Categories
Culture, Society & Family Earth & Climate Energy & Matter Fossils & Ruins Learning & Education Plants & Animals Researcher news SMU In The News Videos

NBC, CBS & CW33: Jurassic Jackpot — 5-Year-Old Finds Dinosaur in Mansfield

The folks at SMU say a find like this is extremely rare, and for a five-year-old kid to have found it, may be more rare than the Dino itself.

The fossil bones of a 100 million-year-old dinosaur discovered at a shopping center construction site will be studied and identified by paleontologists at Southern Methodist University’s Shuler Museum of Paleontology.

The bones were discovered by a Dallas Zoo employee and his young son. The fossils have been transported to SMU’s Shuler research museum in the Roy M. Huffington Department of Earth Sciences.

The discovery of the bones, believed to be from the family of armored dinosaurs called nodasuaridae, was covered by local TV stations NBC Channel 5, CBS Channel 11 and Channel CW 33.

Dale Winkler, SMU, paleontologist, dinosaur
mike-polcyn, SMU, paleontology, Huffington

The story aired April 7, 2015.

Watch the CW 33 story.

EXCERPT:

By NewsFix
Channel CW 33

Dinosaurs come in all shapes and sizes. Well, it also turns out so do Dino-diggers.

“Over the past few years, we’ve found a lot of really amazing things, but this is by far the most awesome thing we’ve found.”

Yeah, Dallas zoo keeper Tim Brys and his son Wiley hit the Jurassic jackpot while digging around a Mansfield shopping center development.

Wiley, who is just five-years-old, found something 100 million years in the making.

“He walked up here a head of me here and came back with a piece of bone. It was a pretty good size. I knew it was something interesting,” Brys said.

That interesting thing is what SMU paleontologists call a Nodosaur, a dinosaur probably as large as a horse, covered in armored plates.

Now this guy is headed to SMU to be examined.

“I don’t think it has hit either one of us just how amazing this is. I know it’s a once in a lifetime opportunity a lot of people never find something like this.” Brys said.

Watch the CW 33 story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Fossils & Ruins Plants & Animals Researcher news SMU In The News

KERA: 4-Year-Old Texas Boy Finds 100-Million-Year-Old Dinosaur Bones

Nodosaurs are plant eating animals that are built a little like tanks with a relatively broad body with armor in their skin.

dinosaur, anyklosaurus, nodasaur

The fossil bones of a 100 million-year-old dinosaur discovered at a shopping center construction site will be studied and identified by paleontologists at Southern Methodist University’s Shuler Museum of Paleontology.

The bones were discovered by a Dallas Zoo employee and his young son. The fossils have been transported to SMU’s Shuler research museum in the Roy M. Huffington Department of Earth Sciences.

The discovery of the bones, believed to be from the family of armored dinosaurs called nodasuaridae, was covered by science journalist Lauren Silverman, reporting for KERA public radio.

The story aired April 8, 2015.

Hear the full story.

EXCERPT:

By Lauren Silverman
KERA Public Radio

A Dallas Zookeeper went on a fossil hunt with his little boy at a construction site. And the 4-year-old picked up what turned out to be a dinosaur bone – likely 100 million years old. On Wednesday, scientists found another key bone.

Wiley Brys and his dad Tim were digging through the dirt, just looking for some shark teeth last August when it happened.

“My son walked ahead of me and walked back with a chunk of bone that looked like rib bone,” Brys says.

Wylie Brys, now 5-years-old, discovered a bone in a construction site behind a Mansfield shopping center.
Wylie Brys, now 5-years-old, discovered a bone in a construction site behind a Mansfield shopping center.

A few inches long, it was a bit moist and a purplish gray. The bone, experts say, is likely 100-million years old.

For a kid who still counts half birthdays, that many years is hard to imagine.

“I don’t think he completely understands what’s going on,” Brys, a zookeeper who works with reptiles at the Dallas Zoo, says. “He’s just as interested in as playing in the dirt as the fossils I think.”

What Brys and his kid uncovered behind a Mansfield shopping center is thought to be part of a group of dinosaurs called Nodosaurs. They’re plant eating animals that are built a little like tanks.

“They’re these little armored, squatty-looking animals, relatively broad body with armor in their skin,” says Mike Polcyn, director of SMU’s Digital Earth Sciences Lab.

Polcyn has been working at the dig site, preparing the bones to be moved. Just when the team thought they’d uncovered it all, Polcyn says, they unearthed the Nodosaur’s upper leg bone.

Hear the full story.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows

Jurassic climate of large swath of western U.S. was more complex than previously known

First detailed chemical analysis of ancient soil from the Morrison Formation — a massive source of significant dinosaur discoveries for more than 100 years— reveals there was an unexpected abrupt change from arid to wet environments during the Jurassic.

Morrison Formation, Wyoming, ancient soil, Jurassic, Myers, SMU

The climate 150 million years ago of a large swath of the western United States was more complex than previously known, according to new research from Southern Methodist University, Dallas.

It’s been held that the climate during the Jurassic was fairly dry in New Mexico, then gradually transitioned to a wetter climate northward to Montana.

But based on new evidence, the theory of a gradual transition from a dry climate to a wetter one during the Jurassic doesn’t tell the whole story, says SMU paleontologist Timothy S. Myers, lead author on the study.

Geochemical analysis of ancient soils, called paleosols, revealed an unexpected and mysterious abrupt transition from dry to wet even though some of the samples came from two nearby locales, Myers said.

Myers discovered the abrupt transition through geochemical analysis of more than 40 ancient soil samples.

SMU paleontologist Timothy S. Myers collected this plastic bag of paleosol matrix in the field. Myers performed chemical analysis of the ancient soil by grinding it to a powder that is then fused into a glass disc for elemental analysis. (Myers, SMU)
Paleosol matrix was collected in the field by SMU paleontologist Timothy S. Myers for chemical analysis of the ancient soil by grinding it to a powder, which was then fused into a glass disc for elemental analysis. (Myers, SMU)

He collected the samples from the Morrison Formation, a vast rock unit that has been a major source of significant dinosaur discoveries for more than 100 years.

The Morrison extends from New Mexico to Montana, sprawling across 13 states and Canada, formed from sediments deposited during the Jurassic.

Myers’ study is the first in the Morrison to significantly draw on quantitative data — the geochemistry of the rocks.

The abrupt transition, Myers says, isn’t readily explained.

“I don’t have a good explanation,” he said. “Normally when you see these dramatic differences in climate in areas that are close to one another it’s the result of a stark variation in topography. But in this case, there weren’t any big topographic features like a mountain range that divided these two localities in the Jurassic.”

