Categories
Earth & Climate Energy & Matter Researcher news

Most likely cause of 2013-14 earthquakes: Combination of gas field fluid injection, removal

SMU-led seismology team reveals Azle findings for an area where the seismology team identified two intersecting faults

Natural and anthropogenic stress changes that may trigger earthquakes in the Azle area. (SMU)
Natural and man-made stress changes that may trigger earthquakes in the Azle area. (SMU)

An SMU-led seismology team finds that high volumes of wastewater injection combined with saltwater (brine) extraction from natural gas wells is the most likely cause of earthquakes occurring near Azle, Texas, from late 2013 through spring 2014.

In an area where the seismology team identified two intersecting faults, they developed a sophisticated 3D model to assess the changing fluid pressure within the rock formation. They used the model to estimate stress changes induced in the area by two wastewater injection wells and the more than 70 production wells that remove both natural gas and significant volumes of salty water known as brine.

Conclusions from the modeling study integrate a broad-range of estimates for uncertain subsurface conditions. Ultimately, better information on fluid volumes, flow parameters, and subsurface pressures in the region will provide more accurate estimates of the fluid pressure along this fault.

“The model shows that a pressure differential develops along one of the faults as a combined result of high fluid injection rates to the west and high water removal rates to the east,” said Matthew Hornbach, SMU associate professor of geophysics. “When we ran the model over a 10-year period through a wide range of parameters, it predicted pressure changes significant enough to trigger earthquakes on faults that are already stressed.”

Modelled pressure changes in the Ellenburger caused by injection and production.
Modelled pressure changes in the Ellenburger caused by injection and production. The images show the system prior to injection (a) through the onset of seismicity (e). Note that the most significant amount of brine removal occurs along the fault trend.

Model-predicted stress changes on the fault were typically tens to thousands of times larger than stress changes associated with water level fluctuations caused by the recent Texas drought.

“What we refer to as induced seismicity – earthquakes caused by something other than strictly natural forces – is often associated with subsurface pressure changes,” said Heather DeShon, SMU associate professor of geophysics. “We can rule out stress changes induced by local water table changes. While some uncertainties remain, it is unlikely that natural increases to tectonic stresses led to these events.”

Surprisingly small changes in stress can reactivate certain faults
DeShon explained that some ancient faults in the region are more susceptible to movement – “near critically stressed” – due to their orientation and direction. “In other words, surprisingly small changes in stress can reactivate certain faults in the region and cause earthquakes,” DeShon said.

The study, “Causal Factors for Seismicity near Azle, Texas,” has been published in the journal Nature Communications. The study was produced by a team of scientists from SMU’s Roy M. Huffington Department of Earth Sciences in Dedman College of Humanities and Sciences, the U.S. Geological Survey, the University of Texas Institute for Geophysics and the University of Texas Department of Petroleum and Geosystems Engineering. SMU scientists Hornbach and DeShon are the lead authors.

Fluid pressure modeling of industry activity and water table fluctuations is first of its kind
SMU seismologists have been studying earthquakes in North Texas since 2008, when the first series of felt tremors hit near DFW International Airport between Oct. 30, 2008, and May 16, 2009. Next came a series of quakes in Cleburne between June 2009 and June 2010, and this third series in the Azle-Reno area northwest of Fort Worth occurred between Nov. 2013 and Jan. 2014. The SMU team also is studying an ongoing series of earthquakes in the Irving-Dallas area that began in April 2014.

In both the DFW sequence and the Cleburne sequence, the operation of injection wells used in the disposal of natural gas production fluids was listed as a possible cause of the seismicity. The introduction of fluid pressure modeling of both industry activity and water table fluctuations in the Azle study represents the first of its kind, and has allowed the SMU team to move beyond assessment of possible causes to the most likely cause identified in this report.

Prior to the DFW Airport earthquakes in 2008, an earthquake large enough to be felt had not been reported in the Fort Worth Basin since 1950. The North Texas earthquakes of the last seven years have all occurred in areas developed for natural gas extraction from a geologic formation known as the Barnett Shale. The Texas Railroad Commission reports that production in the Barnett Shale grew exponentially from 216 million cubic feet a day in 2000, to 4.4 billion cubic feet a day in 2008, to a peak of 5.74 billion cubic feet of gas a day in 2012.

Read the report here.

While the SMU Azle study adds to the growing body of evidence connecting some injection wells and, to a lesser extent, some oil and gas production to induced earthquakes, SMU’s team notes that there are many thousands of injection and/or production wells that are not associated with earthquakes.

The area of study addressed in the report is in the Newark East Gas Field (NEGF), north and east of Azle. In this field, hydraulic fracturing is applied to loosen and extract gas trapped in the Barnett Shale, a sedimentary rock formation formed approximately 350 million years ago. The report explains that along with natural gas, production wells in the Azle area of the NEGF can also bring to the surface significant volumes of water from the highly permeable Ellenburger Formation – both naturally occurring brine as well as fluids that were introduced during the fracking process.

Subsurface fluid pressures are known to play a key role in causing seismicity. A primer produced by the U.S. Department of Energy explains the interplay of fluids and faults:

The fluid pressure in the pores and fractures of the rocks is called the ‘pore pressure.’ The pore pressure acts against the weight of the rock and the forces holding the rock together (stresses due to tectonic forces). If the pore pressures are low (especially compared to the forces holding the rock together), then only the imbalance of natural in situ earth stresses will cause an occasional earthquake. If, however, pore pressures increase, then it would take less of an imbalance of in situ stresses to cause an earthquake, thus accelerating earthquake activity. This type of failure…is called shear failure.

Injecting fluids into the subsurface is one way of increasing the pore pressure and causing faults and fractures to “fail” more easily, thus inducing an earthquake, he said. Thus, induced seismicity can be caused by injecting fluid into the subsurface or by extracting fluids at a rate that causes subsidence and/or slippage along planes of weakness in the earth.

All seismic waveform data used in the compilation of the report are publically available at the IRIS Data Management Center. Wastewater injection, brine production and surface injection pressure data are publicly available at the Texas Railroad Commission (TRC). Craig Pearson at the TRC, Bob Patterson from the Upper Trinity Groundwater Conservation District; scientists at XTO Energy, ExxonMobil, MorningStar Partners and EnerVest provided valuable discussions and, in some instances, data used in the completion of the report.

“This report points to the need for even more study in connection with earthquakes in North Texas,” said Brian Stump, SMU’s Albritton Chair in Earth Sciences. “Industry is an important source for key data, and the scope of the research needed to understand these earthquakes requires government support at multiple levels.” — Kimberly Cobb

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

Smithsonian: Take a Deep Dive Into The Reasons Land Animals Moved to the Seas

Synthesizing decades of discoveries, scientists have revealed links between changing environments and animal movements

karen carr, Louis Jacobs, Smithsonian, tetrapods, SMU

Smithsonian magazine online tapped the expertise of SMU paleontologist Louis L. Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences of SMU’s Dedman College of Humanities and Sciences.

Science journalist Alicia Ault interviewed Jacobs on the subject of why land animals moved to the seas over the past 250 million years. The article, “Take a deep dive into the reasons land animals moved to the seas,” delves into a new scientific paper published by two Smithsonian scientists and appearing in the latest issue of the highly ranked prestigious journal Science.

Jacobs is a world-recognized vertebrate paleontologist and has served as president of the international Society of Vertebrate Paleontology. He leads SMU’s Institute for the Study of Earth and Man.

Currently his field research is focused on Angola in southwestern Africa. He co-leads Projecto PaleoAngola, a collaborative international scientific research program to understand the effect of the opening of the South Atlantic Ocean on ancient life. In the laboratory, Jacobs’ research utilizes advanced imaging and stable isotope techniques to investigate paleoenvironmental, biogeographic and phylogenetic issues of the Mesozoic and Cenozoic eras.

Jacobs serves on the National Park Service Science Committee Advisory Board, which recommends National Natural Landmarks to the U.S. Department of the Interior. He has served as president of the international Society of Vertebrate Paleontology, and in 1999 he was director ad interim of the Dallas Museum of Natural History. Before joining SMU, he served as head of the Division of Paleontology at the National Museum of Kenya. He has been a Visiting Scholar at Harvard University, a Specially Appointed Professor at Hokkaido University, Japan, and a Visiting Professor at Richard Leakey’s Turkana Basin Institute in Kenya.

Jacobs is the author of “Quest for the African Dinosaurs: Ancient Roots of the Modern World” (Villard Books and Johns Hopkins U. Press, 2000); “Lone Star Dinosaurs” (Texas A&M U. Press, 1999), which is the basis of the Texas dinosaur exhibit at the Fort Worth Museum of Science and History; “Cretaceous Airport” (ISEM, 1993); and more than 100 scientific papers and edited volumes.

The Smithsonian article published April, 16, 2015.

Read the full story.

EXCERPT:

By Alicia Ault
Smithsonian.com

The movement of animals from the land into the sea has happened several times over the last 250 million years, and it has been documented in many different and singular ways. But now, for the first time, a team of researchers has created an overview that not only provides insight into evolution, but may also help more accurately assess humans’ impact on the planet.

The oceans are teeming with tetrapods—“four-legged” birds, reptiles, mammals and amphibians—that have repeatedly transitioned from the land to the sea, adapting their legs into fins. The transitions have often been correlated with mass extinctions, but the true reasons are only partly known based on fossils and through study of Earth’s climate, for instance.

Those transitions are considered to be “canonical illustrations” of the evolutionary process and thus ideal for study; living marine tetrapods—such as whales, seals, otters and sea lions—also have a big ecological impact, according to Neil P. Kelley and Nicholas D. Pyenson, the two Smithsonian scientists who compiled the new look at these tetrapods, appearing this week in the journal Science.

Instead of gathering evidence from a single field, the pair pulled together research from many disciplines, including paleontology, molecular biology and conservation ecology, to give a far larger picture of what was happening when animals transitioned from the land to the sea across millennia.

Almost by necessity, scientists tend to work in narrow silos, so this research will help broaden their views and potentially make for quicker progress in understanding evolution. Knowing how these creatures adapted over the last few hundred million years, and especially how they’ve changed in the era since humans appeared, could help us become better stewards of the planet.

“It’s a one-of-a-kind summation of all that’s known about those different groups that evolved to go back to the sea,” says Louis L. Jacobs, a professor of earth sciences and president of the Institute for the Study of Earth and Man at Southern Methodist University. The paper lays it all out in a way that allows scientists to make comparisons across species, he adds.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Energy & Matter Fossils & Ruins Learning & Education Plants & Animals Researcher news SMU In The News Videos

NBC, CBS & CW33: Jurassic Jackpot — 5-Year-Old Finds Dinosaur in Mansfield

The folks at SMU say a find like this is extremely rare, and for a five-year-old kid to have found it, may be more rare than the Dino itself.

The fossil bones of a 100 million-year-old dinosaur discovered at a shopping center construction site will be studied and identified by paleontologists at Southern Methodist University’s Shuler Museum of Paleontology.

The bones were discovered by a Dallas Zoo employee and his young son. The fossils have been transported to SMU’s Shuler research museum in the Roy M. Huffington Department of Earth Sciences.

The discovery of the bones, believed to be from the family of armored dinosaurs called nodasuaridae, was covered by local TV stations NBC Channel 5, CBS Channel 11 and Channel CW 33.

Dale Winkler, SMU, paleontologist, dinosaur
mike-polcyn, SMU, paleontology, Huffington

The story aired April 7, 2015.

Watch the CW 33 story.

EXCERPT:

By NewsFix
Channel CW 33

Dinosaurs come in all shapes and sizes. Well, it also turns out so do Dino-diggers.

“Over the past few years, we’ve found a lot of really amazing things, but this is by far the most awesome thing we’ve found.”

Yeah, Dallas zoo keeper Tim Brys and his son Wiley hit the Jurassic jackpot while digging around a Mansfield shopping center development.

Wiley, who is just five-years-old, found something 100 million years in the making.

“He walked up here a head of me here and came back with a piece of bone. It was a pretty good size. I knew it was something interesting,” Brys said.

That interesting thing is what SMU paleontologists call a Nodosaur, a dinosaur probably as large as a horse, covered in armored plates.

Now this guy is headed to SMU to be examined.

“I don’t think it has hit either one of us just how amazing this is. I know it’s a once in a lifetime opportunity a lot of people never find something like this.” Brys said.

Watch the CW 33 story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Videos

The Huffington Post: 4-Year-Old Boy Finds Rare 100-Million-Year-Old Dinosaur Bones In Texas

The SMU scientists started excavating the dinosaur bones on Friday. They speculate the bones belong to a group of dinosaurs called Nodosaurs — herbivorous creatures that lived in the late Jurassic to early Cretaceous periods.

The fossil bones of a 100 million-year-old dinosaur discovered at a shopping center construction site will be studied and identified by paleontologists at Southern Methodist University’s Shuler Museum of Paleontology.

The bones were discovered by a Dallas Zoo employee and his young son. The fossils have been transported to SMU’s Shuler research museum in the Roy M. Huffington Department of Earth Sciences.

The discovery of the bones, believed to be from the family of armored dinosaurs called nodasuaridae, was covered by journalist Dominique Mosbergen, reporting for The Huffington Post.

The story was published April 8, 2015.

Read the full story.

EXCERPT:

By Dominique Mosbergen
The Huffington Post

A 4-year-old and his dad were looking for fossils in Mansfield, Texas, when the boy made an incredible discovery. There, buried in the dirt, the child reportedly found rare, 100-million-year-old dinosaur bones.

Last September, Tim Brys, a keeper at the Dallas Zoo, brought his son, Wiley, to the site of a future shopping center to conduct a fossil hunt, NBC News reported. The earth had been dug up to make way for the development, and Brys said he had hoped to find some fish fossils buried there.

“We commonly go collect fossils as something we can do together to be outside. Wiley enjoys coming with me on my trips,” Brys told the news outlet.

That day, the father and son reportedly did find some fish vertebrae at the site. But Wiley went on to make a far more astonishing discovery.

[Wiley] walked up ahead of me and found a piece of bone,” Brys told the Dallas Morning News. “It was a pretty good size and I knew I had something interesting.”

He was right.

According to scientists at Southern Methodist University, Wiley had stumbled upon some rare dinosaur bones, estimated to date back 100 million years.

Read the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Fossils & Ruins Plants & Animals Researcher news SMU In The News

KERA: 4-Year-Old Texas Boy Finds 100-Million-Year-Old Dinosaur Bones

Nodosaurs are plant eating animals that are built a little like tanks with a relatively broad body with armor in their skin.

dinosaur, anyklosaurus, nodasaur

The fossil bones of a 100 million-year-old dinosaur discovered at a shopping center construction site will be studied and identified by paleontologists at Southern Methodist University’s Shuler Museum of Paleontology.

The bones were discovered by a Dallas Zoo employee and his young son. The fossils have been transported to SMU’s Shuler research museum in the Roy M. Huffington Department of Earth Sciences.

The discovery of the bones, believed to be from the family of armored dinosaurs called nodasuaridae, was covered by science journalist Lauren Silverman, reporting for KERA public radio.

The story aired April 8, 2015.

Hear the full story.

EXCERPT:

By Lauren Silverman
KERA Public Radio

A Dallas Zookeeper went on a fossil hunt with his little boy at a construction site. And the 4-year-old picked up what turned out to be a dinosaur bone – likely 100 million years old. On Wednesday, scientists found another key bone.

Wiley Brys and his dad Tim were digging through the dirt, just looking for some shark teeth last August when it happened.

“My son walked ahead of me and walked back with a chunk of bone that looked like rib bone,” Brys says.

Wylie Brys, now 5-years-old, discovered a bone in a construction site behind a Mansfield shopping center.
Wylie Brys, now 5-years-old, discovered a bone in a construction site behind a Mansfield shopping center.

A few inches long, it was a bit moist and a purplish gray. The bone, experts say, is likely 100-million years old.

For a kid who still counts half birthdays, that many years is hard to imagine.

“I don’t think he completely understands what’s going on,” Brys, a zookeeper who works with reptiles at the Dallas Zoo, says. “He’s just as interested in as playing in the dirt as the fossils I think.”

What Brys and his kid uncovered behind a Mansfield shopping center is thought to be part of a group of dinosaurs called Nodosaurs. They’re plant eating animals that are built a little like tanks.

“They’re these little armored, squatty-looking animals, relatively broad body with armor in their skin,” says Mike Polcyn, director of SMU’s Digital Earth Sciences Lab.

Polcyn has been working at the dig site, preparing the bones to be moved. Just when the team thought they’d uncovered it all, Polcyn says, they unearthed the Nodosaur’s upper leg bone.

Hear the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.