Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

Los Angeles Times: Fossilized whale bone in African desert holds clues to human evolution

Ancient whale swam hundreds of miles up African river and left behind clues about geology and climate change

Paleontologist James G. Mead excavating a whale specimen in an open-pit mine in Kenya in 1964. The long-lost specimen has helped date the onset of uplift on the East African Plateau, a change that altered the local environment and shaped the evolution of human ancestors. (Courtesy of James G. Mead)
Paleontologist James G. Mead excavating a whale specimen in an open-pit mine in Kenya in 1964. The long-lost specimen has helped date the onset of uplift on the East African Plateau, a change that altered the local environment and shaped the evolution of human ancestors. (Courtesy of James G. Mead)

The Los Angeles Times covered the research of SMU paleontologist Louis L. Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences of SMU’s Dedman College of Humanities and Sciences.

Jacobs is co-author of a study published in the Proceedings of the National Academy of Sciences.

Findings of the research provide the first constraint on the start of uplift of East African terrain from near sea level.

Uplift associated with the Great Rift Valley of East Africa and the environmental changes it produced have puzzled scientists for decades because the timing and starting elevation have been poorly identified.

Jacobs and his colleagues tapped a fossil from the most precisely dated beaked whale in the world — and the only stranded whale ever found so far inland on the African continent — to pinpoint for the first time a date when East Africa’s mysterious elevation began.

The 17 million-year-old fossil is from the beaked Ziphiidae whale family. It was discovered 740 kilometers inland at a elevation of 620 meters in modern Kenya’s harsh desert region.

SMU, Meltzer, women, body image
supervolcano, fossil, Italy, James Quick, Sesia Valley

The article published March 16, 2015.

Read the full story.

EXCERPT:

By Geoffrey Mohan
Los Angeles Times

A 22-foot beaked whale that apparently took a wrong turn up an African river about 17 million years ago may offer clues to the climate-change forces that shaped human evolution.

Lost for more than 30 years, the fossilized beak with part of the jaw bone helps determine that the East African Plateau probably began rising no earlier than 17 million years ago, according to a study published online Monday in the journal Proceedings of the National Academy of Sciences.

That geologic upheaval in an area known as the cradle of humankind is believed to be responsible for the gradual conversion of dense, humid forests into more sparsely treed grasslands that made upright locomotion on two feet advantageous to evolving human ancestors.

“The whale is telling us all kinds of things,” said study coauthor Louis Jacobs, a paleontologist at Southern Methodist University in Dallas. “It tells us the starting point for all that uplift that changed the climate that led to humans. It’s amazing.”

Jacobs had been searching for the specimen since 1980, when he was head of paleontology at the National Museums of Kenya. He had read about the 1964 find, by James G. Mead of the Smithsonian Institution, in a 1975 research paper.

Every time Jacobs visited Harvard, Washington or Nairobi, he would try to find it.

“It was protected by a plaster jacket, so you couldn’t really see it,” he said. “I suspect nobody knew what it was. It was just kept in the collections there.”

Finally, just before another trip to Kenya in 2011, a collections official at Harvard located the fossil, sheathed in the protective jacket, Jacobs said.

Jacobs had the specimen scanned and analyzed, then contacted Henry Wichura, a structural geologist at the University of Potsdam in Germany, who had been studying plateau region, trying to determine when it started rising. He had found evidence that rivers and lava had flowed east from high points on the plateau at least 13 million years ago.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Learning & Education Researcher news

SMU geothermal scientist Maria Richards to guide global energy organization

An energy source that covers the whole gamut – from producing electricity for industries, to even cooling homes

Maria Richards, coordinator of the SMU Geothermal Laboratory in the Roy M. Huffington Department of Earth Sciences, has been named president-elect of the Geothermal Resources Council. She will become the 26th president of the global energy organization beginning in 2017.

Richards has been at the forefront of SMU’s renowned geothermal energy research for more than a decade, and the University’s mapping of North American geothermal resources is considered the baseline for U.S. geothermal energy exploration. SMU’s Conference on Geothermal Energy in Oil and Gas fields, which Richards directs, is pioneering the transition of oil and gas fields to electricity-producing systems by harnessing waste heat and fluids.

“The Geothermal Resources Council is a tremendous forum for expanding ideas about geothermal exploration and technology related to this commonly overlooked source of energy provided by the Earth,” Richards said. “It’s a great opportunity for educating people about an energy source that covers the whole gamut – from producing electricity for industries, to reducing our electricity consumption with direct-use applications, to even cooling our homes.”

“This also is a unique occasion for me to encourage and mentor young women to participate in the sciences throughout their careers and get involved in leadership roles,” said Richards, who will be the GRC’s first woman president.

Development of many forms of renewable energy can lose momentum when the price-per-barrel of oil is low, but Richards expects the current low oil prices to drive more interest in geothermal development.

Today, sedimentary basins that have been “fracked” for oil and gas production create reservoir pathways that can later be used for heat extraction. Fluids boil after being pushed through the hot reservoir pathways, producing electricity-generating steam. In addition to the geothermal energy, the equipment used in active oil and gas fields generates heat, which also can be tapped to produce electricity.

“Oil and gas drilling rig counts are down,” Richards said. “The industry has tightened its work force and honed its expertise. The opportunity to produce a new revenue stream during an economically challenging period, through the addition of relatively simple technology at the wellhead, may be the best chance we’ve had in years to gain operators’ attention.”

SMU’s seventh international geothermal energy conference and workshop is scheduled for May 18 to 20 on the Dallas campus. Designed to reach a broad audience, from the service industry to reservoir engineers, “Power Plays: Geothermal Energy in Oil and Gas Fields,” is an opportunity for oil and gas industry professionals to connect with the geothermal and waste-heat industries to build momentum. The conference is a platform for networking with attendees from all aspects of project development. Presentations will highlight reservoir topics from flare gas usage to induced seismicity and will address new exploration opportunities, including offshore sites in the eastern United States. Information and registration is available at www.smu.edu/geothermal.

Richards’ projects at SMU’s Geothermal Laboratory vary from computer-generated temperature-depth maps for Google.org to on-site geothermal exploration of the volcanic islands in the Northern Mariana Islands. Along with Cathy Chickering Pace, Richards coordinates the SMU Node of the National Geothermal Data System funded by the U.S. Department of Energy.

Past research includes the Enhanced Geothermal System potential of the Cascades, Eastern Texas Geothermal Assessment, Geothermal Map of North America, Dixie Valley Synthesis, and the resource assessment for the MIT Report on the Future of Geothermal Energy.

Richards has previously served on the Geothermal Resources Council Board of Directors and was chair of the Outreach Committee in 2011‐12. She is also a Named Director of the 2015 Board for the Texas Renewable Energy Industries Alliance (TREIA).

Richards holds a Master of Science degree in Physical Geography from the University of Tennessee, Knoxville and a B.S. in Environmental Geography from Michigan State University. — Kimberly Cobb

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows

17 million-year-old whale fossil provides 1st exact date for East Africa’s puzzling uplift

Uplift and aridification of East Africa causing changes in vegetation has been considered a driver of human evolution. Now a fossil whale stranded far inland in Kenya marks the first time scientists can pinpoint how many millions of years ago the uplift began.

Uplift associated with the Great Rift Valley of East Africa and the environmental changes it produced have puzzled scientists for decades. Timing and starting elevation have been poorly understood.

Now paleontologists have tapped a fossil from the most precisely dated beaked whale in the world to pinpoint for the first time a date when East Africa’s mysterious elevation began. The stranded whale is the only one ever found so far inland on the African continent.

The 17 million-year-old fossil is from the beaked Ziphiidae whale family. It was discovered 740 kilometers inland at a elevation of 620 meters in modern Kenya’s harsh desert region, said vertebrate paleontologist Louis L. Jacobs, Southern Methodist University, Dallas.

At the time the whale was alive, it would have been swimming far inland up a river with a low gradient ranging from 24 to 37 meters over more than 600 to 900 kilometers, said Jacobs, a co-author of the study.

A map of Africa and Kenya showing where a 17-million-year-old whale fossil was found far inland . (Wichura/PNAS)
A map of Africa and Kenya showing where a 17-million-year-old whale fossil was found far inland . (Wichura/PNAS)

The study, published in the Proceedings of the National Academy of Sciences, provides the first constraint on the start of uplift of East African terrain from near sea level.

“The whale was stranded up river at a time when east Africa was at sea level and was covered with forest and jungle,” Jacobs said. “As that part of the continent rose up, that caused the climate to become drier and drier. So over millions of years, forest gave way to grasslands. Primates evolved to adapt to grasslands and dry country. And that’s when — in human evolution — the primates started to walk upright.”

