Categories
Earth & Climate Fossils & Ruins

“Rosetta Stone” of supervolcanoes discovered in Italian Alps, reveals rare plumbing

Fossil supervolcano in Sesia Valley, more than 200 million years old, will advance understanding of nature’s most violent eruptions

Long%20Bishop%20Tuff.jpg
“Bishop Tuff” at Long Valley resulted from a volcanic event that erupted 140 cubic miles of magma 760,000 years ago. (Photo: USGS)

Scientists have found the “Rosetta Stone” of supervolcanoes, those giant pockmarks in the Earth’s surface produced by rare and massive explosive eruptions that rank among nature’s most violent events.

The eruptions produce devastation on a regional scale — and possibly trigger climatic and environmental effects at a global scale.

A fossil supervolcano has been discovered in the Italian Alps’ Sesia Valley by a team led by James E. Quick, a geology professor at Southern Methodist University. The discovery will advance scientific understanding of active supervolcanoes, like Yellowstone, which is the second-largest supervolcano in the world and which last erupted 630,000 years ago.

A rare uplift of the Earth’s crust in the Sesia Valley reveals for the first time the actual “plumbing” of a supervolcano from the surface to the source of the magma deep within the Earth, according to a new research article reporting the discovery. The uplift reveals to an unprecedented depth of 25 kilometers the tracks and trails of the magma as it moved through the Earth’s crust.

Supervolcanoes, historically called calderas, are enormous craters tens of kilometers in diameter. Their eruptions are sparked by the explosive release of gas from molten rock or “magma” as it pushes its way to the Earth’s surface.

Calderas erupt hundreds to thousands of cubic kilometers of volcanic ash. Explosive events occur every few hundred thousand years. Supervolcanoes have spread lava and ash vast distances and scientists believe they may have set off catastrophic global cooling events at different periods in the Earth’s past.

Sesia Valley fossil caldera reveals rare magmatic plumbing
Sesia Valley’s caldera erupted during the “Permian” geologic time period, say the discovery scientists. It is more than 13 kilometers in diameter.

“What’s new is to see the magmatic plumbing system all the way through the Earth’s crust,” says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. “Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?”

Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock moving through the Earth’s crust and explosive volcanism.

“It might lead to a better interpretation of monitoring data and improved prediction of eruptions,” says Quick, lead author of the research article reporting the discovery. The article, “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.,” appears in the July issue of the peer-reviewed journal “Geology.”

Deep fossil plumbing can advance understanding of eruptions
Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

“We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts,” Quick says.

To date, scientists have been able to study exposed caldera “plumbing” from the surface of the Earth to a depth of only 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

“We think of the Sesia Valley find as the ‘Rosetta Stone’ for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data,” Quick says. “This is a very rare spot. The base of the Earth’s crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end.”

Scientists have documented fewer than two dozen caldera eruptions in last 1 million years
British researchers introduced the term “supervolcano” in the last 10 years. Scientists have documented fewer than two dozen caldera eruptions in the last 1 million years.

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia’s Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60% of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to Nebraska.

“There will be another supervolcano explosion,” Quick says. “We don’t know where. Sesia Valley could help us to predict the next event.”

Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as SMU associate vice president for research and dean of graduate studies. Co-authors of the report are Silvano Sinigoi, Gabriella Peressini and Gabriella Demarchi, all of the Universita di Trieste; John L. Wooden, Stanford University; and Andrea Sbisa, Universita di Trieste. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

News coverage:
video.jpg Discovery Channel: Daily Planet at 3:41 into the video
National Geographic News
MSNBC.COM/LiveScience.com
geology.com
ScienceDaily.com
Corriere della Sera
La Stampa.com
physorg.com
livescience.com
redorbit.com
dailyindia.com
scientificcomputing.com
Fox News

Categories
Events Fossils & Ruins Researcher news

Uncovering Angola’s ancient giants: Louis Jacobs’ presentation

Fossil finds in the rock outcrops of the coast of Angola in Africa are a “museum in the ground,” according to SMU vertebrate paleontologist Louis L. Jacobs.

Internationally recognized for his fossil discoveries, Jacobs and a team of researchers have unearthed fossils in the outcrops from Namibe, at the southern end of Angola’s coast, to Cabinda, at the northern end.

Jacobs’ work in Angola is jointly funded by the Petroleum Research Fund and National Geographic Society. He’ll present details July 9 at the monthly meeting of the Angola Field Group in Luanda.

