Categories
Earth & Climate Energy & Matter Feature Learning & Education Researcher news

Exploring the mysteries of the universe: Reality in the Shadows

New knowledge has caused us to reconsider many previous conclusions about what the universe is and how it works.

Despite centuries of scientific advancements, there is much about the universe that remains unknown. New knowledge and discoveries in the last 20 years have challenged previously accepted ideas and theories that were once regarded as scientific truth and have subjected them to increasing scrutiny.

These additions to our knowledge have caused scientists to reconsider many previous conclusions about what the universe is and how it works.

“Reality in the Shadows”” or “What the Heck’s the Higgs?” is a new book that explores the concepts that shape our current understanding of the universe and the frontiers of our knowledge of the cosmos.

The authors — two physicists and an engineer — tell us in a manner that non-scientists can readily follow, why studies have moved to superstring theory/M-theory, ideas about extra dimensions of space, and ideas about new particles in nature to find answers. It also explores why these ideas are far from established as accurate descriptions of reality.

“Our book explains how we know what we know about the universe, what we don’t know, and what we wish we did know,” said co-author Stephen Sekula, an associate professor of Physics at SMU. A physicist, Sekula conducts research into the Higgs Boson at the energy frontier on CERN’s ATLAS Experiment.

The book was initiated by Frank Blitzer, an engineer who participated on national space programs like Apollo and Patriot, several years ago, Sekula said. He was joined by co-author S. James Gates Jr., well known for his work on supersymmetry, supergravity and superstring theory, a few years ago.

“Frank and Jim sought additional input to help complete the book, and serendipitously Frank’s grandson, Ryan, was an SMU undergraduate and Hunt Scholar who helped connect them to me,” Sekula said. “After over an additional year of work, the book was completed.”

The foundations of modern physics rest on ideas that are over 100 years old and battle-tested, Sekula said.

“But nature has offered us new puzzles that have not yet been successfully explained by those ideas,” he added. “Perhaps we don’t yet have the right idea, or perhaps we haven’t searched deep enough into the cosmos. These are exciting times, with opportunities for a new generation of physicists who might crack these puzzles. Our book will help a curious reader to see the way in which knowledge was established, and encourage them to be engaged in solving the new mysteries.”

“Reality in the Shadows,” available through YBK Publishers, describes how humanity came to learn the workings of the universe as groundwork for the science that found the Higgs particle. Now scientists are hunting for the explanations for dark matter and the accelerated expansion of the cosmos, as well as for the many new questions the Higgs Boson itself has raised.

Scientists have recently discovered colliding black holes and neutron stars, that there is more non-luminous matter (dark matter) in the universe than the ordinary stuff of everyday life, and that the universe seems to grow larger each second at a faster and faster rate. Readers will learn how scientists discern such features of the universe and begin to see how to think beyond what is known to what is not yet known.

Throughout the book are descriptions of important developments in theoretical physics that lead the reader to a step-by-step understanding.

Sekula teaches physics and conducts research at ATLAS. He contributed to the measurement of decay modes of the Higgs boson and to the measurement of its spin-parity quantum numbers. Complementary to these efforts, he has worked with colleagues on the ATLAS Experiment to search for additional Higgs bosons in nature, providing intellectual leadership and direct involvement in several searches.

Gates was named 2014 “Scientist of the Year” by the Harvard Foundation. He was elected to the prestigious National Academy of Sciences in 2013 and received the 2013 National Medal of Science, the highest recognition given to scientists by the United States.

Gates has been featured on many TV documentary programs on physics, including “The Elegant Universe,” “Einstein’s Big Idea,” “Fabric of the Cosmos” and “The Hunt for the Higgs.” His DVD series, “Superstring Theory: The DNA of Reality,” makes the complexities of unification theory comprehensible.

Blitzer has more than 50 years of experience in engineering, program management, and business development and participated on national space programs, and The Strategic Defense Initiative (SDI), holding several patents in guidance and control. He has spent more than 20 years in independent research of the subject of the book.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News Videos

Daily Planet: Star Wars come to life in SMU chemist’s invention

Long ago, sort of, scenes from Star Wars triggered a child’s imagination, so that today it’s informed one of his research goals as a chemist.

Discover Canada’s science magazine show Daily Planet reported on the research of SMU organic chemist Alex Lippert, an assistant professor in the Department of Chemistry in SMU’s Dedman College of Humanities and Sciences.

Lippert’s team develops synthetic organic compounds that glow in reaction to certain conditions. He led his lab in developing a new technology that uses photoswitch molecules to craft 3-D light structures — not holograms — that are viewable from 360 degrees. An economical method for shaping light into an infinite number of volumetric objects, the technology will be useful in a variety of fields, from biomedical imaging, education and engineering, to TV, movies, video games and more.

For biomedical imaging, Lippert says the nearest-term application of the technique might be in high-volume pre-clinical animal imaging, but eventually the technique could be applied to provide low-cost internal imaging in the developing world, or less costly imaging in the developed world.

The Daily Planet segment aired Dec. 12, 2017.

Lippert’s lab includes four doctoral students and five undergraduates who assist in his research. He recently received a prestigious National Science Foundation Career Award, expected to total $611,000 over five years, to fund his research into alternative internal imaging techniques.

NSF Career Awards are given to tenure-track faculty members who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research in American colleges and universities.

Lippert joined SMU in 2012. He was previously a postdoctoral researcher at the University of California, Berkeley, and earned his Ph.D. at the University of Pennsylvania, and Bachelor of Science at the California Institute of Technology.

Watch the full Dec. 12 show.

Categories
Culture, Society & Family Feature Learning & Education Researcher news Student researchers Technology

Cyber grad and U.S. Marine Corps vet Michael Taylor proved his mettle as an outstanding student researcher

‘Outstanding student in computer science & engineering’ graduates Dec. 16 with master’s degree and Raytheon ticket to a Ph.D.

Michael Taylor will be the first to tell you that he was not ready for college when he graduated from Plano East High School in 2006. And he’ll also tell you that nobody was more surprised than he was when SMU admitted him in 2014, a little later than the average undergrad.

But Taylor’s disciplined approach to life, honed through five years in the Marine Corps, combined with the intelligence he learned to tap, has earned him a master’s degree from SMU’s Lyle School of Engineering that will be awarded Dec. 16. And after proving his mettle as a student researcher in Lyle’s Darwin Deason Institute for Cyber Security, Taylor has been awarded the first Raytheon IIS Cyber Elite Graduate Fellowship, which will fund his Ph.D. in quantum computing at SMU and then put him to work as an employee at Raytheon.

“Michael Taylor stood out to me when I first had him in an undergraduate class,” said Mitch Thornton, research director for the Deason Institute and Cecil H. Green Chair of Engineering at SMU. “I could sense there was something special about him and that he had a lot of talent. I actively encouraged Michael to do research with me and he has excelled in everything I have asked him to work on. He is a credit to the student body of SMU’s Lyle School, and a credit to the nation.”

Taylor learned to focus on the details in the Marine Corps. He had sampled community college very briefly after high school, but it didn’t stick. He knew he didn’t have skills to trade for a decent job, so joining the Marine Corps made sense to him.

“Honestly? In retrospect, I wasn’t ready for school,” Taylor acknowledged.

After the Marines, finally ready for college
Taylor’s dad was an SMU engineering alumnus, and this was not the career path he’d envisioned for his son. But it’s funny how things work themselves out. Taylor completed Marine basic training, and took an aptitude test to determine where his skills might fit the Marine Corp mission. He did very, very well.

“My score on that test – I qualified for every enlisted job in the Marine Corps,” Taylor said. “I got to pick what job I wanted.” Working as a calibration technician sounded interesting – a job that would require him to conduct testing for proper operation of a wide range of mechanical and electronic devices and tools. But before working in calibration, he’d have to go school for a year.

“Ironic, I know,” Taylor said, smiling. “I had to sign up for an extra year, so I ended up doing a five-year tour in the Marines.”

He spent most of that time working out of Camp Pendleton in California, but was deployed to Helmand Province, Afghanistan, from March through September 2010, at the height of the surge of U.S. troops. “I wasn’t a combat guy,” Taylor said. “But even on base, sometimes, the rockets would come in the middle of the night.”

Nearing the end of his enlistment in 2012, Taylor was getting the hard sell to stay in and make the Marines a career. By now, he had decided he was ready for college, but the career planner he met with tried hard to talk him out of it, predicting that Taylor would “fail again.”

“He actually told me if I got out of the Marine Corps and went back to college, I’d end up living under a bridge,” Taylor said, shaking his head. It just made him more determined to succeed.

He started back at community college, and this experience was very different. “It seemed like it was so hard the first time,” Taylor said. “What then seemed like a monumental task, now seemed like nothing. I started thinking, I might be able to do school, now.”

And he started thinking about SMU. Taylor’s grades at Collin County Community College were good – good enough to get him into his father’s alma mater.

SMU Prof’s mentoring made all the difference
Taylor never dared to think he could live up to what his Dad had accomplished, starting with the scholarship to attend SMU that Jim Taylor ’89 had received from Texas Instruments. “He was a technician there,” Taylor recalled, “and they paid for him to come here. As a kid, if you’d told me I could do something like that, too, I’d never have believed you. For me there was Albert Einstein, and Jim Taylor.”

Michael Taylor came to the Hilltop on the GI Bill, and SMU’s Yellow Ribbon program for military veterans covered what the GI Bill didn’t. Then, the Darwin Deason Institute for Cyber Security picked up the cost of his master’s degree.

