Categories
Energy & Matter Health & Medicine Student researchers Technology

Skeptics aside, “computing with light” will replace silicon chip

gevans.jpg
Gary Evans

SMU Professor of Electrical Engineering Gary Evans recently received some good news: Journal reviewers said they thought his proposal for solving one of the most perplexing problems in the emerging field of integrated photonics sounded impossible.

“To me, that’s extremely promising when the reviewers don’t think it’s possible,” Evans said. “When that’s happened, it’s been fun showing the reviewers that the conventional wisdom is incorrect.”

Photonics is the science of processing or transmitting information using light. Fiber-optic systems — perhaps the field’s best known application — transform telephone conversations into laser-generated signals that travel through thin glass wires to machines that decode the signals at the other end.

A photon is a light quantum, the smallest measurable unit of light. Integrated photonics researchers seek to create circuits that use photons to do what electrons do in electric integrated semiconductor circuits.

Evans and Jerome Butler, university distinguished professor of electrical engineering, think they have hit on a solution to the problem of integrating an optical isolator with other components in a photonic circuit. In electric semiconductor circuits, diodes act as isolators by letting electrons flow in only one direction.

“Isolation is crucial when you put about 1 billion devices on a single chip of silicon,” Evans says. The two researchers want to integrate an optical isolator with a tiny semiconductor laser that would let light travel in one direction within a photonic semiconductor circuit and keep it from reflecting back into the laser, where it could create instabilities in the laser’s output.

It is understandable that their peers might be skeptical, Evans says. Researchers around the world have been trying to create integrated photonic isolators since the 1970s and no one has overcome the problem of reflection in photonic circuits.

Evans had a similar experience when he worked with lasers at RCA Labs in Princeton, N.J., before joining SMU. In 1984 all semiconductor lasers were edge-emitting, meaning they generated light from the edge of the chip rather than the surface. Evans and his team proposed a surface-emitting laser to the U.S. Air Force.

“Their reviewers said we could never get light out, much less create a laser,” he recalls, adding that his team wrote a proposal and nevertheless received funding from the Air Force starting in 1985.

In only seven years, Evans’ group got light out of the system and demonstrated surface-emitting lasers with performance efficiencies as good as edge-emitting lasers. When he came to SMU in 1992, the Air Force continued to fund Evans’ work, which resulted in a spin-off company, Photodigm in Richardson, Texas.

Photodigm conducts research for the government and manufactures a range of lasers, most of them edge-emitting lasers that have been improved using processes developed for surface-emitting ones, says Evans. He is Photodigm’s co-founder, vice president and chief technology officer. Another co-founder is Jay Kirk, the Electrical Engineering Department’s lab manager and Evan’s former colleague at RCA. Electrical Engineering Chair and Associate Professor Marc P. Christensen is on the company’s technical advisory board, as is Butler, who worked closely with Evans when he was at RCA and helped lure him to SMU.

Evans has since expanded into medical photonics, working with SMU and Drexel University colleagues on a photodynamic therapy system to treat cancer of the esophagus.

image4631.jpg
Marc Christensen

Similar laser-based systems are used commercially, but they are large and water-cooled. The team hopes to create a machine that’s portable and cheap enough for use in every doctor’s office. Their design uses arrays of semiconductor lasers, each no bigger than a grain of sand, inserted into the esophagus via a balloon catheter. The patient is given a photosensitive drug that kills cancer cells during a chemical reaction triggered by the lasers.

Christensen says SMU’s photonics researchers — who include faculty members in electrical engineering, mathematics and physics, plus their graduate students — come together periodically for interdisciplinary meetings because so many fields are involved in creating and understanding photonic devices.

Christensen’s Photonic Architectures Laboratory has received more than $2 million in grants from the Defense Advanced Research Projects Agency, DARPA, for a project to make unmanned aerial vehicles, UAVs, stealthier.