Surprisingly, paleosols from the sample areas did not reveal marked differences until they were analyzed using geochemical weathering indices.

Ancient soil samples from the Jurassic in Wyoming indicate this area of the massive Morrison Formation surprisingly was more arid than its counterpart in New Mexico. (Credit: Myers, SMU)
Paleosol samples from the Jurassic in Wyoming indicate this area of the massive Morrison Formation surprisingly was more arid than its counterpart in New Mexico. (Credit: Myers, SMU)

“It’s sobering to think that by just looking at the paleosols superficially at these localities, they don’t appear incredibly different. We see the same types of ancient soils in both places,” Myers said. “So these are some fairly major climate differences that aren’t reflected in the basic ancient soil types. Yet this is what a lot of scientists, myself included, depend on for a first pass idea of paleoclimate in an area — certain types of soils form in drier environments, others in wetter, others in cooler, that sort of thing.”

That didn’t hold true for the current study.

Myers, SMU, Jurassic, Morrison Formation, SMU
Candace Walkington, SMU, algebra, teaching
Thomas Coan, SMU, neutrinos, ManeFrame, NOvA, Fermilab, physics
Usain Bolt, Weyand, SMU, elite sprinters, Clark, punch
Dark matter, Jodi Cooley, SMU, CDMS, SNOLAB
Marital tension, Kouros, SMU, psychology, children
Cortex, mhealth apps, SMU, FDA
Principal's office 150x120
Gamma Ray Burst, SMU, Kehoe, 12 billion

With the geochemical analysis, Myers estimated the mean average precipitation during the Jurassic for northern Montana was approximately 45 inches, 20 inches for northern Wyoming and 30 inches for New Mexico.

“This changes how we view the distribution of the types of environments in the Morrison,” Myers said. “Too many times we talk about the Morrison as though it was this monolithic unit sprinkled with patchy, but similar, variations. But it’s incredibly large. It spans almost 10 degrees of latitude. So it’s going to encompass a lot of different environments. Regions with broadly similar climates can have internal differences, even over short distances. That’s the take-home.”

Myers is a postdoctoral scholar in SMU’s Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences, Dedman College.

He reported his findings, “Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States),” in The Geological Society of America Bulletin.

Co-authors of the study were Neil J. Tabor, SMU earth sciences professor and an expert in ancient soil, and Nicholas Rosenau, a stable isotope geochemist, Dolan Integration Group.

The popular artistic representations we see today of dinosaurs in a landscape setting are based on bits of evidence from plant and animal fossils found in various places, Tabor said. While that’s based on the best information to date, it’s probably inaccurate, he said. Myers’ findings provide new insights to many studies that have been done prior to his. This will drive paleontologists and geologists to seek out more quantitative data about the ancient environment.

“The geology of the Morrison has been studied exhaustively from an observational standpoint for 100 years,” Tabor said. “I have no doubt there will be many more fossil discoveries in the Morrison, even though over the past century we’ve gained a pretty clear understanding of the plants and animals at that time. But now we can ask deeper questions about the landscape and how organisms in the ancient world interacted with their environment.”

Surprising results: Northern locale more arid than southern locale
The Morrison Formation has produced some of our most familiar dinosaurs, as well as new species never seen before. Discoveries began in the late 1800s and ultimately precipitated the Bone Wars — the fossil equivalent of California’s Gold Rush.

After Myers studied dinosaur fossils from the Morrison, he became curious about the climate. Embarking on the geochemical analysis, Myers, like scientists before him, hypothesized the climate would be similar to modern zonal circulation patterns, which are driven by the distribution of the continents. Under that hypothesis, New Mexico would be relatively arid, and Wyoming and Montana both would be wetter at the time dinosaurs roamed the landscape.

Myers analyzed 22 paleosol samples from northern New Mexico, 15 from northern Wyoming and seven from southern Montana. The samples from Montana were younger than those from New Mexico, but roughly contemporary with the samples from Wyoming.

“We found that, indeed, New Mexico was relatively arid,” Myers said. “But the surprising part was that the Wyoming locality was more arid and had less rainfall than New Mexico, even though it was at a higher latitude, and above the mid-latitude arid belt. And the Montana locality, which is not far from the Wyoming locality, had the highest rainfall of all three. And there’s a very abrupt transition between the two.”

During the Jurassic, the Morrison was between 30 degrees north and 45 degrees north, which is about five degrees south of where it sits now. Its sediments were deposited from 155 to 148 million years ago. Some areas show evidence of a marine environment, but most were continental. The mean average precipitation determined for the Jurassic doesn’t match our modern distribution, Myers said.

Study underscores that understanding climate requires multiple approaches
Previously scientists speculated on the climate based on qualitative measures, such as types of soils or rocks, or types of sedimentary structures, and inferred climate from that.

“I tried to find quantitative information, but no one had done it,” Myers said. “There are entire volumes about Morrison paleoclimate, but not a single paper with quantitative estimates. Given the volume of important fossils that have come out of the Morrison, and how significant this formation is, it just struck me as important that it be done.”

Myers classified the fossil soils according to the Mack paleosol classification, and established the elemental composition of each one to determine how much weathering the paleosols had undergone.

“There are some elements, such as aluminum, that are not easily weathered out of soils,” Myers said. “There are others that are easily flushed out. We looked at the ratio of the elements, such as aluminum versus elements easily weathered. From that, we used the ratios to determine how weathered or not the soil was.”

These findings suggest that scientists must use different approaches to quantify paleoclimate, he said.

“It’s not enough to just look at soil types and draw conclusions about the paleoclimate,” Myers said. “It’s not even enough to look at rainfall in this quantitative fashion. There are numerous factors to consider.”

Funding for the study was provided by SMU Dedman College’s Roy M. Huffington Department of Earth Sciences, SMU’s Institute for the Study of Earth and Man, The Jurassic Foundation, Western Interior Paleontological Society, The Paleontological Society and The Geological Society of America. — Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

Dallas Morning News: Fort Worth coelacanth fossil is missing link among world’s oldest animal lineages

The coelacanth research of SMU paleontology doctoral student John Graf was covered by Dallas Morning News journalist Marc Ramirez.

Graf identified a new species of coelacanth from fossil fish bones discovered in Texas. Ramirez described the discovery and identification in a Feb. 1 article, “Fort Worth coelacanth fossil proves to be a missing link in one of the world’s oldest animal lineages.”

Graf discusses the fossil in this video: “100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous.”

Read the full story.

EXCERPT:

By Marc Ramirez
Dallas Morning News

Never mind that it took more than 20 years to give the celebrity critter its due, because out here in Dino Land, things tend to move s-l-o-w-l-y.