Taylor’s first semester at SMU’s Lyle School was a tough adjustment after his relatively easy path at community college, but that class with professor Thornton his second semester changed everything. “Dr. Thornton offered me a position working in the Deason Institute for Cyber Security,” Taylor said. “It’s been going great since then.”

Thornton’s influence and mentoring made all the difference for Taylor.

“If I had not met Dr. Thornton, there were times I wondered if I would have gotten my bachelor’s degree. I definitely wouldn’t be getting the master’s degree. And a Ph.D. wouldn’t have been something I ever considered.”

Compelled to dive into quantum computing and cyber security
Taylor was interested in computer hardware when he arrived at SMU, but the Deason Institute opened the door to the contributions he could make in cyber security. He received the Lyle School’s 2017 Rick A. Barrett Memorial Award for outstanding work in computer science and engineering. And as he neared the completion of his master’s degree, he was tapped for the Raytheon Cyber Elite Graduate Fellowship and is looking forward to pursuing his Ph.D. in quantum computing.

“Quantum computers solve problems that are too difficult for classical computers to solve,” Taylor said. “Certain problems in classical computation are intractable, there’s no way you can solve them in this lifetime. It’s only a matter of time before quantum computers render all encryption obsolete.”

For Fred Chang, executive director of SMU’s Deason Institute and former research director for the National Security Agency (NSA), finding talented students like Taylor to fill the gaps in the cyber security workforce is “job one.” Chang testified before a congressional subcommittee in September that we are likely facing a worldwide shortage of cyber security workers five years from now.

“Today’s students will be responsible for designing, creating, operating, maintaining and defending tomorrow’s cyber infrastructure,” Chang explained. “We need a large and capable pool of folks to staff these positions for the future.”

For Taylor, cyber security is just plain compelling.

“I just like the challenge. There’s somebody out there that’s trying to crack what you have, to break you down. You have to be smarter than them. It’s a game!” — Kim Cobb, SMU

Categories
Learning & Education Researcher news SMU In The News Technology Uncategorized

Dallas Innovates: SMU, UTA Profs Named National Academy of Inventors Fellows

Election as a National Academy of Inventors fellow is the highest professional honor given to academic inventors.

Dallas Innovates covered the naming of Bobby B. Lyle School of Engineering Professor Bruce Gnade as a Fellow to the National Academy of Inventors.

Journalist Lance Murray noted that SMU’s Gnade holds 77 U.S. patents and 55 foreign patents, and is the author or co-author of more than 195 refereed journal articles. Currently, his research focuses on flexible electronics with applications ranging from radiation sensors to microelectronic arrays for cellular recording.

The Dallas Innovates article, “SMU, UTA Profs Named National Academy of Inventors Fellows,” published Dec. 12, 2017.

Read the full story.

EXCERPT:

By Lance Murray
Dallas Innovates

Bruce Gnade, executive director of the Hart Center for Engineering Leadership and clinical professor within Southern Methodist University’s Bobby B. Lyle School of Engineering, and Dereje Agonafer, Jenkins Garrett professor in mechanical and aerospace engineering at the University of Texas at Arlington received the honors.

The professors were included in a group of 155 fellows nationwide named Tuesday by the academy.

Election as NAI Fellow is given to academic inventors who have shown a spirit of innovation in creating or facilitating inventions that have made a tangible impact on quality of life, economic development, and welfare of society.

NAI fellows are named as inventors on U.S. patents, and are nominated by their peers based on their contributions to innovation in areas such as patents and licensing, innovative discovery and technology, significant impact on society, and support and enhancement of innovation.

PROFS’ WORK COVERS FLEXIBLE ELECTRONICS, SEMICONDUCTOR RESEARCH
SMU’s Gnade holds 77 U.S. patents and 55 foreign patents, and is the author or co-author of more than 195 refereed journal articles. Currently, his research focuses on flexible electronics with applications ranging from radiation sensors to microelectronic arrays for cellular recording, according to SMU.

Prior to joining SMU, Gnade held leadership positions at Texas Instruments and the Defense Advanced Research Projects Agency, where he served as a program manager overseeing influential technology research projects for the Department of Defense. He is currently serving on the Board of Directors of Oak Ridge Associated Universities.

His academic career includes faculty appointments at the University of Maryland, the University of North Texas, and the University of Texas at Dallas.

Gnade is a member of the Materials Research Society and the Society for Information Display, a senior member of the Institute of Electrical and Electronics Engineers, and a fellow of the American Physical Society.

Read the full story.

Categories
Culture, Society & Family Economics & Statistics Feature Researcher news

SMU economist wins $50,000 “budding genius” prize with highly cited corruption research

Serra questioned long-standing assumptions; found corruption declines as perpetrators take into account social costs of their illegal activities, and as victims share information about specific bribery exchanges through online reporting systems.

Guilt and shame play a role in reducing bribery, according to research by economist Danila Serra, Southern Methodist University, Dallas.

As an economist who has studied bribery behavior extensively, Serra has discovered that bribery declines if potentially corrupt agents are made aware of the negative effects of corruption, and when victims can share specific information about bribe demands through online reporting systems.

An assistant professor in the SMU Department of Economics, Serra’s research methodology is unique — relying on lab experiments in which players gain and lose real money. Her work is frequently cited by other researchers studying the field of bribery.

In November the directors and officers of the International Foundation for Research in Experimental Economics honored Serra as the inaugural recipient of the $50,000 Vernon L. Smith Ascending Scholar Prize. The Smith Prize is described by the foundation as a “budding genius” award.

“Dr. Serra’s accomplishments have marked her as an ascending scholar, teacher, mentor and colleague of exceptional promise,” said a statement from the foundation.

The prize is named for Nobel Laureate Vernon L. Smith, considered the father of experimental economics. It aims to build on his legacy and inspire recipients, early on in their careers, to set the loftiest possible goals for themselves as social-science theorists, practitioners, colleagues, mentors and truth seekers, the foundation said.

Serra’s interest in understanding bribery transformed in 2005 when she became frustrated by measurement problems and the difficulty of finding good data. Her goal was to identify and understand the causes of corruption, and in particular whether non-monetary motivations, social norms and culture play any role in corruption decision-making. During her Ph.D. work at the University of Oxford, economist Abigail Barr exposed Serra to lab experiments, a relatively new methodology for the field of economics.

“I was always interested in corruption. As soon as I discovered the field of experimental economics I decided to design and implement bribery experiments,” Serra said. “I recreate the situation I want to study in a laboratory setting, employing real monetary incentives, which we provide, and with scenarios where the subjects can make corruption decisions that increase their money at the expense of other players. The play is anonymous and they get to bring home the money they earn in the experimental setting.”

Corruption isn’t purely about money
The focus of Serra’s research sharpened further when she began to question the root assumption that guilt and shame don’t play a role in bribery. She found in laboratory experiments that the intrinsic costs of guilt and shame do matter, and that corruption isn’t purely a matter of money.

She found that corruption declines when potentially corrupt agents are made aware of the negative impact of their actions, and when bottom-up anti-corruption mechanisms are in place, such as victims sharing specific information about bribe demands. Serra also found evidence of a significant relationship between corruption and culture.

“In one of my early studies, I employed a sample of international students at the University of Oxford and found among undergraduate students that the level of corruption in their home country predicts their propensity to engage in corruption in my bribery experiment,” she said.

“This is what we’d expect, they have internalized corrupt norms,” Serra said. “But the surprising result is that this wasn’t true for graduate students. We concluded that graduate students do not conform to the prevailing social norms of their home countries and, possibly, they want to distance themselves from such norms.”

Serra’s research has produced 12 papers on bribery and she has edited a book about experimental research on corruption. Her work on corruption has been cited hundreds of times by other researchers in the field. She has also investigated issues related to governance, public service provision and bottom-up accountability in developing countries. More recently, she has embarked on new research exploring gender differences in behaviors and outcomes in a variety of contexts, including students’ choices of major.

Serra launched and is co-leader of the Laboratory for Research in Experimental Economics at SMU’s Economics Department in the Dedman College of Humanities & Sciences.

The Vernon L. Smith Ascending Prize for Serra is a major professional recognition of the profound impact of her pioneering research in the area of experimental public economics and in particular on the understanding of corruption and other forms of rule breaking, said SMU economist Santanu Roy, chair of the SMU Department of Economics and University Distinguished Professor.

“She is one of the most cited economists of her generation,” Roy said. “The prize comes with a $50,000 award which, as far as I know, is the largest amount awarded as a prize for young economists. The fact that Dr. Serra was chosen to receive the inaugural prize named for the father of experimental economics tells us about the high expectations that her peers have about her future research productivity.”

Economics as an empirical discipline
The Smith Prize seeks to inspire early-career scholars to emulate Smith’s joyous zeal for scientific discovery. It may be used flexibly to advance social science in whatever manner a recipient chooses, the foundation said.

The prize is made possible through the Rasmuson Foundation and other contributors.

As a social scientist, Smith was committed to exploring theoretical foundations in economics, social science, and science generally; achievement in the form of quantifiable impacts in transforming economics into an experimental and more empirical discipline; collegiality in funding, mentoring, and collaborating with fellow scholars; and curiosity in looking beyond traditional disciplinary boundaries in search of truth.

“The International Foundation for Research in Experimental Economics heartily congratulates Dr. Serra and looks forward to following her career in the years to come,” the statement said. — Margaret Allen, SMU