“Today we think of a Predator UAV as flying at 30,000 feet carrying a really nice camera with a long lens that can zoom into an area on the ground and look at it very carefully,” Christensen says. Ideally, the device would be tiny with a flat lens, like a cell phone camera; however, those cameras do not produce images of adequate resolution.

Christensen’s interdisciplinary team has devised a multi-step solution that starts with an array of hundreds of tiny, flat, square cameras and equally tiny, square mirrors placed in a grid pattern that can be mounted on the underside of an aircraft as small as a model airplane. Each camera will provide slightly different information about the subject because each takes a photograph from a slightly different angle.

Computational imaging is then used to combine the numerous low-resolution images to create a sharper image that is akin to one taken by a high-performance camera too heavy to fit on the small aircraft.

point2.jpg
point3.jpg
Computational imaging: Each hexagonal
face is a micro-mirror, individually
positioned to create an overall shape.

“Wouldn’t it be great if the camera could determine from its wide shot which objects in the field are most important and be able to zero in on them?” Christensen asks.

Such a camera is under development at SMU. Called an adaptive resolution camera, it would analyze the wide view and use mathematical formulas to identify objects of interest — such as aircraft on the ground.

Instead of simple mirrors, the adaptive resolution camera uses an array of micro-electric machines, called MEMs. Each MEM looks like a mirror that is hundreds of microns across, or about the width of a few human hairs, attached to three even smaller levers. The levers would reposition the mirrors in the desired direction to improve the information collected by the camera’s next photographs to create another, better image — all faster than the blink of an eye.

The smarter camera would automatically put more pixels in the areas of interest and less in those considered unimportant, he says, adding that the resulting picture may look strange by conventional standards, but it would provide more useful information.

The team from the Department of Electrical Engineering in the SMU Bobby B. Lyle School of Engineering incorporates skills from physics, mathematics and computer science. Assistant Professor Dinesh Rajan, a specialist in information theory, finds the mathematical route to the best final image, a so-called “goodness value.” Associate Professor Scott Douglas, an adaptive algorithms expert, crafts the formulas to make the system home in on the important details within the big picture. And Professor Panos Papamichalis works on their robustness, making the system more tolerant of the adversities the camera will encounter in daily use.

Integrated circuits make the thousands of necessary computations, and “given the need for miniaturization, the best way to reduce the size of those circuits would make them fully photonic,” Christensen says. That step, however, is some time off. For semiconductor laser structures, Christensen works with Evans.

The two have just started a project, also for DARPA, in collaboration with the University of Texas at Dallas, Photodigm, Raytheon and Northrop Grumman. The goal: to develop signal processing with photons, instead of electrons; in other words, computing with light.

To achieve this they must create the photonic equivalent of a semiconductor chip. Most computer chips are made with silicon, which doesn’t emit light very well. A better choice is indium (In) phosphide (P), called a III-V semiconductor, Christensen says. The goal is to emit and control light, one photon at a time.

“At the quantum level you are literally controlling individual photons and providing gain (to amplify signals),” says Christensen. He compares the current state of photonic integrated circuits with the world’s first electronic integrated circuit, invented at Texas Instruments 50 years ago this summer by the late Jack Kilby when he linked a handful of transistors on a single silicon chip. Over the next 50 years, semiconductors evolved from a handful of components on that first chip to hundreds of millions of components on a single chip, he says.

“If you look at the state of photonics processing, it’s about 6 to 15 components,” he says. “It’s like we’re starting today where Jack Kilby was 50 years ago, and it will be interesting to see where a few decades takes the field of integrated photonics.” — Deborah Wormser

Related links:
Gary Evans
Jerome Butler
Dinesh Rajan
Scott Douglas
Panos Papamichalis
Marc Christensen
SMU’s Electrical Engineering research
Department of Electrical Engineering
The Daily Campus: Shade Tree Engineering
Photodigm
Bobby B. Lyle School of Engineering

Categories
Culture, Society & Family Learning & Education Student researchers

Gender gap at top U.S. universities for women scientists

Lincoln2.jpgAccording to the National Research Council in 2006, women earned 44.7 percent of the doctorates awarded in the biological sciences between 1993 and 2004. Yet women comprised only 30.2 percent of the assistant professors at the top 50 U.S. universities.