And let’s be honest — when you’ve been waiting a million centuries to be identified, what’s another couple of decades, really?

Last year, Reidus hilli officially earned its stripes as a new species of coelacanth, quite the feat for a fish whose path to reality began as a Fort Worth fossil the size of a Girl Scout cookie.

For those who spend their time rebuilding prehistory’s narrative, the find was — as earth science professor Louis Jacobs of Southern Methodist University puts it — “tremendously fascinating.”

“Every place in the world is unique, so every place is a single piece of a puzzle that fits into the whole story of the world,” Jacobs said.

“Our piece is here. This coelacanth provides a piece of our puzzle that we didn’t have before of what life was like and what was here.”

The area known as the Albian Duck Creek Formation stretches over southwest Tarrant County, a one-time marine environment rich in Cretaceous-era fossils between 90 million and 100 million years old, any present company excluded.

Before it was largely developed, a plucky amateur geologist could regularly turn up evidence of ancient sea life, especially after rains that would free clay earth from its moorings.

Around 1990, Fort Worth design artist Robert Reid and a fossil-hunting friend were trolling the soggy wash, seeing what they could find. Typically that would be bits of turtle, shark vertebrae or ammonites, spiral-shelled cephalopods that once filled the seas.
The piece of rock that caught Reid’s eye was small, barely a couple of inches in length.

“I could tell it was some kind of bone material,” he said. “I didn’t know it was fish.”

He could just as easily have left it behind. Instead, he packed it into a Baggie, took it home and washed it off.

And thus the fragment eventually ended up in Reid’s geology cabinet, a millennia-old fossil stored in a cushioned box alongside dozens of other millennia-old fossils stored in cushioned boxes.

And there it would sit for years.

Long assumed extinct
The coelacanth is so old that for a long time people figured it was dead.

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

The Daily Campus: SMU contributes fossils to Perot Museum of Nature and Science

The Daily Campus reporter Charlie Scott covered SMU’s contributions to the new Perot Museum of Nature and Science near downtown Dallas. Many fossils from SMU’s Shuler Museum of Paleontology are on loan to the new Perot Museum, including those of animals from an ancient sea that once covered Dallas.

The fossils represent a slice of SMU’s scientific collaboration with the Perot Museum and its predecessor, the Dallas Museum of Natural History.

Items from SMU’s scientists include a 35-foot skeletal cast of the African dinosaur Malawisaurus standing sentry in the spacious glass lobby of the Perot, which opened Dec. 1.

Read the full story.

EXCERPT:

By Charlie Scott
The Daily Campus

The land is arid. Its inhabitants undergo crippling heat, little rain and countless droughts.

Texas suffers from a shortage of water, but that hasn’t always been the case.

Visitors to the new Perot Museum of Nature and Science in Uptown now have an opportunity to see fossils of animals from a prehistoric time when an ancient sea covered the Big D.

The fossil display, which is made possible by an ongoing collaborative effort between SMU and the Perot Museum, contain “some spectacular pieces that tell some very interesting stories,” according to Anthony Fiorillo, Curator of Earth Sciences at the Perot.

Many of the fossils on display date from a geological period called the Cretaceous, which lasted from 146 million years ago to 66 million years ago.

Some of these are plant fossils that were discovered at a ranch southwest of Fort Worth in Hood County.

Some other fossils on loan from that period, include sea turtles and mosasaurs, which are ancient aquatic lizards that eventually evolved flippers and long bodies for life at sea.
In 2006 a then 5-year-old Preston Smith was on a family outing along the North Sulpher River in Ladonia Texas when she stumbled upon what appeared to be the remnants of a turtle. But this was no ordinary find.

When Diana Vineyard, director of administration and research associate at SMU’s Institute for the Study of Earth and Man, got her hands on the specimen as graduate student, she worked to determine the creature had died 80 millions years ago.

She also found that it wasn’t only 1 turtle Smith happened across.

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

UPI: Study finds Jurassic ecosystems like today’s

News wire UPI covered the research of SMU paleontologist Timothy S. Myers for the news site.

Myers’ latest study found Jurassic ecosystems were similar to modern: Animals flourish among lush plants. The study set out to discover whether that same relationship held true 150 million years ago during the Late Jurassic when dinosaurs roamed the Earth.

“The assumption has been that ancient ecosystems worked just like our modern ecosystems,” said Myers. “We wanted to see if this was, in fact, the case.”

Myers is research curator for SMU’s Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences of Dedman College.

Read the full story.

EXCERPT:

UPI
The Earth’s ecosystems in the Jurassic period were similar to modern ones with animals flourishing, taking advantage of lush plant growth, U.S. researchers say.

In modern ecosystems animal populations do well in regions where the climate and landscape produce lush vegetation, and scientists at Southern Methodist University wanted to find out if the same relationship held true 150 million years ago during the Late Jurassic when dinosaurs roamed the Earth.

“The assumption has been that ancient ecosystems worked just like our modern ecosystems,” paleontologist Timothy S. Myers said in an SMU release Tuesday. “We wanted to see if this was, in fact, the case.”

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

Red Orbit: Climate And Biota Have Been Ecologically Connected For Millions Of Years

Science writer Rayshell Clapper for redOrbit.com covered the research of SMU paleontologist Timothy S. Myers for the news site’s science section.

Myers’ latest study found Jurassic ecosystems were similar to modern: Animals flourish among lush plants. The study set out to discover whether that same relationship held true 150 million years ago during the Late Jurassic when dinosaurs roamed the Earth.

“The assumption has been that ancient ecosystems worked just like our modern ecosystems,” said Myers. “We wanted to see if this was, in fact, the case.”

Myers is research curator for SMU’s Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences of Dedman College.

Read the full story.

EXCERPT:

By Rayshell Clapper
redOrbit.com

According to Southern Methodist University paleontologists Timothy S. Myers, Louis L. Jacobs, and SMU sedimentary geologist Neil J. Tabor, the modern relationship between animals and vegetation is similar to millions of years ago.

In their study, the SMU scientists used fossil soils from the Late Jurassic age gathered from locations where animal fossils were previously found to determine the levels of carbon isotopes. The team used fossils gathered from North America, Europe, and Africa. The main problem with the study, though, is that few places in the world are well-sampled enough for terrestrial fossils, so Myers and his team discovered a new and creative use of an already existing method and already existing geological data.

To gather his results, Myers used a traditional method to estimate carbon dioxide in the ancient atmosphere, only he applied it to estimate the amount of carbon dioxide in ancient soils. To do this, the team took measurements from the nodules of calcite that take on the isotopic signature of the carbon dioxide gas around them. This comes from two sources: the atmosphere and the plants decaying in the soil.

Atmospheric carbon dioxide has a more positive isotope while the decaying plants have more negative isotopes. Therefore, more carbon dioxide from plants means a lusher, wetter environment, which is exactly what their research found.

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Videos

Study finds Jurassic ecosystems were similar to modern: Animals flourish among lush plants

CO2 levels in fossil soils from the Late Jurassic confirm that climate, vegetation and animal richness varied across the planet 150 million years ago, suggesting future human changes to global climate will heavily impact plant and animal life.

In modern ecosystems, it’s widely known that animals flourish in regions where the climate and landscape produce lush vegetation.

A new study set out to discover whether that same relationship held true 150 million years ago during the Late Jurassic when dinosaurs roamed the Earth.

“The assumption has been that ancient ecosystems worked just like our modern ecosystems,” said paleontologist and lead author Timothy S. Myers, Southern Methodist University, Dallas. “We wanted to see if this was, in fact, the case.”

To test the theory, Myers analyzed fossil soils from the Late Jurassic by measuring the ratios of carbon isotopes. His analysis indicated that the Jurassic soils contained high levels of CO2 from vegetation.

Nodules of ancient soil are fairly common in present day rock, forming as a result of seasonally dry conditions. They harden into mineralized clods, making them easy to spot and sample as they weather out of ancient soil profiles. (Image: Myers)

From that, Myers was able to infer the presence of lush plant life in certain regions during the Jurassic. The soils came from locales where scientists previously have gathered animal fossils — North America, Europe and Africa. Combining the data with the known fossil sampling allowed Myers to confirm that the modern relationship between animals and vegetation held true even millions of years ago.

“Our analysis represents the first time that anyone has tried to apply ecological modeling to this relationship in the fossil record,” Myers said.

Relatively few places in the world are well-sampled for terrestrial fossils, so Myers’ discovery of a new use for an already existing method represents a useful tool, he said. The new use allows scientists to tap the geochemical data of soils from anywhere in the world and from other geologic time periods to infer the relative abundance of plants and animals, particularly for areas where fossils are lacking.

“This not only provides a more complete picture of the ancient landscape and climate in which ancient animals lived,” Myers said. “It also illustrates that climate and biota have been ecologically connected for many millions of years and that future human-caused changes to global climate will have profound impacts on plant and animal life around the world.”

Myers and his co-researchers reported the findings in Paleobiology, “Estimating Soil pCO2 Using Paleosol Carbonates: Implications for the Relationship Between Primary Productivity and Faunal Richness in Ancient Terrestrial Ecosystems.”

Co-authors were SMU sedimentary geochemist Neil J. Tabor and paleontologists Louis L. Jacobs, SMU, and Octávio Mateus, New University of Lisbon, Portugal.

“Devising new and creative methods to understand how Earth and life have functioned together in the past is the foundation for predicting the future of life on our planet,” said Jacobs, a vertebrate paleontologist and professor in SMU’s Roy M. Huffington Department of Earth Sciences. “It is the only approach that provides a long enough perspective of what is possible.”

New method applied to old hypothesis confirms regional variability
Typically researchers count the number of animal species discovered in a region to determine how many different types of animals once lived there. Scientists call that a measure of faunal richness.

Myers took a different approach. Using a traditional method typically used to estimate carbon dioxide in the ancient atmosphere, Myers instead applied it to estimate the amount of CO2 in ancient soils.

Measurements were taken from nodules of calcite that form in soil as a result of wet and dry seasons. These nodules take on the isotopic signature of the CO2 gas around them, which is a mixture derived from two sources: the atmosphere, which leaves a more positive isotopic signature, and plants decaying in the soil, which leave a more negative isotopic signature.

A higher volume of CO2 from plants indicates a lusher, wetter environment.

“There’s a lot more litter fall in an environment with a lot of plants, and that produces a lot of organic material in the soil, creating CO2. So we see more soil-produced CO2, displacing the atmospheric CO2. These are established relationships,” Myers said.

“Our method can be used to infer relative levels of richness for areas where soils have been preserved, but where fossils are lacking because conditions were unsuitable for their preservation,” he said.

The research demonstrates creative use of existing geological data, said co-author Tabor, an expert in ancient soil in SMU’s Roy M. Huffington Department of Earth Sciences.

“Vertebrate paleontologists have been accumulating information about vertebrate fossils in the Jurassic for well over 100 years. In addition, geochemists have been systematically sampling the composition of ancient soils for several decades,” Tabor said. “In these respects, the data that are the foundation of this study are not extraordinary. What is remarkable, though, is combining the paleontology and geochemistry data to answer large-scale questions that extend beyond the data points — specifically, to answer questions about ancient ecosystems.”

Data from Morrison Formation, Central Africa and Portugal
Myers tested Upper Jurassic soil nodules collected from the Morrison Formation in the western United States. The formation extends from Montana to New Mexico and has been the source of many dinosaur fossil discoveries.

He also analyzed Upper Jurassic soil nodules from Portugal, another location well-sampled for dinosaur fossils. The region’s paleoclimate was broadly similar to that of the Morrison Formation.

In addition, Myers tested a small Upper Jurassic core sample from Central Africa, where there’s no evidence of any major terrestrial life. Unique minerals in the rocks indicate that the region had an arid environment during the Late Jurassic.

Based on their hypothesis, the researchers expected to see regional variations in plant productivity — the amount of new growth produced in an area over time, which is an indirect measure of the amount of plant life in an environment. Forests, savannas and deserts all have different amounts of plant productivity, although those specific ecosystems can’t be identified on the basis of plant productivity alone.

The researchers expected to see higher plant productivity for Portugal than for the Morrison Formation, with the lowest productivity in Central Africa.

“Essentially that’s what we found,” Myers said. “We understand it’s tenuous and not a trend, but few places in the world are well-sampled. However, it’s still a useful tool for places where all we have are the soil nodules, without well-preserved fauna.”

Soil nodules are fairly common, Myers said. They form as a result of seasonally dry conditions and may be preserved in all but the wettest environments. Since they harden into mineralized clods, they are easy to spot and sample as they weather out of ancient soil profiles.

CO2 in ancient calcite nodules offers key to ancient climate
From the analysis scientists can draw a more complete picture of the ancient landscape and climate in which prehistoric animals lived.

“The Jurassic is thought of as very warm, very wet, with lots of dinosaurs,” said Myers, research curator for SMU’s Shuler Museum of Paleontology. “But we see from our analysis that there was regional variability during the Late Jurassic in the climate and in the abundance of animals across the planet.”

The Late Jurassic extended from 160 million years ago to 145 million years ago. — Margaret Allen

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News

KDFW Fox 4 Lone Star Adventure: Dinosaur at Lake Lewisville

KDFW Fox 4 reporter Richard Ray interviewed SMU paleontologist Timothy S. Myers for the TV journalist’s Lone Star Adventure series.

Ray interviewed Myers about a new dinosaur fossil discovered north of Dallas-Fort Worth at Lake Lewisville by amateur fossil hunter Dan Bidleman, Denton.

Myers is research curator for SMU’s Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences of Dedman College.

Watch the video.

EXCERPT:

By Richard Ray

This week’s Lone Star Adventure takes us north of Dallas to Lewisville Lake, fossil hunting with a North Texas man whose remarkable find first got the attention of an amateur paleontologist – an amateur who is something of an expert — and now has professional scientists working with the bones.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Fossils & Ruins Learning & Education Plants & Animals Researcher news Slideshows

SMU contributes fossils, expertise to new Perot Museum in ongoing scientific collaboration

From dinosaurs to sea turtles, and from technical assistance to advisory roles, SMU faculty and students, the SMU Shuler Museum, and the SMU Innovation Gymnasium have teamed with the nation’s new premier museum of nature and science in Dallas

Fossils on loan by SMU to the new Perot Museum of Nature and Science include those of animals from an ancient sea that once covered Dallas.

The fossils represent a slice of SMU’s scientific collaboration with the Perot Museum and its predecessor, the Dallas Museum of Natural History.

Items from SMU’s scientists include a 35-foot skeletal cast of the African dinosaur Malawisaurus standing sentry in the spacious glass lobby of the Perot, which opened Dec. 1 near downtown Dallas.

“The new museum building itself is an icon, but it’s also a statement by the city about taking the advances of science to the public,” said vertebrate paleontologist Louis L. Jacobs, an SMU Earth Sciences professor, who serves on the Perot Museum’s Advisory Board and Collections Committee.

Jacobs, who was ad interim director of the Dallas Museum of Natural History in 1999, led the team that discovered Malawisaurus in Africa. He provided the cast to the museum.

A 35-foot skeletal cast of the African dinosaur Malawisaurus, discovered by a team led by SMU paleontologist Louis L. Jacobs, is on display at the Perot Museum. (Image: Rich Tate, Alford Media)

“Here at SMU we train students and create new knowledge. The museum’s mission is to take the stories of science out to the general public so they can be used,” said Jacobs. “Anthony Fiorillo, Perot Museum Curator of Earth Sciences, is a world-class scientist with whom we work. We have a junction between the mission, training and knowledge we have here, infused into and enhanced by what the museum does. That’s why the museum is important to SMU and that’s why SMU is important to the museum.”

Fossils on loan are from the collection of the Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences. SMU scientists provided technical expertise for exhibits and serve on the Perot Museum’s advisory committees.

Also on exhibit from SMU is a miniature unmanned autonomous helicopter designed for fighting fires that was built by SMU engineering students.

Herbivorous dinosaur is exhibited with ancient Texas plant fossils
Shuler Museum fossils can be viewed in the T. Boone Pickens Life Then and Now Hall. They include an unnamed 113 million-year-old herbivorous dinosaur discovered in 1985 at Proctor Lake southwest of Stephenville, Texas.

For perspective on that exhibit’s paleoenvironment in Texas at the time, SMU paleobotanist Bonnie F. Jacobs provided fossil wood, fossil cones, fossil leaves and images of microscopic pollen grains from the Shuler Museum. The fossils provided information used to create a model of an extinct tree to accompany the exhibit.

Fossil cones and leaves discovered in Hood County are from an extinct ancient tree, says SMU paleobotanist Bonnie F. Jacobs. (Image: SMU)

Plant fossils inform scientists of the ecological setting in which dinosaurs lived and died, said Bonnie Jacobs, an SMU associate professor in the Huffington Department. Her collaboration with the Perot’s Fiorillo, who also is an adjunct research professor of paleoecology in the SMU Earth sciences department, includes fossil plants from Alaska.

“Understanding past climate and climate change will help us understand what may happen in the future,” she said. Bonnie Jacobs is featured in a Perot Museum Career Inspirations video that is part of the permanent exhibit and also advised on the text of some exhibits.

“The world of the past is a test case for global climate models, which are computer driven,” she said. “If we can reconstruct climates of the ancient Earth accurately, then we can create better models of what may happen in the future.”

Understanding paleoclimate through fossil soils is the expertise of Neil Tabor, an SMU associate professor in the Earth Sciences Department whose Perot Museum video discusses ancient soils, environments and the biggest extinction event in Earth’s history.

Fossils date from period when D/FW was covered by ancient sea
The plant fossils are from the geologic period called the Cretaceous, from 146 million years ago to 66 million years ago. They were discovered at the prolific Jones Ranch fossil beds southwest of Fort Worth in Hood County.

At that time, the Jones Ranch — famous as the discovery site of Paluxysaurus jonesi, the state dinosaur of Texas — was not far inland from the muddy coastal shore of a vast shallow sea that a dozen years later would divide North America.

Giant fossil sea turtles were discovered in northeast Texas in 2006 by a 5-year-old girl, Preston Smith. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)

Other SMU fossils on loan also date from that period. They include sea turtles, as well as mosasaurs, which were ancient sea lizards that evolved flippers and streamlined bodies for life in the sea.

Stunning examples of fossil sea turtles were discovered in 2006 by a 5 year-old girl, Preston Smith, during a family outing along the North Sulphur River near Ladonia in northeast Texas. The turtles were stacked one on top of the other as if caught in sudden death 80 million years ago.

Diana Vineyard, director of administration and research associate at SMU’s Institute for the Study of Earth and Man, identified the turtles as Toxochelys while an SMU graduate student.

Also on loan from the Shuler Museum, and also identified by Vineyard, are 110-million-year-old sea turtles from the Early Cretaceous of Texas, discovered near Granbury. They represent early specimens in the transition of turtles from land and shallow marine animals to fully developed sea turtles, Vineyard said.

Exhibit includes mosasaur named for the city of Dallas

A Perot Museum exhibit includes a giant fossil sea turtle discovered in northeast Texas in 2006 by a 5-year-old girl. SMU paleontologist Diana Vineyard identified the giant turtles as Toxochelys. (Image: SMU)

Michael Polcyn, director of SMU’s Digital Earth Sciences Laboratory, put his expertise to work providing technical assistance for the museum’s Ocean Dallas marine reptile exhibit.

An expert in mosasaurs, Polcyn created digital reconstructions of Dallasaurus, named for the city of Dallas, and physically reconstructed the skeletons of Dallasaurus and another mosasaur, Tethysaurus, for the exhibit.

“The Ocean Dallas exhibit was a great opportunity to showcase the extraordinary story that the rocks in the Dallas area tell us about life in the deep past,” said Polcyn, whose mosasaur fieldwork extends from the United States to Angola.

“It was a great experience working with the museum’s creative and technical professionals on this project,” Polcyn said, “but it should be mentioned that many of the fossils in the exhibit were found by interested citizens walking the local creeks and rivers in search of these beasts, and it is they who deserve tremendous credit for bringing these finds to the public.”

Polcyn, who also is featured in a Perot Museum Career Inspirations video, created a skull reconstruction of the Perot Museum’s duck-billed dinosaur Protohadros, named by former SMU doctoral student Jason Head.

Other SMU fossils include dino footprint, croc egg and giant ammonite

The ammonite Parapuzosia, more than 3 feet in diameter and discovered in Dallas County, is on loan from SMU’s Shuler Museum to the Perot Museum.

SMU vertebrate paleontologist Dale A. Winkler, SMU research professor and director of the Shuler Museum, said other fossils on loan include:

  • a rare 110 million-year-old crocodile egg discovered with specimens of the crocodile Pachycheilosuchus trinquei west of Glen Rose. Pachycheilosuchus trinquei was named by Jack Rogers, a former SMU student. Rogers also found and identified the egg.
  • an ammonite, Parapuzosia, more than 3 feet in diameter and discovered in Dallas County.

In 2006, two SMU doctoral students assisted with excavation of the new species of dinosaur named for the museum’s namesakes, Margot and Ross Perot.

The dinosaur, Pachyrhinosaurus perotorum, was discovered by the Perot Museum’s Fiorillo and prepared by Perot Museum researcher Ronald Tykoski.

Using portable 3D laser technology, SMU scientists preserved electronically a rare 110 million-year-old fossilized dinosaur footprint from ichnospecies Eubrontes glenrosensis. The model is on display in the Perot Museum. (Image: SMU)

SMU doctoral student Christopher Strganac and former SMU doctoral student Thomas L. Adams helped dig Pachyrhinosaurus perotorum in Alaska. The only skeletal mount of its kind in the world, the 69 million-year-old skull is on display in the Life Then and Now Hall of the Perot Museum.

Also on view in the museum is a 3D cast of a dinosaur footprint that Adams and Strganac created from the laser scan of a 110 million-year-old fossilized dinosaur footprint, from ichnospecies Eubrontes glenrosensis, that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.

Another former SMU doctoral student highlighted among the exhibits is Yoshitsugu Kobayashi, who describes in a video the mentoring he received from the Perot’s Fiorillo while the two worked together in Alaska’s Denali National Park.

SMU’s Shuler Museum is named for Ellis W. Shuler, founder of the University’s geology department. Shuler was a driving force behind the precursor to the Perot Museum, the Dallas Museum of Natural History, established in 1936, said geologist James E. Brooks, SMU professor emeritus and SMU Provost emeritus. Brooks served on the Dallas Museum of Natural History’s board of directors from the 1980s until 2005.

Perot Museum presents a strong scientific face of Dallas
“Any first-rate city needs a strong public scientific face with which it’s identified,” Brooks said. “The Perot Museum is going to be that organization.”

Brooks was instrumental in the negotiations with Egypt that enabled the Dallas Museum of Natural History to bring Ramses the Great, its first major exhibit, to Dallas in 1989.

“Museums, in addition to educating children and the general public, also have the responsibility to generate new knowledge, because that makes the city a more intellectually vibrant place,” he said.

Brooks and Louis Jacobs serve on the Perot Museum’s Collections Committee, which serves in an advisory role to Perot Earth Sciences Curator Fiorillo. He and other SMU faculty and staff collaborate on field expeditions to Alaska and Mongolia.

SMU’s Innovation Gymasium contributes to Perot exhibit

Pegasus, an unmanned autonomous helicopter that can fight fires, was designed and built by Lyle Engineering students under Innovation Gymnasium Director Nathan Huntoon. (Image: SMU)

SMU’s Innovation Gymnasium is featured in an exhibit in the Texas Instruments Engineering and Innovation Hall at the Perot Museum, said Nathan R. Huntoon, director of the Innovation Gymnasium at the SMU Bobby B. Lyle School of Engineering.

Central to the Engineering and Innovation Hall exhibit is an unmanned autonomous helicopter that can fight fires, built by SMU engineering students.

The Innovation Gym enables SMU students to hone their engineering and creative skills by working on real world, design challenges. Companies, researchers and non-profits all provide real challenges for the students to develop innovative solutions, often under intense time and financial pressure.

The firefighting helicopter featured in the new museum was the first such project.

Accompanying the helicopter is a video demonstration of the helicopter fighting simulated fires, as well as a touch-screen application with interviews of Huntoon and SMU students discussing engineering and innovation.

Huntoon has been a member of the Technology Committee and the Engineering and Innovation Committee for the Perot Museum.

James Quick, a professor of Earth sciences, as well as SMU’s associate vice president for research and dean of graduate studies, applauded the establishment of the Perot Museum, the result of decades of work by many people.

“Every great urban center should have an outstanding museum of nature and science to stimulate the imaginations of people of all ages and attract them to science,” Quick said. “The contribution the Perot Museum will make to North Texas cannot be overstated.” — Margaret Allen

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

National Geographic: New Coelacanth Species Discovered in Texas

A new species of hundred-million-year-old coelacanth has been found, according to a new analysis of bone fragments.

The coelacanth research of SMU paleontology doctoral student John Graf has been covered by science journalist Ker Than for National Geographic’s Daily News web site. Graf identified a new species of coelacanth from fossil fish bones discovered in Texas.

Watch a video about the fossil, “100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous.”

Graf identified the fish from a 100 million-year-old skull fossil. He named the new species Reidus hilli. Graf said the new coelacanth is the first found in the Dallas-Fort Worth area. Discovered in the Duck Creek Formation, the fossil dates to the Cretaceous, making it the youngest coelacanth discovered in Texas.

Read the full article.

EXCERPT:

By Ker Than
National Geographic News

One of the world’s oldest types of fish, coelacanths (pronounced SEE-la-kanths) are primitive, slow-moving fish that had been thought extinct until an individual was found off Africa in 1938. There are now over 40 known coelacanth species. The two that live today are called living fossils because they have remained virtually unchanged for 320 million years.

The newfound coelacanth has been dubbed Reidus hilli in honor of its discoverer Robert Reid, an artist who found the fish’s fossilized skull near his home in Forth Worth, Texas, in the late 1980s.

Reid donated the skull to nearby Southern Methodist University, where scientists quickly identified it based on unique bones, called gular plates, on the underside of its jaw.

“Almost from the get-go, we knew it was a coelacanth,” said study leader John Graf, a paleontologist at the university.

However, it wasn’t until Graf recently studied the skull bones in detail that he determined they had belonged to a previously unknown species of the ancient fish group.

Read the full article.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

Sci-News.com: New Coelacanth from Early Cretaceous Discovered in Texas

A professional paleontologist has identified a new species of coelacanth from 100 million-year-old fossil remains found in the fossil-rich Duck Creek Formation, Texas.

The coelacanth research of SMU paleontology doctoral student John Graf has been covered by the Sci-News.com web site. Graf identified a new species of coelacanth from fossil fish bones discovered in Texas.

Watch a video about the new fossil, “100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous.”

Graf identified the fish from a 100 million-year-old skull fossil. He named the new species Reidus hilli. Graf said the new coelacanth is the first found in the Dallas-Fort Worth area. Discovered in the Duck Creek Formation, the fossil dates to the Cretaceous, making it the youngest coelacanth discovered in Texas.

Read the full article.

EXCERPT:

Sci-News.com
“Coelacanth fossils have been found on every continent except Antarctica. Few have been found in Texas,” said John Graf of Southern Methodist University in Dallas, author of a paper reporting the discovery in the Historical Biology: An International Journal of Paleobiology. “These animals have one of the longest lineages of any vertebrates that we know.”

“The specimen is the first coelacanth in Texas from the Cretaceous,” Graf said. “The Cretaceous geologic period extended from 146 million years ago to 66 million years ago.”

The paleontologist named the new species Reidus hilli for Robert T. Hill, a geologist with the US Geological Survey who led surveys of Texas during the 1800s. Hill described much of the geology of Texas, including the Duck Creek Formation. Hill is acclaimed as the “Father of Texas Geology.”

R. hilli is now the youngest coelacanth identified in Texas, previously the youngest was a 200 million-year-old coelacanth from the Triassic.

The specimen came from the Duck Creek Formation, which is a layer-cake band of limestone and shale about 40 feet thick. “The fossil was found in marine sediments,” Graf said. “It is one of many marine fossils found in the North Texas area, which 100 million years ago was covered by the Western Interior Seaway that divided North America from the Gulf of Mexico to the Arctic Ocean.”

Read the full article.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

UPI: Bones of ‘living fossil’ found in Texas

The coelacanth research of SMU paleontology doctoral student John Graf has been covered by the UPI wire service. Graf identified a new species of coelacanth from fossil fish bones discovered in Texas.

Watch a video about the new fossil, “100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous.”

Graf identified the fish from a 100 million-year-old skull fossil. He named the new species Reidus hilli. Graf said the new coelacanth is the first found in the Dallas-Fort Worth area. Discovered in the Duck Creek Formation, the fossil dates to the Cretaceous, making it the youngest coelacanth discovered in Texas.

Read the full article.

EXCERPT:

UPI
A 100-million-year-old coelacanth fossil discovered in Texas is that of a new species of the fish often called a “living fossil,” paleontologists say.

The coelacanth has one of the longest lineages — 400 million years — of any animal, and they were thought to have gone extinct 70 million years ago until live specimens were caught off the coast of Africa in 1938. Today, they can be found swimming in the depths of the Indian Ocean.

The coelacanth is often called a “living fossil” because it has not evolved significantly since reaching its current form about 400 million years ago.

Southern Methodist University paleontology graduate student John F. Graf discovered the Texas fossil, the first found in the state that has been dated to the Cretaceous period extending from 146 million years ago to 66 million years ago.

The new species, found in ancient marine sediments in North Texas and dubbed Reidus hilli, is now the youngest coelacanth fossil identified in the Lone Star State, he said.

Previously the youngest was a 200-million-year-old coelacanth from the Triassic.

Read the full article.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Researcher news SMU In The News Student researchers

VOA: New 100-Million-Year-Old Fish Discovered in Texas

National Museum of Kenya researchers with a coelacanth cuaght by fishermen in Malindi, November 2001. (Image courtesy VOA)

The coelacanth research of SMU paleontology doctoral student John Graf has been covered by Voice of America. Graf identified a new species of coelacanth from fossil fish bones discovered in Texas.

Watch a video about the new fossil, “100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous.”

Graf identified the fish from a 100 million-year-old skull fossil. He named the new species Reidus hilli. Graf said the new coelacanth is the first found in the Dallas-Fort Worth area. Discovered in the Duck Creek Formation, the fossil dates to the Cretaceous, making it the youngest coelacanth discovered in Texas.

Read the full article.

EXCERPT:

Voice of America
A paleontologist in Texas has identified a new species of coelacanth, an ancient fish most closely related to land-dwelling vertebrates, including humans. John Graf of Southern Methodist University says the pieces of the tiny fossil skull found recently near Fort Worth are 100 million years old, and represent a new family of this remarkably enduring fish.

Coelacanths have been around for 400 million years — one of the longest lineages in the animal kingdom — and their fossils have been found on every continent except Antarctica. Scientists thought they went extinct 70 million years ago, until fishermen off the African coast caught live specimens in 1938.

Modern coelacanths can grow to three meters. The newly identified species was probably no longer than 40 centimeters.

Read the full article.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Fossils & Ruins Plants & Animals Slideshows Videos

100 million-year-old coelacanth discovered in Texas is new fish species from Cretaceous

Species is now the youngest coelacanth from Texas; fish jaw and cranial material indicate a new family — Dipluridae — that was evolutionary transition between two previously known families

A new species of coelacanth fish has been discovered in Texas.

Pieces of tiny fossil skull found in Fort Worth have been identified as 100 million-year-old coelacanth bones, according to paleontologist John F. Graf, Southern Methodist University, Dallas.

The coelacanth has one of the longest lineages — 400 million years — of any animal. It is the fish most closely related to vertebrates, including humans.

The SMU specimen is the first coelacanth in Texas from the Cretaceous, said Graf, who identified the fossil. The Cretaceous geologic period extended from 146 million years ago to 66 million years ago.

Graf named the new coelacanth species Reidus hilli.

Coelacanths have been found on nearly every continent
Reidus hilli is now the youngest coelacanth identified in the Lone Star State.

Previously the youngest was a 200 million-year-old coelacanth from the Triassic. Reidus hilli is the first coelacanth ever identified from the Dallas-Fort Worth area.

Coelacanth fossils have been found on every continent except Antarctica. Few have been found in Texas, Graf said.