Identified as a Turkana ziphiid, the whale would have lived in the open ocean, like its modern beaked cousins. Ziphiids, still one of the ocean’s top predators, are the deepest diving air-breathing mammals alive, plunging to nearly 10,000 feet to feed, primarily on squid.

In contrast to most whale fossils, which have been discovered in marine rocks, Kenya’s beached whale was found in river deposits, known as fluvial sediments, said Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences of SMU’s Dedman College of Humanities and Sciences.

The whale fossil bones were originally thought to be those of a turtle specimen, as was recorded in the fossil catalogue for the Harvard Loperot Expedition in 1964.
The whale fossil bones were originally thought to be those of a turtle specimen, as was recorded in the fossil catalogue for the Harvard Loperot Expedition in 1964. (Museum of Comparative Zoology, Harvard University.)
SMU, Meltzer, women, body image

The ancient large Anza River flowed in a southeastward direction to the Indian Ocean.

The whale, probably disoriented, swam into the river and could not change its course, continuing well inland.

“You don’t usually find whales so far inland,” Jacobs said. “Many of the known beaked whale fossils are dredged by fishermen from the bottom of the sea.”

Determining ancient land elevation is very difficult, but the whale provides one near sea level.

“It’s rare to get a paleo-elevation,” Jacobs said, noting only one other in East Africa, determined from a lava flow.

Beaked whale fossil surfaced after going missing for more than 30 years
The beaked whale fossil was discovered in 1964 by J.G. Mead in what is now the Turkana region of northwest Kenya.

Mead, an undergraduate student at Yale University at the time, made a career at the Smithsonian Institution, from which he recently retired. Over the years, the Kenya whale fossil went missing in storage. Jacobs, who was at one time head of the Division of Paleontology for the National Museums of Kenya, spent 30 years trying to locate the fossil. His effort paid off in 2011, when he rediscovered it at Harvard University and returned it to the National Museums of Kenya.

The fossil is only a small portion of the whale, which Mead originally estimated was 7 meters long during its life. Mead unearthed the beak portion of the skull, 2.6 feet long and 1.8 feet wide, specifically the maxillae and premaxillae, the bones that form the upper jaw and palate.

The researchers reported their findings in “A 17-My-old whale constrains onset of uplift and climate change in east Africa” online at the PNAS web site.

Modern cases of stranded whales have been recorded in the Thames River in London, swimming up a gradient of 2 meters over 70 kilometers; the Columbia River in Washington state, a gradient of 6 meters over 161 kilometers; the Sacramento River in California, a gradient of 4 meters over 133 kilometers; and the Amazon River in Brazil, a gradient of 1 meter over 1,000 kilometers.

Besides Jacobs, other authors from SMU are Andrew Lin, Michael J. Polcyn, Dale A. Winkler and Matthew Clemens.

From other institutions, authors are Henry Wichura and Manfred R. Strecker, University of Potsdam, and Fredrick K. Manthi, National Museums of Kenya.

Funding for the research came from SMU’s Institute for the Study of Earth and Man and the SMU Engaged Learning program. — Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

Houston Chronicle: New data shows North Texas fault line

It is significant that underground conditions have changed to trigger slips on a fault line that hasn’t moved in human memory.

Houston Chronicle, earthquakes, SMU, DeShon, Stump

Journalist Dylan Baddour covered the recent interim report about the research findings of Southern Methodist University’s seismology team surrounding a recent series of earthquakes in the Irving, Texas area.

His Houston Chronicle report, “New data shows North Texas fault line,” covered the preliminary findings and the progress on the team’s earthquake research.

Initial results reveal that the earthquakes that occurred near the site of the old Texas Stadium were relatively shallow and concentrated along a narrow two mile line that indicates a fault extending from Irving into West Dallas.

SMU and the United States Geological Survey shared the report with the mayors of Dallas and Irving spelling out preliminary information gleaned after SMU’s installation in January of more than 20 portable earthquake monitors around the earthquake sites. SMU seismologists Heather DeShon and Brian Stump, in the Roy M. Huffington Department of Earth Sciences, answered questions during the briefing with reporters.

The article published Feb. 11, 2015.

Read the full story.

