Categories
Economics & Statistics Researcher news SMU In The News Technology

New Scientist: Bitcoin hits $200 but swapping for real money is risky

Bitcoin-coin2-thumb-600x460-175642

Technology reporter Jacob Aron with New Scientist covered the Bitcoin research of SMU cybersecurity expert Tyler W. Moore, an assistant professor of computer science in the Lyle School of Engineering.

Moore’s research found that online exchanges that trade hard currency for the rapidly emerging cyber money known as Bitcoin have a 45 percent chance of failing — often taking their customers’ money with them.

The finding is from a new computer science study that applied survival analysis to examine the factors that prompt Bitcoin currency exchanges to close.

Moore carried out the research with Nicolas Christin, with the Information Networking Institute and Carnegie Mellon CyLab at Carnegie Mellon University.

Aron’s coverage, “Bitcoin hits $200 but swapping for real money is risky,” was published online April 9.

Read the full story.

EXCERPT:

Jacob Aron
New Scientist

Online currency Bitcoin hit yet another record high today as it smashed through the $200 barrier, but a new analysis of Bitcoin exchanges shows that swapping real-world cash for its virtual equivalent can be a risky business.

The stratospheric rise of Bitcoin in recent days – it was at $70 just two weeks ago and less than $10 when we first wrote about it – has left many wishing they had got in on the currency when it was much cheaper. But it is easy to forget that Bitcoin exchanges, where many users store their cash, have a history of being hacked or even folding altogether.

Tracking the fortunes of 40 such exchanges over the past three years, Tyler Moore of Southern Methodist University in Dallas, Texas, and Nicolas Christin of Carnegie Mellon University in Pittsburgh, Pennsylvania, discovered that 18 have closed. Of these, five failed to reimburse their customers, while six claimed they did. The pair were unable to confirm either way for the remaining seven exchanges.

The pair also used mathematical modelling to predict the general behaviour of Bitcoin exchanges, and found that there is a 30 per cent chance of an exchange folding within one year of opening, increasing to nearly 80 per cent after two years.

Unsurprisingly, the larger exchanges such as Mt.Gox are much less likely to implode, but the findings suggest these popular money-swappers are also at greater risk of hack attacks. “The continued operation of an exchange depends on running a high transaction volume, which makes the exchange a more valuable target to thieves,” say the pair in a paper presented at the Financial Cryptography conference in Okinawa, Japan, last week.

So, jump on the Bitcoin bandwagon by all means – but as with all investments, don’t risk anything you aren’t prepared to lose.

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Researcher news SMU In The News Student researchers Videos

SMU News: 2012 Research Day at Southern Methodist University

SMU News covered the annual 2012 Research Day on Feb. 10 where SMU graduate and undergraduate students presented results of their research studies.

Sponsored by SMU’s Office of Research and Graduate Studies, the event sought to foster communication between students in different programs, give students the opportunity to present their work in formats they will use as professionals, and to share with the SMU community and others the outstanding research being done at the University.

The students presented their studies on posters, and were available to discuss their findings and the significance of the research.

Read the full story.

EXCERPT:

Among the projects at the event were:

  • Psychology student Vanessa Rae Stevens (under Professor Alicia Meuret) is studying whether people with tattoos and body piercings are also prone to intentional self injury by cutting, scratching, burning, etc.
  • Psychology student Grant Holland (under Professor George Holden) is studying recordings of interactions between mothers and their children with an eye toward better understanding the effects of tone-of-voice on behavior at bedtime.
  • Statistics student Holly Stovall (under Professor Lynne Stokes) is examining how to more precisely measure success in teaching programs for No Child Left Behind.
  • Earth sciences student Mary Milleson (under Professor Neil Tabor) is using core samples taken from Dallas’s White Rock Lake to gain a better understanding of how the growing urbanization of the area over the last 100 years is affecting the lake.
  • Computer science student Ruili Geng (under Professors Jeff Tian and Liguo Huang) is researching how to make the performance of the web and cloud computing more dependable.
  • Physics students Bedile Karabuga and Mayisha Zeb Nakib (under Professor Jodi Cooley-Sekula) are examining a specific technique for identifying dark matter.
    For more information, contact the Office of Research and Graduate Studies at 214-768-4345 or smugrad@smu.edu.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Economics & Statistics Researcher news SMU In The News

NSF: New forecasting algorithm helps predict hurricane intensity and wind speed

The National Science Foundation has covered the hurricane modeling research of SMU engineers Yu Su, Michael Hahsler and Margaret Dunham in a Dec. 5 “Discoveries” article on its web site.