A professor in Dedman College‘s Roy M. Huffington Department of Earth Sciences, Jacobs joined SMU’s faculty in 1983. Currently he has projects in Mongolia, Angola and Antarctica. His book, “Lone Star Dinosaurs” (1999, Texas A&M University Press) was the basis of an exhibit at the Fort Worth Museum of Science and History that traveled the state. He is consulting on a new exhibit, Mysteries of the Texas Dinosaurs, which is set to open in the fall of 2009.

From the Angola Field Group’s blog:

The Angola Field Group invites you to: Uncovering the Hidden Remains of Angola’s Ancient Giants, a presentation this Thursday, July 9, at 8:00 p.m. at the Viking Club with dinosaur hunter Dr. Louis Jacobs who calls the fossils of Angola a “museum in the ground.”

Dr. Jacobs and his team first came to Angola in 2005 and again in 2007 to hunt for fossils of giant marine lizards first reported in the 1960’s, but they unearthed much more than that. He will present a review of their finds from the rock outcrops of the coast of Namibe province all the way up to the coast of Cabinda, conducted in cooperation with Agostinho Neto University and ISPRA University in Lubango.

Dr. Jacobs teaches geology and paleontology at Southern Methodist University in Dallas, Texas and has conducted fieldwork worldwide. He’s internationally recognized as a dinosaur expert and six fossil species have been named after him.

Read the full entry.

Related links:
Louis L. Jacobs
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Petroleum Research Fund

Categories
Earth & Climate Energy & Matter

Geothermal heat: Will Earth’s “hot rocks” become new “Texas tea”?

Texas, which has been the nation’s largest fossil-fuel producer, also has an abundant supply of another natural resource for a different kind of energy boom: clean, renewable, geothermal energy.

Like the oil and gas beneath Texas, there’s a huge quantity of naturally occurring “hot rocks” underground that could be tapped for geothermal energy to produce electricity, according to new research by SMU scientists. South and East Texas have an abundant supply, say the researchers.

iphone%20feb%205%202008%20058.jpg“There is more than enough heat below our feet to take all the state’s industrial consumption off the existing transmission grid,” says Maria Richards, program coordinator for the SMU Geothermal Laboratory.

Lab researchers recently completed an assessment of geothermal resources in South and East Texas for the Texas State Energy Conservation Office, or SECO. They found enough heat to supply Texas with clean, renewable, affordable electricity for hundreds of years, Richards says. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 and includes Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.
Maria Richards with a driller on an oil rig.

The SMU analysis will be part of The Energy Report, a SECO report on clean and renewable energy resources in Texas. SECO funded the SMU Geothermal Laboratory research with a $200,000 grant. SMU will submit the assessment to SECO later in June.

Currently Texas gets the bulk of its electricity from natural gas-, coal- and nuclear-powered generating plants. But commercial interest in geothermal energy is growing both in the state and nationwide, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU. Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, says Blackwell, who has advised the industry for the past 40 years.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists.

The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact. The MIT study’s authors said geothermal energy is especially attractive because it is widely available, doesn’t have to be stored to supply minimum demand, and has a small footprint with low or no emissions. It is also considered virtually inexhaustible, according to the Geothermal Energy Association.

The MIT study estimated the U.S. geothermal resource base at more than 13 million exajoules, which is a measurement of stored thermal energy. The extractable portion of that is estimated at more than 200,000 exajoules, or about 2,000 times the annual U.S. consumption in 2005 of primary energy, according to the report.

Currently the U.S. has more geothermal generating capacity online than any other country, about 30% of the world’s total, according to the Geothermal Energy Association.

MikePaul%5B1%5D.JPGTexas is uniquely positioned for geothermal development, according to Blackwell and Richards. That’s due in large part to the state’s thousands of existing oil and gas wells that could be developed in various ways to tap geothermal heat.

Pictured right: Michael Paul, SMU director of energy management and engineering, collects temperatures at a field near Corpus Christi

The SMU Geothermal Lab’s research has proven the potential for drawing electricity from low-temperature geothermal sources through “binary” technology. A binary power plant circulates hot groundwater through an existing oil or gas well to heat a secondary fluid. The resulting vapor then drives turbines to generate electricity.

There are thousands of oil and gas wells in Texas that could be economical for geothermal development, Richards says. That’s especially true since the technology can operate concurrently in oil and gas wells, which would significantly reduce the cost of geothermal exploration. Geothermally produced electricity could then offset the power normally required to operate oil-field production units. Additionally, excess electricity could be sold back to the statewide electric transmission grid. Depleted oil and gas wells that are slated for abandonment could again generate revenue when tapped for geothermal production.

