Categories
Culture, Society & Family Health & Medicine Mind & Brain Researcher news SMU In The News Technology

Wired: Lasers Power Pentagon’s Next-Gen Artificial Limbs

Reporter Katie Drummond with Wired magazine has covered the research of SMU engineers Marc Christensen and Volkan Otugen who are working as part of a consortium with industry and other universities to develop technology that will someday help amputees have “feeling” in their artificial limbs.

The research is funded through a $5.6 million grant from the U.S. Department of Defense and industry for a center led by SMU’s Lyle School of Engineering. The goal is to develop revolutionary technology for advanced prosthetic limbs that will help amputees returning from war in Iraq and Afghanistan.

Two-way fiber optic communication between prosthetic limbs and peripheral nerves will be key to operating realistic robotic arms, legs and hands that not only move like the real thing, but also “feel” sensations like pressure and heat.

Wired’s coverage published Nov. 3 in Drummond’s “Danger Room” column.

Read the full story.

EXCERPT:

By Katie Drummond
Wired

The Pentagon’s already got brain-controlled prosthetics, and they are a major improvement over old-school artificial limbs. The devices are far from perfect, however. They rely on metal implants, which aren’t compatible with the body’s tissues, and they can only transmit a few signals at a time — turning what should be a simple movement into a Herculean task.

Now, Darpa-funded researchers are convinced they’ve found a way to make prosthetics truly life-like: laser beams.

A team led by experts at Southern Methodist University is making swift progress towards prosthetic devices that rely on fiber-optics, and would offer a wearer the kind of seamless movement and sensation experienced with a flesh-and-blood limb.

“Already, we’re tantalizingly close,” Dr. Marc Christensen, the program’s leader, tells Danger Room. “We haven’t seen anything that’s been a deal-breaker yet.”

It all started in 2005, when researchers at Vanderbilt realized they could trigger a nerve using infrared light. The finding catalyzed a handful of research projects investigating the prospect of laser-powered prostheses, and Darpa last year doled out $5.6 million for the creation of the Neurophotonics Research Center, led by SMU, for the development of prosthetic devices powered by infrared lasers.

Read the full story.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news Technology Videos

SMU Geothermal Lab project: Vast clean energy source confirmed by Google.org-funded geothermal mapping

Vast coast-to-coast geothermal resource

New research from the SMU Geothermal Laboratory, funded by a grant from Google.org, documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power – 10 times the installed capacity of coal power plants today.

Sophisticated mapping produced from the research, viewable via Google Earth at http://www.google.org/egs/, demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

The results of the new research, from SMU Hamilton Professor of Geophysics David Blackwell and Geothermal Lab Coordinator Maria Richards, confirm and refine locations for resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions, including significant areas in the eastern two-thirds of the United States.

Resource estimations based on thousands of data sites
The estimated amounts and locations of heat stored in the Earth’s crust included in this study are based on nearly 35,000 data sites – approximately twice the number used for Blackwell and Richards’ 2004 Geothermal Map of North America, leading to improved detail and contouring at a regional level.

Based on the additional data, primarily drawn from oil and gas drilling, larger local variations can be seen in temperatures at depth, highlighting more detail for potential power sites than was previously evident in the eastern portion of the U.S. For example, eastern West Virginia has been identified as part of a larger Appalachian trend of higher heat flow and temperature.

Conventional U.S. geothermal production has been restricted largely to the western third of the country in geographically unique and tectonically active locations.

SMU Researcher to study human-fire-climate interactions

For instance, The Geysers Field north of San Francisco is home to more than a dozen large power plants that have been tapping naturally occurring steam reservoirs to produce electricity for more than 40 years.

Many new regions considered capable of geothermal energy production
However, newer technologies and drilling methods can now be used to develop resources in a wider range of geologic conditions, allowing reliable production of clean energy at temperatures as low as 100˚C (212˚F) – and in regions not previously considered suitable for geothermal energy production. Preliminary data released from the SMU study in October 2010 revealed the existence of a geothermal resource under the state of West Virginia equivalent to the state’s existing (primarily coal-based) power supply.

“Once again, SMU continues its pioneering work in demonstrating the tremendous potential of geothermal resources,” said Karl Gawell, executive director of the Geothermal Energy Association. “Both Google and the SMU researchers are fundamentally changing the way we look at how we can use the heat of the Earth to meet our energy needs, and by doing so are making significant contributions to enhancing our national security and environmental quality.”

“This assessment of geothermal potential will only improve with time,” said Blackwell. “Our study assumes that we tap only a small fraction of the available stored heat in the Earth’s crust, and our capabilities to capture that heat are expected to grow substantially as we improve upon the energy conversion and exploitation factors through technological advances and improved techniques.”

Blackwell is scheduled to release a paper with details of the results of the research to the Geothermal Resources Council in October 2011.

SMU map proposes new international standard for estimating geothermal resource
Blackwell and Richards first produced the 2004 Geothermal Map of North America using oil and gas industry data from the central U.S. Blackwell and the 2004 map played a significant role in a 2006 Future of Geothermal Energy study sponsored by the U.S. Department of Energy that concluded geothermal energy had the potential to supply a substantial portion of the future U.S. electricity needs, likely at competitive prices and with minimal environmental impact. SMU’s 2004 map has been the national standard for evaluating heat flow, temperature and thermal conductivity for potential geothermal energy projects.

In this newest SMU estimate of resource potential, researchers used additional temperature data and in-depth geological analysis for the resulting heat flow maps to create the updated temperature-at-depth maps from 3.5 kilometers to 9.5 kilometers (11,500 to 31,000 feet).

This update revealed that some conditions in the eastern two-thirds of the U.S. are actually hotter than some areas in the western portion of the country, an area long-recognized for heat-producing tectonic activity. In determining the potential for geothermal production, the new SMU study considers the practical considerations of drilling, and limits the analysis to the heat available in the top 6.5 km (21,500 ft.) of crust for predicting megawatts of available power.

This approach incorporates a newly proposed international standard for estimating geothermal resource potential that considers added practical limitations of development, such as the inaccessibility of large urban areas and national parks. Known as the “technical potential” value, it assumes producers tap only 14 percent of the “theoretical potential” of stored geothermal heat in the U.S., using currently available technology.

New technology developments have sparked geothermal development
Three recent technological developments already have sparked geothermal development in areas with little or no tectonic activity or volcanism:

1) Low Temperature Hydrothermal – Energy is produced from areas with naturally occurring high fluid volumes at temperatures ranging from less than boiling to 150°C (300°F). This application is currently producing energy in Alaska, Oregon, Idaho and Utah.

2) Geopressure and Coproduced Fluids Geothermal – Oil and/or natural gas are produced together with electricity generated from hot geothermal fluids drawn from the same well. Systems are installed or being installed in Wyoming, North Dakota, Utah, Louisiana, Mississippi and Texas.

3) Enhanced Geothermal Systems (EGS) – Areas with low fluid content, but high temperatures of more than 150°C (300°F), are “enhanced” with injection of fluid and other reservoir engineering techniques. EGS resources are typically deeper than hydrothermal and represent the largest share of total geothermal resources capable of supporting larger capacity power plants.

Goal is to aid evaluation of regional nonconventional geothermal resources
A key goal in the SMU resource assessment was to aid in evaluating these nonconventional geothermal resources on a regional to sub-regional basis.

Areas of particular geothermal interest include the Appalachian trend (Western Pennsylvania, West Virginia, to northern Louisiana), the aquifer heated area of South Dakota, and the areas of radioactive basement granites beneath sediments such as those found in northern Illinois and northern Louisiana. The Gulf Coast continues to be outlined as a huge resource area and a promising sedimentary basin for development. The Raton Basin in southeastern Colorado possesses extremely high temperatures and is being evaluated by the State of Colorado along with an area energy company.