Su, Hahsler and Dunham have written a white paper on their method for predicting hurricanes: “Learning a Prediction Interval Model for Hurricane Intensities.” The three scientists are in the SMU Lyle School‘s Department of Computer Science and Engineering.

Read the full story.

EXCERPT:

National Science Foundation
Each year, hurricanes cause tremendous destruction across the globe. It is not a coincidence that the word “hurricane” derives from Huracán, Hunraken or Jurakan, the evil god of winds and destruction in Mayan civilizations of Central America and the Tainos of the Caribbean.

But what makes them so menacing and powerful to deserve such mythos?

“A hurricane’s destructive power is directly related to the hurricane’s intensity–its maximum sustained wind speed,” said Yu Su, a Ph.D. student at the Department of Computer Science and Engineering, Lyle School of Engineering, at Southern Methodist University (SMU).

Yet, predicting the intensity of hurricanes is a difficult challenge.

A team of National Science Foundation- (NSF) funded scientists at SMU’s Intelligent Data Analysis Lab (IDA) developed a new forecasting algorithm called the Prediction Intensity Interval model for Hurricanes (PIIH), to help better predict hurricane intensity.

PIIH also predicts the potential ranges, from high to low, of maximum hurricane wind speeds, specifying the likelihood of wind speeds in varying ranges.

“Accurately predicting intensity means vastly improving hurricane readiness and reducing the risk to property and human life,” said Michael Hahsler, visiting assistant professor for Computer Science and Engineering at SMU. “With more accurate predicting of intensity, governments and the communities they serve will be able to make better decisions on the extent of an evacuation and when to evacuate. This will result in real dollar savings as well as saving lives.”

The PIIH algorithm is based on an aggregate hurricane model that uses previous data, including current maximum intensity, potential for increase in intensity, time of year, various temperature measurements, direction of storm movement and wind shear–the difference in wind speed and direction over a relatively short distance in the atmosphere. PIIH applies this model of past hurricane behavior to predict the intensity of current hurricanes up to five days from any given time point.

“When a future intensity is to be predicted for a current storm, similar states in the life cycle model are found,” said Margaret Dunham, Computer Science and Engineering professor at SMU. “A forecast is created by constructing a weighted average of forecasts from similar storm states found in previous storms. Confidence bands are constructed based upon observing the frequency distributions of intensity values found in previous storms. Based on these and the current intensity value, confidence intervals for future predictions are created.”

By analyzing 2011 storms, through Hurricane Nate, which struck in September 2011, researchers observed that just over 96 percent of the PIIH observations fell within the 95 percent confidence band, which is a very high probability that the PIIH prediction confidence bands were accurate.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To book an interview in the SMU studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Health & Medicine Mind & Brain Researcher news SMU In The News Technology

Wired: Lasers Power Pentagon’s Next-Gen Artificial Limbs

Reporter Katie Drummond with Wired magazine has covered the research of SMU engineers Marc Christensen and Volkan Otugen who are working as part of a consortium with industry and other universities to develop technology that will someday help amputees have “feeling” in their artificial limbs.

The research is funded through a $5.6 million grant from the U.S. Department of Defense and industry for a center led by SMU’s Lyle School of Engineering. The goal is to develop revolutionary technology for advanced prosthetic limbs that will help amputees returning from war in Iraq and Afghanistan.

Two-way fiber optic communication between prosthetic limbs and peripheral nerves will be key to operating realistic robotic arms, legs and hands that not only move like the real thing, but also “feel” sensations like pressure and heat.

Wired’s coverage published Nov. 3 in Drummond’s “Danger Room” column.

Read the full story.

EXCERPT:

By Katie Drummond
Wired

The Pentagon’s already got brain-controlled prosthetics, and they are a major improvement over old-school artificial limbs. The devices are far from perfect, however. They rely on metal implants, which aren’t compatible with the body’s tissues, and they can only transmit a few signals at a time — turning what should be a simple movement into a Herculean task.

Now, Darpa-funded researchers are convinced they’ve found a way to make prosthetics truly life-like: laser beams.