SMU’s regional assessment for SECO covered 91 counties. It calculated the geothermal heat under South and East Texas at 921,085 exajoules, giving the state enormous geothermal potential. Anywhere from 2 percent to 10 percent of that is recoverable, depending on the efficiency of the conversion technology and the location of the resource.

“As humans we have no real concept as to how much heat is below our feet,” Richards says. “We feel the sun in our face, and the wind in our hair, but we don’t feel the Earth’s heat through our feet.”

SMU’s researchers analyzed historical temperature data for wells drilled since the early 1990s. Drilling logs for each hole include temperature recordings taken at various depths. The SMU analysis looked at wells ranging from 2,000 feet to 20,000 feet deep. The researchers were surprised that the temperature in some wells ran as hot as 450 degrees Fahrenheit, Richards says.

Wells drilled from 9,000 feet to 14,000 feet deep, with temperatures downhole of 250 degrees or greater, will likely be economical for geothermal energy. They would be sufficiently hot and reasonably close to the surface. In deeper wells, unless they flow naturally, the binary technology would require too much electricity.

The team of SMU Geothermal Laboratory researchers included six graduate and undergraduate students.

“This turned out to be a wonderful project for the students,” Richards says. “With President Barack Obama’s push for more emphasis on science and renewable energy, these are students on the leading edge of that whole process. And they are focused on a project that was funded by the state of Texas.” — Margaret Allen

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Renewable Electricity Production Tax Credit
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Technology

News reports: SMU deploys seismic stations to study earthquakes

Rare earthquake activity in the Dallas-Fort Worth area has prompted the National Science Foundation to loan SMU 10 seismic stations to study the phenomenon. News reports about the research have been filed by The Wall Street Journal, WFAA-TV Channel 8, the Dallas Morning News and others.

Excerpts:

By Ben Casselman
The Wall Street Journal
CLEBURNE, Texas — This small city at the epicenter of the region’s natural-gas boom has been shaken by another arrival from underground: earthquakes.

Five small temblors this month have some people pointing the finger at technology that drilling companies use to reach deep into the earth to shatter rock and release new stores of natural gas — the same technology that has made many of the locals rich.

Thousands of wells have been drilled in the past five years. Now, a wave of small earthquakes is leading some residents in the north Texas town to link the two developments and some seismic experts to wonder about the cause.
Read the full story.

By Jason Whitely
WFAA-TV
Geophysics researchers at SMU said they will send several portable seismic stations to Cleburne after a scheduled meeting with city officals next Monday. City officials want to begin taking more precise measurements after five minor earthquakes have shaken the Johnson County city south of Fort Worth in the last week.
Read the full story.

By David Tarrant
Dallas Morning News
The recent swarm of small earthquakes has stirred more than a passing interest among local scientists, and a team from Southern Methodist University plans to deploy portable seismic stations for a better reading on what’s shaking down below.
Read the full story.

Categories
Earth & Climate Energy & Matter Researcher news Student researchers Technology

WFAA: SMU to study recent North Texas quakes

SMU researchers will deploy seismic stations in North Texas in an effort to gather information about the recent spate of earthquakes in the area, according to a June 9 report by WFAA-TV Channel 8 news reporter Jason Whitely. Read the full story.

Excerpt

By Jason Whitely
WFAA News
DALLAS — In the frenzied pace of everyday life, few North Texans think much about what happens beneath their feet. However, the recent earthquakes in the Cleburne area have changed that for many.

There were two more earthquakes Tuesday. The first measured 2.4 and the second, which happened an hour later, was 2.1.

“This is not a place where earthquakes occur, so this is not a place where small earthquakes have been studied,” said Dr. Chris Hayward, a geophysics research projects director at SMU.

Southern Methodist University is preparing to embark on a first in the Dallas-Fort Worth area.

“This is the equipment we’ll be putting out in the field to detect earthquakes,” said Ashley Howe, a SMU earth science student, while standing over a portable hi-tech seismic station.

The university is deploying ten portable seismic stations to better pinpoint why the ground has started to rumble.

Read the full story

Related links:
State of Texas Hazards Analysis manual
WFAA: Reports on Cleburne quakes
Brian Stump’s research
Brian Stump
SMU Geophysical Imaging Laboratory
SMU Geophysics Research Archives
Roy M. Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences