkable shape: The paleontologists found an almost complete skeleton, including the skull and lower jaw, which helped them estimate that the creature was likely a young adult, or at least 8 years of age, when it died.

The long-necked and crested dinosaur lived from about 100 million to 66 million years ago during the late Cretaceous period, and likely used its clawed hands to hunt lizards and other small dinosaurs, Lü added.

The research team named the unique beast Corythoraptor jacobsi. Its genus name refers to the raptor’s cassowary-like crest, and the species name honors Louis Jacobs, a vertebrate paleontologist at Southern Methodist University who mentored three of the study’s researchers.

The researchers think the crest likely served the dinosaur in different ways, they said, including in display, communication and perhaps even as an indication of the dinosaur’s fitness during the mating season.

Read the full story.

Categories
Energy & Matter Events Feature Learning & Education Researcher news Videos

Construction begins on international mega-science neutrino experiment

Groundbreaking held today in South Dakota marks the start of excavation for the Long-Baseline Neutrino Facility, future home to the international Deep Underground Neutrino Experiment.

SMU is one of more than 100 institutions from around the world building hardware for a massive international experiment — a particle detector — that could change our understanding of the universe.

Construction will take years and scientists expect to begin taking data in the middle of the next decade, said SMU physicist Thomas E. Coan, a professor in the SMU Department of Physics and a researcher on the experiment.

The turning of a shovelful of earth a mile underground marks a new era in particle physics research. The groundbreaking ceremony was held Friday, July 21, 2017 at the Sanford Underground Research Facility in Lead, South Dakota.

Dignitaries, scientists and engineers from around the world marked the start of construction of the experiment that could change our understanding of the universe.

The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment. Called DUNE for short, it will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries, including Coan.

When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.

“DUNE is designed to investigate a broad swath of the properties of neutrinos, one of the universe’s most abundant but still mysterious electrically neutral particles,” Coan said.

The experiment seeks to understand strange phenomena like neutrinos changing identities — called “oscillation” — in mid-flight and the behavioral differences between a neutrino an its anti-neutrino sibling, Coan said.

“A crisp understanding of neutrinos holds promise for understanding why any matter survived annihilation with antimatter from the Big Bang to form the people, planets and stars we see today,” Coan said. “DUNE is also able to probe whether or not the humble proton, found in all atoms of the universe, is actually unstable and ultimately destined to eventually decay away. It even has sensitivity to undertanding how stars explode into supernovae by studying the neutrinos that stream out from them during the explosion.”

Coan also is a principal investigator on NOvA, another neutrino experiment collaboration of the U.S. Department of Energy’s Fermi National Laboratory. NOvA, in northern Minnesota, is another massive particle detector designed to observe and measure the behavior of neutrinos.

Similar to NOvA, DUNE will be a neutrino beam from Fermilab that runs to Homestake Gold Mine in South Dakota. DUNE’s beam will be more powerful and will take the measurements NOvA is taking to an unprecedented precision, scientists on both experiments have said. Any questions NOvA fails to answer will most certainly be answered by DUNE.

At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois.

Institutions in dozens of countries will contribute to the construction of DUNE components. The DUNE experiment will attract students and young scientists from around the world, helping to foster the next generation of leaders in the field and to maintain the highly skilled scientific workforce in the United States and worldwide.

Beam of neutrinos will travel 800 miles (1,300 kilometers) through the Earth
The U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago, will generate a beam of neutrinos and send them 800 miles (1,300 kilometers) through the Earth to Sanford Lab, where a four-story-high, 70,000-ton detector will be built beneath the surface to catch those neutrinos.

Scientists will study the interactions of neutrinos in the detector, looking to better understand the changes these particles undergo as they travel across the country in less than the blink of an eye.

Ever since their discovery 61 years ago, neutrinos have proven to be one of the most surprising subatomic particles, and the fact that they oscillate between three different states is one of their biggest surprises. That discovery began with a solar neutrino experiment led by physicist Ray Davis in the 1960s, performed in the same underground mine that now will house LBNF/DUNE. Davis shared the Nobel Prize in physics in 2002 for his experiment.

DUNE scientists will also look for the differences in behavior between neutrinos and their antimatter counterparts, antineutrinos, which could give us clues as to why the visible universe is dominated by matter.

DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay, bringing us closer to fulfilling Einstein’s dream of a grand unified theory.

Construction over the next 10 years is funded by DOE with 30 countries
But first, the facility must be built, and that will happen over the next 10 years. Now that the first shovel of earth has been moved, crews will begin to excavate more than 870,000 tons of rock to create the huge underground caverns for the DUNE detector.

Large DUNE prototype detectors are under construction at European research center CERN, a major partner in the project, and the technology refined for those smaller versions will be tested and scaled up when the massive DUNE detectors are built.

This research is funded by the U.S. Department of Energy Office of Science in conjunction with CERN and international partners from 30 countries.

DUNE collaborators come from institutions in Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, the Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom and the United States. — Fermilab, SMU

Categories
Energy & Matter Feature Health & Medicine Learning & Education Plants & Animals Researcher news SMU In The News Student researchers Technology Videos

The New York Times: Something Strange in Usain Bolt’s Stride

Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.

The New York Times reporter Jeré Longman covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s apparent asymmetrical running stride.

The article, “Something Strange in Usain Bolt’s Stride,” published July 20, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the running controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

They described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

The New York Times subscribers or readers with remaining limited free access can read the full story.

EXCERPT:

By Jeré Longman
The New York Times

DALLAS — Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-meter race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 meters and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers here at Southern Methodist University, among the leading experts on the biomechanics of sprinting, said they found something unexpected during video examination of Bolt’s stride: His right leg appears to strike the track with about 13 percent more peak force than his left leg. And with each stride, his left leg remains on the ground about 14 percent longer than his right leg.

This runs counter to conventional wisdom, based on limited science, that an uneven stride tends to slow a runner down.

So the research team at S.M.U.’s Locomotor Performance Laboratory is considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 meters and 4×100-meter relay next month at the world track and field championships in London.

Among those questions: Does evenness of stride matter for speed? Did Bolt optimize this irregularity to become the fastest human? Or, with a more balanced stride during his prime, could he have run even faster than 9.58 seconds at 100 meters and 19.19 seconds at 200 meters?

“That’s the million-dollar question,” said Peter Weyand, director of the S.M.U. lab.

The S.M.U. study of Bolt, led by Andrew Udofa, a doctoral researcher, is not yet complete. And the effect of asymmetrical strides on speed is still not well understood. But rather than being detrimental for Bolt, the consequences of an uneven stride may actually be beneficial, Weyand said.

It could be that Bolt has naturally settled into his stride to accommodate the effects of scoliosis. The condition curved his spine to the right and made his right leg half an inch shorter than his left, according to his autobiography.

Initial findings from the study were presented last month at an international conference on biomechanics in Cologne, Germany. Most elite sprinters have relatively even strides, but not all. The extent of Bolt’s variability appears to be unusual, Weyand said.

“Our working idea is that he’s probably optimized his speed, and that asymmetry reflects that,” Weyand said. “In other words, correcting his asymmetry would not speed him up and might even slow him down. If he were to run symmetrically, it could be an unnatural gait for him.”

Antti Mero, an exercise physiologist at the University of Jyvaskyla in Finland, who has researched Bolt’s fastest races, said he was intrigued by the S.M.U. findings.

The New York Times subscribers or readers with remaining limited free access can read the full story.

Categories
Culture, Society & Family Feature Learning & Education Researcher news Technology Videos

SMU and LIFT team named one of eight semifinalists for $7M Barbara Bush Foundation Adult Literacy XPrize

SMU’s “Codex: Lost Words of Atlantis” adult literacy video game is puzzle-solving smartphone game app to help adults develop literacy skills

The SMU and Literacy Instruction for Texas (LIFT) team was named today one of eight semifinalists in the $7 million Barbara Bush Foundation Adult Literacy XPRIZE presented by Dollar General Literacy Foundation.