A team led by experts at Southern Methodist University is making swift progress towards prosthetic devices that rely on fiber-optics, and would offer a wearer the kind of seamless movement and sensation experienced with a flesh-and-blood limb.

“Already, we’re tantalizingly close,” Dr. Marc Christensen, the program’s leader, tells Danger Room. “We haven’t seen anything that’s been a deal-breaker yet.”

It all started in 2005, when researchers at Vanderbilt realized they could trigger a nerve using infrared light. The finding catalyzed a handful of research projects investigating the prospect of laser-powered prostheses, and Darpa last year doled out $5.6 million for the creation of the Neurophotonics Research Center, led by SMU, for the development of prosthetic devices powered by infrared lasers.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Health & Medicine Researcher news Student researchers Technology Videos

SMU faculty, students to help UNHCR clean up refugee camp water

The search for solutions to dangerous water quality issues in refugee camps is driving an SMU lab group’s partnership with the United Nations High Commissioner for Refugees. SMU faculty and students will work in the lab and on the ground in Kenya, Uganda, Liberia and Bangladesh.

The group will integrate information from other sources to develop a database that will help UNHCR planners provide safer drinking water in existing and future refugee camps.

Supported by a $270,000 grant from UNHCR and additional SMU funds, faculty member Andrew Quicksall and his graduate students in SMU’s Lyle School of Engineering are collecting water samples in UNHCR camps, bringing samples back to SMU for analysis and also training workers in and around the refugee camps to test water supplies.

SMU Researcher to study human-fire-climate interactions

“They’ve asked us to build out a whole picture, truly worldwide, for what’s in the drinking water in refugee camps,” said Quicksall, the J. Lindsay Embrey Trustee Assistant Professor in the Lyle School of Engineering. “So we’re going to go on-site, collect water, analyze some in the field and bring quite a bit of water back to our SMU laboratories and get a full picture.”

Database to identify contaminants in camps with half a million people
The database developed by Quicksall’s group will identify contaminants in drinking water and allow UNHCR officials to track water quality in the camps over time. Some water quality problems are indigenous to the regions where the camps are situated, some develop over time, and some are the nearly instant consequence of thousands of people collecting in unsuitable locations to escape war and famine faster than sanitary infrastructure can be built.

For example, the agreement with UNHCR commits Quicksall’s team to investigate critical water issues in Dadaab, Kenya ̵ home to the largest refugee complex in the world. Nearly half a million people are concentrated in three camps there, many living in makeshift shelters of twigs, reeds and scraps. Refugees pouring across the border to escape war and famine in Somalia continue to face shortages of food, water, shelter and sanitation hazards there.

“The technical challenges of supporting refugee populations of this size will require that our teams stay engaged with the UNHCR for years to come,” said Geoffrey Orsak, dean of the SMU Lyle School of Engineering. “Fortunately, our new Hunt Institute for Engineering and Humanity makes it possible to lead efforts of this magnitude nearly anywhere on the globe.”

Research to investigate solutions to safe but unpalatable drinking water
Some camps have safe drinking water available, but the taste is so off-putting that residents seek out other sources. In Nakivale, Uganda, for example, the high iron content in well water drives refugees to drink surface water that is frequently contaminated with coliform bacteria. Quicksall’s group also will investigate methods of improving the taste of such safe, but unpalatable, drinking water.

Preliminary research results have revealed problematic concentrations of iodide in drinking water at Dadaab and fluoride in both Southern Uganda and Kakukma, Kenya. Some types of contaminants may not create problems short-term, Quicksall explains, but create severe health issues for people over the long term — particularly children and the elderly. His study group will have the opportunity to both recommend and implement remediation methods for those problem water sources, he said.

“To work with the science in the lab and see it applied internationally — I don’t think there is an opportunity like this anywhere else,” said graduate student Drew Aleto, a member of Quicksall’s study team.

UNHCR and the Hunt Institute for Engineering and Humanity at SMU have signed an agreement establishing a framework for increasing the role of engineering and innovation in support of refugee camp operations. This agreement calls for the engagement of universities, government-run research institutes and corporations to address technical and infrastructure issues faced by UNHCR in helping refugees in relation to water, sanitation, shelter, communications and health care. — Kimberly Cobb

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.