In physics, the gap is far wider. Anne Lincoln, assistant professor of sociology in SMU’s Dedman College, is researching the reasons for the gender disparities.

In September Lincoln received a three-year grant from the National Science Foundation’s Research on Gender in Science and Engineering program.

Lincoln will examine women’s and men’s reasons for pursuing academic science careers as well as their perceptions about women’s contributions to academic science.

Lincoln and a team of four sociology undergraduate students are nearing the completion of the sampling database. They have been preparing a list of all faculty and graduates students at top-20 biology and physics graduate departments in the United States. From that they will randomly select 2,500 to participate in an Internet-based survey.

ecklund.jpgA subsample of about 150 respondents will later be selected for more in-depth interviews, which will take place in 2009.

“In 2010, we will be wrapping up the study and mostly running analyses on the data,” she says.

Lincoln’s co-investigator is Elaine Howard Ecklund of Rice University.

In addition to expanding recent scholarly findings related to the role perceptions have in the decision to pursue a career in academic science, Lincoln’s research is expected to provide the “necessary research underpinnings to build university policies and practices that encourage women’s interest in science majors and careers.”

Related links:
Anne Lincoln
Elaine Howard Ecklund
SMU Department of Sociology
National Research Council
Dedman College of Humanities and Sciences

Categories
Energy & Matter Health & Medicine Plants & Animals Student researchers

Aids, cancer targeted by biology researchers

In his third-floor laboratory in Dedman Life Sciences Building, biologist Robert Harrod and his team are zeroing in on a new way to inhibit the virus that causes AIDS. They already have shown that their approach, which involves the rare genetic disorder Werner syndrome, works when the disorder’s enzyme defect is introduced into cells.

Now they are trying to find practical ways to use this pathway to inhibit the AIDS virus. The beauty of this approach is that the AIDS virus will not be able to mutate in a way that can defeat this treatment, says Harrod, associate professor in the Biological Sciences Department of Dedman College.

Harrod%2CRobert%20lab2.jpg

Down the hall from Harrod’s lab, Assistant Professor of Biological Sciences Jim Waddle is preparing to file for a patent on a tiny “worm” that is expected to be highly useful in drug-testing, producing results far more quickly than tests run on larger lab creatures.

Meanwhile, their colleagues, Associate Professor Pia Vogel and her husband, John Wise, a lecturer in the Biological Sciences Department, are conducting work that may have implications for cancer treatment.

In university laboratories throughout the world, enormous strides have been made in biology research in recent years, including the mapping of the human genome. With young faculty members like Harrod, Waddle and Vogel working on cutting-edge conundrums, and a recent $3.6 million gift to Biological Sciences, SMU’s department is poised to play a high-profile role in biology advances in coming years, says William Orr, chair and professor of biological sciences.

The gift from philanthropist and SMU Board of Trustees member Caren Prothro and the Perkins-Prothro Foundation includes $2 million for an endowed chair, $1 million for an endowed research fund, $500,000 for a graduate fellowship fund and $100,000 for an undergraduate scholarship fund.

The endowment will enable the University to attract a biologist with a national reputation in research to join a faculty that is strong in cellular and molecular biology and biochemistry and is doing research that could have practical applications in medicine, Orr says.

john.jpg

For example, Vogel and Wise are looking for a way to improve the long-term efficacy of chemotherapy treatments. Wise uses a nautical metaphor to explain their work: “Picture a cancer cell as a ship on a sea and the chemotherapy being dumped into the ship, there’s a mechanism like a sump pump that will dump that chemical back overboard,” he says.

That cellular “sump pump” is important to normal cell health because it keeps toxins out.

“Of course, with cancer cells that are targeted for destruction by chemotherapeutics, you’d like to be able to turn off that mechanism,” Wise adds.