EXCERPT:

By Dylan Baddour
Houston Chronicle

North Texas earthquake swarms still baffle geologists, who never expected to study seismic tremors in the Lone Star State. But last month scientists installed equipment to record quakes near Irving, Texas, and last week the first numbers came in.

We still don’t know much about why the region shakes, but here’s what we just learned: the quakes have all been relatively shallow, and have centered along a newly-identified fault line near Irving. The data is thanks 20 seismic monitoring machines, supplied by the U.S. Geological Survey and deployed by scientists from Texas’ Southern Methodist University last month.

“This is a first step, but an important one, in investigating the cause of the earthquakes,” said SMU seismologist Brian Stump. “Now that we know the fault’s location and depth, we can begin studying how this fault moves – both the amount and direction of motion.”

Irving, just north of Dallas, shook first in April 2014, but the area’s strongest quakes struck last month. The so-called “earthquake swarm” follows others since 2008 that have hit North Texas—a region with no history of seismic action. This year, the USGS announced plans to raise the region’s official earthquake risk level. Still, no one knows why the region has started to tremble.

“The two views about them. One: in 150 years there haven’t been natural earthquakes in the Dallas-Fort Worth area, so if these earthquakes were natural, that’s very interesting,” said Cliff Frolich, a geologist at the University of Texas at Austin and a veteran researcher of the North Texas quakes. “On the other hand the earthquakes that occurred in 2008 and subsequently appear to be close to injection wells. The fact that these earthquakes are occurring only a few years later, some people would probably conclude they are related to oil and gas activities.”

Injection wells are where oil and gas drillers dispose of tens of millions of gallons of toxic wastewater left over from hydraulic fracturing, or “fracking,” an extraction technique that’s proliferated in Texas and across the country since 2008. Some scientists have suggested that pressure put on fault lines by high-powered injection into bedrock could trigger the quakes, but nothing is conclusive.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

WFAA Channel 8: SMU study — Quakes shallow, concentrated at fault line

Next step is to investigate what triggered the earthquakes, both natural and man-made.

SMU, earthquakes, Irving, WFAA, Channel 8, Byron Harris, Heather DeShon, Brian Stump

WFAA Channel 8 reporters Byron Harris and Marjorie Owens covered the recent interim report about the research findings of Southern Methodist University’s seismology team surrounding a recent series of earthquakes in the Irving, Texas area.

The Channel 8 report, “SMU study: Quakes shallow, concentrated at fault line,” covered a briefing with the press on Friday, Feb. 6, to explain progress on the team’s earthquake research.

Initial results reveal that the earthquakes that occurred near the site of the old Texas Stadium were relatively shallow and concentrated along a narrow two mile line that indicates a fault extending from Irving into West Dallas.

SMU and the United States Geological Survey shared the report with the mayors of Dallas and Irving spelling out preliminary information gleaned after SMU’s installation in January of more than 20 portable earthquake monitors around the earthquake sites. SMU seismologists Heather DeShon and Brian Stump, in the Roy M. Huffington Department of Earth Sciences, answered questions during the briefing with reporters.

The segment aired Feb. 6, 2015.

Read the full story.

EXCERPT:

By Byron Harris and Marjorie Owens
WFAA

Southern Methodist University has released preliminary results from a study spurred by the recent earthquakes that have rattled North Texas.

The quakes, which have primarily centered near the site of the old Texas Stadium in Irving, “were relatively shallow and concentrated along a narrow two mile line that indicates a fault extending from Irving into West Dallas,” read a statement based on SMU’s findings.

According to the statement, SMU and the United States Geological Survey shared their preliminary findings with the mayors of Dallas and Irving after the university installed 20 portable monitors around the area of the quakes’ epicenters.

“They’re moving a little bit north and they form a linear trend,” said SMU Seismologist Heather DeShon.

Instead of a random pattern of quakes inferred from distant sensors, more-refined data now suggests the January quakes happened in a more focused pattern of major quakes and aftershocks, east and north of the University of Dallas. The scientists estimate the fault that caused the quakes is two miles long and from three-to-five miles deep.

“In order to have an earthquake of 3.6 (as occurred in Irving in January), there has to be a fault there,” Dr. DeShon said.

The study is in its beginning phase, but SMU seismologist said the initial findings are an important start to their investigation.

“We can begin studying how this fault moves – both the amount and direction of motion,” he said.

The seismologists said the reason why the quakes have been felt in far North Texas is because of their relatively close proximity to the surface in the granite “basement.”

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.