The coelacanth fish has eluded extinction for 400 million years. Scientists estimate the coelacanth reached its maximum diversity during the Triassic.

The coelacanth was thought to have gone extinct about 70 million years ago. That changed, however, when the fish rose to fame in 1938 after live specimens were caught off the coast of Africa. Today coelacanths can be found swimming in the depths of the Indian Ocean.

Chart courtesy of the British Geological Survey.


Closest living fish to all vertebrates alive on land
“These animals have one of the longest lineages of any vertebrates that we know,” Graf said.

The SMU specimen demonstrates there was greater diversity among coelacanths during the Cretaceous than previously known.

“What makes the coelacanth interesting is that they are literally the closest living fish to all the vertebrates that are living on land,” he said. “They share the most recent common ancestor with all of terrestrial vertebrates.”

Coelacanths have boney support in their fins, which is the predecessor to true limbs.

“Boney support in the fins allows a marine vertebrate to lift itself upright off the sea floor,” Graf said, “which would eventually lead to animals being able to come up on land.”

Texas coelacanth, Reidus hilli, represents a new species and a new family
Graf identified Reidus hilli from a partial skull, including gular plates, which are bones that line the underside of the jaw.

“Coelacanths are not the only fish that have gular plates, but they are one of the few that do,” Graf said. “In fact, the lenticular shape of these gular plates is unique to coelacanths. That was the first indicator that we had a fossil coelacanth.”

Reidus hilli was an adult fish of average size for the time in which it lived, said Graf. While modern coelacanths can grow as large as 3 meters, Reidus hilli was probably no longer than 40 centimeters. Its tiny skull is 45 millimeters long by 26 millimeters wide, or about 1.75 inches long by 1 inch wide.

Reidus hilli’s total body size is typical of the new family of coelacanths, Dipluridae, which Graf describes and names. He chose the name for the least primitive coelacanth in the family, Diplurus, which lived during the Triassic.

Reidus hilli helped me tie a group of coelacanths together into what I identify as a new family of coelacanths,” he said. “This family represents a transition between the two large groups of youngest living coelacanths from the fossil record, Mawsoniidae and Latimeriidae.”

Diplurid coelacanths are typically smaller than the two families with which they are most closely associated, Mawsoniidae and Latimeriidae. Mawsoniidae and Latimeriidae both have late Cretaceous members reaching large body sizes, ranging from 1 meter to 3 meters in total body length, Graf said.

Reidus hilli provides clues to missing coelacanth history
Reidus hilli is named, in part, for the amateur collector who discovered the fish, Robert R. Reid.

A Fort Worth resident, Reid has collected fossils for decades. He found the fossil specimen while walking some land that had been prepared for construction of new homes. Reid noticed the fossil lying loose on the ground in a washed out gully created by run-off.

Following Graf’s analysis, Reid was surprised to learn he’d collected a coelacanth — and a new species.

“When I found it, I could tell it was a bone but I didn’t think it was anything special,” said Reid, recalling the discovery. “I certainly didn’t think it was a coelacanth.”

At the time, SMU paleontologist Louis L. Jacobs recommended to Reid that he donate the fossil and have it scientifically identified. Reid gave the fossil to SMU’s Shuler Museum of Paleontology in the Roy M. Huffington Department of Earth Sciences.

“It is astounding what can be learned from the discoveries that people like Rob Reid make in their own backyards,” said Jacobs, an SMU professor of earth sciences and president of SMU’s Institute for the Study of Earth and Man. “The discovery of living coelacanths in the Indian Ocean after being presumed extinct for 70 million years highlights one of the great mysteries of ocean life. Where were they all that time? The new fossil from Texas is a step toward understanding this fascinating history.”

Reidus hilli is the latest of many fossils Reid has discovered. Others also have been named for him.

Reidus hilli discovered in Duck Creek Formation of North Texas
Reidus hilli came from the fossil-rich Duck Creek Formation, which is a layer-cake band of limestone and shale about 40 feet thick.

The fossil was found in marine sediments, Graf said. It is one of many marine fossils found in the North Texas area, which 100 million years ago was covered by the Western Interior Seaway that divided North America from the Gulf of Mexico to the Arctic Ocean.

“That is unique to younger coelacanths,” Graf said. “The oldest coelacanths were usually found in freshwater deposits and it wasn’t until the Cretaceous that we start seeing this transition into a more marine environment.”

Fossil also named for Robert T. Hill, “Father of Texas Geology”
Graf also named the fossil for Robert T. Hill, a geologist with the U.S. Geological Survey who led surveys of Texas during the 1800s. Hill described much of the geology of Texas, including the Duck Creek Formation. Hill is acclaimed as the “Father of Texas Geology.”

Identification of Reidus hilli brings the number of coelacanth species worldwide to 81, including two that are alive today. Sources report that 229 living coelacanths have been caught since 1938.

Graf reported his findings in “A new Early Cretaceous coelacanth from Texas,” published in Historical Biology: An International Journal of Paleobiology. Graf is a paleontology graduate student in SMU’s Huffington Department of Earth Sciences. — Margaret Allen

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Plants & Animals Researcher news

Discovery News: Surprise! Not all stegosaurs had short necks

Vertebrate paleontologist Louis L. Jacobs, a professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, is quoted in Discovery News online in the February 25 story “Long-Necked Stegosaur Defies Reputation.”

Jacobs is known for his work documenting changes in fossil mammals in Pakistan, which helps scholars correlate climatic changes with evolutionary changes seen in animals, and which helps calibrate the rate of DNA evolution in mammals. He’s also credited for discovery of what’s now known as “Malawisaurus,” a plant-eating dinosaur that lived in Malawi, Africa, 115 million years ago.

Excerpt

By Jennifer Viegas
Discovery News

The classic image of a stegosaur calls to mind a grazing beast with short legs and a short neck, but a newly discovered species from Portugal was found to have one of the longest necks ever recorded for a dinosaur, relative to overall body size, according to a new study.

“Miragaia longicollum,” meaning “long-necked wonderful goddess of the Earth,” had more neck vertebrae than almost any other dinosaur, tying the record previously set by three Chinese sauropods, the study found.

Octavio Mateus, who led the research, told Discovery News that the new species and other stegosaurs were four-legged plant eaters “with a row of plates and spines along the body from the neck to the tail.” One swift swing of the tail could jab the sharp spines into would-be attackers. …

Louis Jacobs, director of the Shuler Museum of Paleontology at Southern Methodist University, told Discovery News that the new study “is quite interesting because it shows a body form, and by inference, an ecological diversity among stegosaurs that was not suspected before.”

Read the full story

Related links:
Louis Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College