The XPRIZE is a global competition that challenges teams to develop mobile applications designed to increase literacy skills in adult learners.

SMU participants include education experts from SMU’s Simmons School of Education and Human Development, along with video game developers from SMU Guildhall — a graduate school video game development program. They are working with literacy experts from LIFT to design an engaging, puzzle-solving smartphone app to help adults develop literacy skills. Students from LIFT help test the game.

The SMU and LIFT team, People ForWords, is one of 109 teams who entered the competition in 2016. The team developed “Codex: Lost Words of Atlantis.”

In the game, players become archeologists hunting for relics from the imagined once-great civilization of Atlantis. By deciphering the forgotten language of Atlantis, players develop and strengthen their own reading skills. The game targets English- and Spanish-speaking adults.

Students at LIFT, a North Texas nonprofit adult literacy provider, have tested and provided key insights for the game during its development. According to LIFT, one in five adults in North Texas cannot read, a key factor in poverty. Dallas has the fourth highest concentration of poverty in the nation, with a 41 percent increase from 2000 to 2014. LIFT is one of the largest and most widely respected adult basic education programs in Texas and offers adult basic literacy, GED preparation and English as a Second Language programs with the goal of workforce empowerment.

Testing of the eight semi-finalists’ literacy software begins in mid-July with 12,000 adults who read English at a third grade level or lower. Selection of up to five finalists will depend on results of post-game testing to evaluate literacy gains among test subjects. Finalists will be named in May of 2018 and the winner will be named in 2019. — Nancy George, SMU

Categories
Culture, Society & Family Energy & Matter Feature Health & Medicine Learning & Education Researcher news Student researchers Technology

Better than Star Wars: Chemistry discovery yields 3-D table-top objects crafted from light

Photoswitch chemistry allows construction of light shapes into structures that have volume and are viewable from 360 degrees, making them useful for biomedical imaging, teaching, engineering, TV, movies, video games and more

A scientist’s dream of 3-D projections like those he saw years ago in a Star Wars movie has led to new technology for making animated 3-D table-top objects by structuring light.

The new technology uses photoswitch molecules to bring to life 3-D light structures that are viewable from 360 degrees, says chemist Alexander Lippert, Southern Methodist University, Dallas, who led the research.

The economical method for shaping light into an infinite number of volumetric objects would be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

“Our idea was to use chemistry and special photoswitch molecules to make a 3-D display that delivers a 360-degree view,” said Lippert, an assistant professor in the SMU Department of Chemistry. “It’s not a hologram, it’s really three-dimensionally structured light.”

Key to the technology is a molecule that switches between non-fluorescent and fluorescent in reaction to the presence or absence of ultraviolet light.

The new technology is not a hologram, and differs from 3-D movies or 3-D computer design. Those are flat displays that use binocular disparity or linear perspective to make objects appear three-dimensional when in fact they only have height and width and lack a true volume profile.

“When you see a 3-D movie, for example, it’s tricking your brain to see 3-D by presenting two different images to each eye,” Lippert said. “Our display is not tricking your brain — we’ve used chemistry to structure light in three actual dimensions, so no tricks, just a real three-dimensional light structure. We call it a 3-D digital light photoactivatable dye display, or 3-D Light Pad for short, and it’s much more like what we see in real life.”

At the heart of the SMU 3-D Light Pad technology is a “photoswitch” molecule, which can switch from colorless to fluorescent when shined with a beam of ultraviolet light.

The researchers discovered a chemical innovation for tuning the photoswitch molecule’s rate of thermal fading — its on-off switch — by adding to it the chemical amine base triethylamine.

Now the sky is the limit for the new SMU 3-D Light Pad technology, given the many possible uses, said Lippert, an expert in fluorescence and chemiluminescence — using chemistry to explore the interaction between light and matter.

For example, conference calls could feel more like face-to-face meetings with volumetric 3-D images projected onto chairs. Construction and manufacturing projects could benefit from rendering them first in 3-D to observe and discuss real-time spatial information. For the military, uses could include tactical 3-D replications of battlefields on land, in the air, under water or even in space.

Volumetric 3-D could also benefit the medical field.

“With real 3-D results of an MRI, radiologists could more readily recognize abnormalities such as cancer,” Lippert said. “I think it would have a significant impact on human health because an actual 3-D image can deliver more information.”

Unlike 3-D printing, volumetric 3-D structured light is easily animated and altered to accommodate a change in design. Also, multiple people can simultaneously view various sides of volumetric display, conceivably making amusement parks, advertising, 3-D movies and 3-D games more lifelike, visually compelling and entertaining.

Lippert and his team in The Lippert Research Group report on the new technology and the discovery that made it possible in the article “A volumetric three-dimensional digital light photoactivatable dye display,” published in the journal Nature Communications.

Some of the 3-D images generated with the new technology are viewable in this video.

Co-authors are Shreya K. Patel, lead author, and Jian Cao, both students in the SMU Department of Chemistry.

Genesis of an idea — cinematic inspiration
The idea to shape light into volumetric animated 3-D objects came from Lippert’s childhood fascination with the movie “Star Wars.” Specifically he was inspired when R2-D2 projects a hologram of Princess Leia. Lippert’s interest continued with the holodeck in “Star Trek: The Next Generation.”

“As a kid I kept trying to think of a way to invent this,” Lippert said. “Then once I got a background in chemistry molecules that interact with light, and an understanding of photoswitches, it finally dawned on me that I could take two beams of light and use chemistry to manipulate the emission of light.”

Key to the new technology was discovering how to turn the chemical photoswitch off and on instantly, and generating light emissions from the intersection of two different light beams in a solution of the photoactivatable dye, he said.

SMU graduate student in chemistry Jian Cao hypothesized the activated photoswitch would turn off quickly by adding the base. He was right.

“The chemical innovation was our discovery that by adding one drop of triethylamine, we could tune the rate of thermal fading so that it instantly goes from a pink solution to a clear solution,” Lippert said. “Without a base, the activation with UV light takes minutes to hours to fade back and turn off, which is a problem if you’re trying to make an image. We wanted the rate of reaction with UV light to be very fast, making it switch on. We also wanted the off-rate to be very fast so the image doesn’t bleed.”

SMU 3-D Light Pad
In choosing among various photoswitch dyes, the researchers settled on N-phenyl spirolactam rhodamines. That particular class of rhodamine dyes was first described in the late 1970s and made use of by Stanford University’s Nobel prize-winning W.E. Moerner.

The dye absorbs light within the visible region, making it appropriate to fluoresce light. Shining it with UV radiation, specifically, triggers a photochemical reaction and forces it to open up and become fluorescent.

Turning off the UV light beam shuts down fluorescence, diminishes light scattering, and makes the reaction reversible — ideal for creating an animated 3-D image that turns on and off.

“Adding triethylamine to switch it off and on quickly was a key chemical discovery that we made,” Lippert said.

To produce a viewable image they still needed a setup to structure the light.

Structuring light in a table-top display
The researchers started with a custom-built, table-top, quartz glass imaging chamber 50 millimeters by 50 millimeters by 50 millimeters to house the photoswitch and to capture light.

Inside they deployed a liquid solvent, dichloromethane, as the matrix in which to dissolve the N-phenyl spirolactam rhodamine, the solid, white crystalline photoswitch dye.

Next they projected patterns into the chamber to structure light in two dimensions. They used an off-the-shelf Digital Light Processing (DLP) projector purchased at Best Buy for beaming visible light.

The DLP projector, which reflects visible light via an array of microscopically tiny mirrors on a semiconductor chip, projected a beam of green light in the shape of a square. For UV light, the researchers shined a series of UV light bars from a specially made 385-nanometer Light-Emitting Diode projector from the opposite side.

Where the light intersected and mixed in the chamber, there was displayed a pattern of two-dimensional squares stacked across the chamber. Optimized filter sets eliminated blue background light and allowed only red light to pass.

To get a static 3-D image, they patterned the light in both directions, with a triangle from the UV and a green triangle from the visible, yielding a pyramid at the intersection, Lippert said.

From there, one of the first animated 3-D images the researchers created was the SMU mascot, Peruna, a racing mustang.

“For Peruna — real-time 3-D animation — SMU undergraduate student Shreya Patel found a way to beam a UV light bar and keep it steady, then project with the green light a movie of the mustang running,” Lippert said.

So long Renaissance
Today’s 3-D images date to the Italian Renaissance and its leading architect and engineer.

“Brunelleschi during his work on the Baptistery of St. John was the first to use the mathematical representation of linear perspective that we now call 3-D. This is how artists used visual tricks to make a 2-D picture look 3-D,” Lippert said. “Parallel lines converge at a vanishing point and give a strong sense of 3-D. It’s a useful trick but it’s striking we’re still using a 500-year-old technique to display 3-D information.”

The SMU 3-D Light Pad technology, patented in 2016, has a number of advantages over contemporary attempts by others to create a volumetric display but that haven’t emerged as commercially viable.

Some of those have been bulky or difficult to align, while others use expensive rare earth metals, or rely on high-powered lasers that are both expensive and somewhat dangerous.

The SMU 3-D Light Pad uses lower light powers, which are not only cheaper but safer. The matrix for the display is also economical, and there are no moving parts to fabricate, maintain or break down.

Lippert and his team fabricated the SMU 3-D Light Pad for under $5,000 through a grant from the SMU University Research Council.

“For a really modest investment we’ve done something that can compete with more expensive $100,000 systems,” Lippert said. “We think we can optimize this and get it down to a couple thousand dollars or even lower.”

Next Gen: SMU 3-D Light Pad 2.0
The resolution quality of a 2-D digital photograph is stated in pixels. The more pixels, the sharper and higher-quality the image. Similarly, 3-D objects are measured in voxels — a pixel but with volume. The current 3-D Light Pad can generate more than 183,000 voxels, and simply scaling the volume size should increase the number of voxels into the millions – equal to the number of mirrors in the DLP micromirror arrays.

For their display, the SMU researchers wanted the highest resolution possible, measured in terms of the minimum spacing between any two of the bars. They achieved 200 microns, which compares favorably to 100 microns for a standard TV display or 200 microns for a projector.

The goal now is to move away from a liquid vat of solvent for the display to a solid cube table display. Optical polymer, for example, would weigh about the same as a TV set. Lippert also toys with the idea of an aerosol display.

The researchers hope to expand from a monochrome red image to true color, based on mixing red, green and blue light. They are working to optimize the optics, graphics engine, lenses, projector technology and photoswitch molecules.

“I think it’s a very fascinating area. Everything we see — all the color we see — arises from the interaction of light with matter,” Lippert said. “The molecules in an object are absorbing a wavelength of light and we see all the rest that’s reflected. So when we see blue, it’s because the object is absorbing all the red light. What’s more, it is actually photoswitch molecules in our eyes that start the process of translating different wavelengths of light into the conscious experience of color. That’s the fundamental chemistry and it builds our entire visual world. Being immersed in chemistry every day — that’s the filter I’m seeing everything through.”

The SMU discovery and new technology, Lippert said, speak to the power of encouraging young children.

“They’re not going to solve all the world’s problems when they’re seven years old,” he said. “But ideas get seeded and if they get nurtured as children grow up they can achieve things we never thought possible.” — Margaret Allen, SMU