John Wise

Vogel explains that many cancer cells respond to treatment by pumping out more and more of the toxins as time goes on, so that a cancer treatment that works well initially might not work as well in later stages.

“Switching chemotherapy drugs doesn’t help because the cancer cells just pump out everything, resulting in multi-drug resistance,” she says.

pia.jpg

Using Electron Spin Resonance Spectroscopy, a biophysical technique that obtains structural information about the cellular pump, Vogel’s research group is trying to find a way to shut off the ATP energy usage by this cellular sump pump.

“If you can knock out the pump, you can sink the cancer ship,” she says.

Harrod, who studies retroviruses that infect humans and who is focusing on transcriptional gene regulation, is working on a mechanism that might sidestep a more specific type of multidrug resistance — of the virus that causes AIDS to the conventional HAART (highly active antiretroviral treatment) drug regimen.

Pia Vogel

His approach is related to a rare genetic disorder called Werner syndrome, which causes premature aging in those who have the disease. Researchers have noted that individuals who are carriers for Werner syndrome do not develop AIDS. Harrod hypothesized that the enzyme involved in Werner syndrome is necessary for transcription of the retrovirus.

caenorhabditis-elegans.jpg

Using cells that had the Werner syndrome defect inserted into them, his lab was able to confirm this link, and last year he and co-researchers published the findings in “The Journal of Biological Chemistry.” Now his group is looking for molecules that might be used to block this transcription-necessary enzyme. Included among the researchers cited in the journal article were several biological sciences students. Both graduate and undergraduate students assisted Harrod in his lab work on retroviral transcription.

Ask Assistant Professor Jim Waddle about the contributions made by students, and he’ll talk about the weird “worm” discovered by one of his graduate students. Waddle, whose Ph.D. work was in molecular genetics, has been studying the nematode Caenorhabditis elegans as a model for food absorption in the human gut.

Fingerlike projections called microvilli, which are necessary for the absorption of nutrients, line the human gut; nematodes have microvilli on every gut cell.

jim.jpg

As part of their research, Waddle’s lab doused the nematodes in mutation-causing chemicals and examined them via a fluorescent protein.

Ph.D. candidate Christina Paulson looked at 20,000 nematodes in this manner and came up with one that had a nematode version of diverticulosis, with outpouchings all along the gut.

Disappointingly, the mutated worm turned out to be normal in terms of lifespan, reproduction and absorption of nutrients. But, Waddle says, “we threw our heads together and thought about conditions the nematode might encounter in the wild” versus the laboratory setting. He wondered if the worm might have trouble eliminating toxins. It did.

Jim Waddle

Normal nematodes eliminate toxins too quickly for the worms to be useful in drug testing, but toxins stay in the weird worms long enough to have an effect on them. And that means the millimeter-long creature likely will be highly useful in drug-testing situations, because a nematode’s life cycle is so much shorter than that of the larger animals, such as mice, that generally are used to test drugs.

christina-paulson-150.jpg

The student who identified the worm is one of 18 graduate students in the Department of Biological Sciences. Nine are working on Master’s degrees, nine on Ph.Ds. With 126 undergraduates, the department enrolls the largest segment of undergraduate majors in the natural sciences at SMU. Undergraduate students who intend to go into biological research can apply for the BRITE (Biomedical Researchers in Training Experience) program, a collaboration between SMU and the University of Texas Southwestern Medical Center that leads to acceptance into a UT Southwestern Ph.D. program.

Orr believes the department is poised for a leap forward in size and stature. Administrative support to boost research has come from Provost Paul Ludden, whose background is in biochemistry. Current research projects are supported by $4.3 million from agencies that include the National Institutes of Health and the National Science Foundation.
Christina Paulson

Orr’s dream for the department is to double the current tenured and tenure-track faculty to 18 members. Of the nine, seven conduct ongoing research projects, five of which are funded by federal agencies. The department will add an assistant professor in spring 2009. Later that year, a national search will be conducted to fill the new Distinguished Chair of Biological Sciences.

william.jpgAlthough the department is small, a synergy has developed from building a faculty that is focused on cellular and molecular biochemistry, Orr says.

Researchers can work together on projects, brainstorming ideas for new areas of investigation. More grants can be applied for, which means more grants awarded.

“We have a strong group that is focused on certain areas. By adding new faculty we will be able to boost the overall stature of the department,” Orr says. “If we increase the academic stature and the amount of research, we can provide more opportunities for graduate students and for undergraduates. It all works together.” — Cathy Frisinger

William Orr

Related links:
Robert Harrod
Jim Waddle
Pia Vogel
John Wise
William Orr
Biological Sciences Department
Dedman College of Humanities and Sciences

Categories
Researcher news Student researchers

Faculty mentor student researchers in both lab, field

Through their research, SMU professors not only bring new information and insights to their classrooms, but also serve as role models and collaborators to students who conduct research in their laboratories across campus.

Maintaining a strong research program is significant for a number of reasons, says James Quick, associate vice president for research and dean of graduate studies.

“Research programs serve as a recruiting tool that helps a university attract the best students,” Quick says. “Research also increases the diversity of ideas on campus and creates opportunities for different departments to work together on interdisciplinary projects.”

DeTemple.jpg

In support of SMU’s commitment to research at both faculty and student levels, which is part of the University’s long-term strategic plan, Quick is seeking to more than triple SMU’s annual research spending to $50 million.

He emphasizes that the top 50 universities in the country, as ranked by “U.S. News & World Report,” each conduct more than $50 million a year in research.

“The great universities of the 21st century will spend significant amounts of funds on research,” Quick says. From anthropology to engineering to religious studies, SMU undergraduate and graduate students and their faculty mentors are discovering new knowledge and playing an important role in higher education through their contributions to research.

Lessons From Bolivia
In summer 2007, SMU Seniors Erin Eidenshink and Katie Josephson spent eight weeks in Cochabamba, Bolivia’s third-largest city, researching gender roles and how they affect economic development programs in that country. Eidenshink and Josephson received financial support from the Richter International Fellowship Program, which funds independent research abroad for students in SMU’s Honors Program.

Jill DeTemple, assistant professor of religious studies in Dedman College of Humanities and Sciences, served as their adviser on the research. DeTemple, whose own research examines the effects of faith-based development programs on religious identity in rural Ecuador, spent a semester helping the two students develop a research proposal. She later remained in contact with them by e-mail while they were in Bolivia.

“I am immensely proud of what they accomplished,” DeTemple says. “They applied knowledge that they learned in the classroom and developed research skills. They have made the transition from being consumers of knowledge to being creators of knowledge.”

Now a book chapter written by the students and DeTemple, describing the messages that faith-based organizations communicate about gender roles, has been accepted into an anthology under review for publication.

“Their work highlights the ways in which most development organizations and scholars presume that men and women relate to households and family life,” DeTemple says.

“While we have noted that the evangelical movement in Latin America has brought men in closer relationship to household life, Katie and Erin point out that this has not necessarily freed women to become more active in the public sector, nor has it led to gender parity in the household,” she says. “I learned a lot from their research, and will look at gender roles a little bit differently when I do my research.”

DeTemple says she also has enjoyed interesting conversations with Eidenshink and Josephson.

“Because no one else on campus is doing research in my area, I don’t have these kinds of conversations unless I go to a professional conference,” DeTemple says. “They’re working in the field now. We talk as researcher to researcher.”

Eidenshink says that working with DeTemple and conducting the research “empowered me to draw my own conclusions.”

Son%20Rissing.jpgIn addition, DeTemple “challenged us to look at the research that already had been done and then to analyze it based on what we had seen,” says Josephson, a President’s Scholar. “We found that the facts were complex, not simple and straightforward,” she says.

From cheerleader to colleague
Christiana Rissing, a Ph.D. student in SMU’s Chemistry Department, studies the interaction of dendrimers based on a tetravinylsilane core with metals like copper, platinum and silver. Any interesting properties that develop “could prove useful for medical and electronic applications,” she explains.

If she has any questions, Rissing can call on Associate Professor of Chemistry David Son, her adviser. She began studying with Son as an undergraduate and stayed at SMU to pursue her Ph.D. because she enjoys working with him.
David Son advises Christiana Rissing.

“In the lab, we’re always teasing Son about his favorite line: ‘It looks promising,'” Rissing says. “He always looks for and finds the silver lining. I can work on a stubborn experiment for weeks, and I start questioning my technique. Even when the results look bad, he will look at all the data and find something that ‘looks promising.’ It makes me want to go that extra step, read that extra paper or search through the literature in case I’ve missed something.”

As a Ph.D. student, Rissing works independently, Son says.

“I treat her more like a colleague now. But, in the beginning, with any student, you have to be a cheerleader,” he says. “When I was a graduate student, more than half of my reactions didn’t work. A big part of my role is to be an encourager.”

The research opportunityphysicist.jpg
Junior Amy Hand is writing a computer program to design a solenoid magnet that students will use in the physics lab to study the properties of “muons,” electron-like radioactive particles produced in Earth’s upper atmosphere. A solenoid magnet is made by wrapping copper wire in a pattern around a specially shaped mechanical frame to produce a uniform magnetic field within the frame’s interior.

Hand, a President’s Scholar, chose to study at SMU because of research opportunities made available to undergraduates, she says.

“Working with a professor who has so much more experience and can guide me through a project is a huge benefit,” Hand says.

Amy Hand learns the ropes in the physics lab
from Tom Coan.

Tom Coan, associate professor of physics and Hand’s adviser, helps students to develop a broad set of skills, from learning how to solder to selecting and purchasing mechanical and electrical components.

“There are a lot of practical things and a bewildering assortment of things that students have to learn to be efficient in a lab,” Coan says.

Hand researches, tests and refines the various components of her project, working closely with Coan to devise solutions as issues arise.

“The best way to learn the nitty-gritty details is elbow to elbow with a mentor,” Coan says. “It’s like an apprenticeship. You have to invest a fair amount of your time working with a student before you see any return, but the work can be beneficial to both of us.”

Planting The Seed Of Research
Stegall%2C%20Willis%2C%20Krueger.jpgSophomore Jason Stegall spent last summer in the Laser Micromachining Laboratory of the Bobby B. Lyle School of Engineering using a laser process called micromachining to cut tiny channels on material that can be used to make artificial bones.

“I was testing to see how strong the laser needed to be and how many pulses were required per task,” Stegall says.

Jason Stegall (center) in the lab with David
Willis (left) and Paul Krueger.

A National Science Foundation grant awarded to David Willis and Paul Krueger, associate professors of mechanical engineering, supported Stegall’s research. The three-year grant funds summer research opportunities for nine undergraduate students through 2009.

Through such grants the federal government is trying to encourage more students to conduct research and go to graduate school in engineering and the sciences, Willis says.

“Part of the reason more students don’t go to graduate school is that they don’t know what researchers do, and don’t understand all the opportunities that are available to researchers,” he says.

Stegall says he eventually wants to become a college professor and do research and development for the automotive or aerospace industries.

Rick%2C%20Aland%2CWolf.jpg

Torrey Rick’s research involves excavating sites as old as 10,000 years on the Channel Islands off the California coast.

“The work I do is extremely collaborative,” says Rick, assistant professor of anthropology. “Students are an important part of this work, helping to complete field and laboratory analysis and often providing fresh ideas and perspectives. Conducting research also benefits students by showing them how to navigate the world of scholarly publication. Ultimately, doing research and publishing papers can help them secure an academic position.” – Joy Hart

Torrey Rick (center) and Ph.D. students Amanda Aland
and Christopher Wolff.

Related links:
Jill DeTemple
David Son
Tom Coan
David Willis
Paul Krueger
Torrey Rick
Office of Research Administration
SMU Research: Celebrating and Investing in Research at SMU

Categories
Culture, Society & Family Learning & Education Mind & Brain Technology

Extreme reality: Women avoid sexual assault in virtual zone

avatar-01-web.jpgSMU’s Department of Psychology and The Guildhall at SMU have joined forces against dating violence.

Psychology Professors Ernest Jouriles and Renee McDonald, with Guildhall Lecturer Jeff Perryman and Deputy Director Tony Cuevas, are collaborating on a role-playing program that combines virtual reality with behavioral insight to help teach and test sexual assault avoidance techniques.

virtual-reality-dating-violence-300.jpg

The program’s environment of a rain-lashed car parked in an isolated area immerses women into not just a location, but also a “conversation” with a potential attacker.

It is the first step in what developers hope will be a program to help women practice strategies for averting sexual assault in a controlled situation that is safe, yet feels realistic.

“This is a potential breakthrough opportunity for gaming technology to help solve an important social problem,” Jouriles says.

During one session, the experience starts in a small, nondescript office where two automobile seats are bolted to a raised platform: An actor sits in the driver’s seat, and a woman sits in the passenger seat to his right. When she puts on video goggles and a headset, she suddenly finds herself in a parked car during a howling rainstorm. Rivulets of water stream down the windshield, flashes of lightning illuminate the interior of the car, and thunder beats a steady cadence.

She doesn’t see the actor beside her, she sees a three-dimensional video game character at the wheel of the car. She is drawn into small talk, but the driver turns increasingly aggressive, eventually demanding sexual intimacy. It is nothing short of frightening and, oddly enough, very real.

Role-playing is a well-established method for teaching people to deal with complex social situations, says Jouriles, professor and chair of psychology in Dedman College. But he hit a wall in his research when he tried the method to teach relationship violence avoidance techniques to a high school health class in the late 1990s.

“The role-playing produced giggles,” Jouriles says. “And from my perspective, it didn’t capture the imaginaton of the students.”

mcdonald.jpg
SMU psychologists Ernest Jouriles and Renee McDonald.

Jouriles and McDonald, associate professor of psychology in Dedman College, joined the SMU faculty in August 2003, when a handful of psychologists around the country were beginning to experiment with virtual programs to treat anxiety disorders, such as allowing people who were afraid of flying to “practice” without boarding an airplane.

They wondered whether SMU’s newly opened Guildhall could help teach and test sexual assault avoidance techniques by immersing a woman into not just a virtual location, but also a “conversation” with a potential attacker.

“We created an enclosed environment,” says Perryman, Guildhall lecturer, who worked on the program with Guildhall’s Cuevas.

“We wanted our participant to feel powerless. The rain was added to isolate her. The car is particularly creepy. We worked hard at that,” says Perryman.

The simulation requires participants to wear a head-mounted video display with tracking technology that senses head movements and an audio headset, which transmits the voice of the avatar “driver” and other sounds from the virtual environment. The avatar’s lips move in sync with the voice of the actor, who controls the character’s facial expressions and movements through a video keyboard. The virtual driver can be made to nod, shrug, even pound the steering wheel in anger when he is rebuffed.

Jouriles, McDonald and their team studied the responses of 62 undergraduate women who were randomly assigned to traditional or virtual reality role-play and outfitted with heart monitors. All were asked to complete questionnaires afterward on their moods and experience.

The women who donned the headgear and went through the virtual scenario rated the experience’s realism higher than those in the traditional role play group. Behavioral observations also suggested that women experiencing the virtual car scene appeared more angry and afraid.

Jouriles calls those results “very promising.” The next step, he says, is to develop a virtual scenario that can test techniques to avert sexual assault. He hopes to see some variation on the virtual program developed for use in high schools and colleges. — Kim Cobb

Related links:
SMU Profile: Ernest Jouriles and Renee McDonald
Ernest Jouriles
Renee McDonald
Jeff Perryman
Tony Cuevas
SMU Guildhall
SMU Department of Psychology
Dedman College of Humanities and Sciences