SMU’s Geothermal Laboratory in Dedman College of Humanities and Sciences conducted this research through funding provided by Google.org, which is dedicated to using the power of information and innovation to advance breakthrough technologies in clean energy. — Kimberly Cobb

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Earth & Climate Health & Medicine Researcher news Student researchers Technology Videos

SMU faculty, students to help UNHCR clean up refugee camp water

The search for solutions to dangerous water quality issues in refugee camps is driving an SMU lab group’s partnership with the United Nations High Commissioner for Refugees. SMU faculty and students will work in the lab and on the ground in Kenya, Uganda, Liberia and Bangladesh.

The group will integrate information from other sources to develop a database that will help UNHCR planners provide safer drinking water in existing and future refugee camps.

Supported by a $270,000 grant from UNHCR and additional SMU funds, faculty member Andrew Quicksall and his graduate students in SMU’s Lyle School of Engineering are collecting water samples in UNHCR camps, bringing samples back to SMU for analysis and also training workers in and around the refugee camps to test water supplies.

SMU Researcher to study human-fire-climate interactions

“They’ve asked us to build out a whole picture, truly worldwide, for what’s in the drinking water in refugee camps,” said Quicksall, the J. Lindsay Embrey Trustee Assistant Professor in the Lyle School of Engineering. “So we’re going to go on-site, collect water, analyze some in the field and bring quite a bit of water back to our SMU laboratories and get a full picture.”

Database to identify contaminants in camps with half a million people
The database developed by Quicksall’s group will identify contaminants in drinking water and allow UNHCR officials to track water quality in the camps over time. Some water quality problems are indigenous to the regions where the camps are situated, some develop over time, and some are the nearly instant consequence of thousands of people collecting in unsuitable locations to escape war and famine faster than sanitary infrastructure can be built.

For example, the agreement with UNHCR commits Quicksall’s team to investigate critical water issues in Dadaab, Kenya ̵ home to the largest refugee complex in the world. Nearly half a million people are concentrated in three camps there, many living in makeshift shelters of twigs, reeds and scraps. Refugees pouring across the border to escape war and famine in Somalia continue to face shortages of food, water, shelter and sanitation hazards there.

“The technical challenges of supporting refugee populations of this size will require that our teams stay engaged with the UNHCR for years to come,” said Geoffrey Orsak, dean of the SMU Lyle School of Engineering. “Fortunately, our new Hunt Institute for Engineering and Humanity makes it possible to lead efforts of this magnitude nearly anywhere on the globe.”

Research to investigate solutions to safe but unpalatable drinking water
Some camps have safe drinking water available, but the taste is so off-putting that residents seek out other sources. In Nakivale, Uganda, for example, the high iron content in well water drives refugees to drink surface water that is frequently contaminated with coliform bacteria. Quicksall’s group also will investigate methods of improving the taste of such safe, but unpalatable, drinking water.

Preliminary research results have revealed problematic concentrations of iodide in drinking water at Dadaab and fluoride in both Southern Uganda and Kakukma, Kenya. Some types of contaminants may not create problems short-term, Quicksall explains, but create severe health issues for people over the long term — particularly children and the elderly. His study group will have the opportunity to both recommend and implement remediation methods for those problem water sources, he said.

“To work with the science in the lab and see it applied internationally — I don’t think there is an opportunity like this anywhere else,” said graduate student Drew Aleto, a member of Quicksall’s study team.

UNHCR and the Hunt Institute for Engineering and Humanity at SMU have signed an agreement establishing a framework for increasing the role of engineering and innovation in support of refugee camp operations. This agreement calls for the engagement of universities, government-run research institutes and corporations to address technical and infrastructure issues faced by UNHCR in helping refugees in relation to water, sanitation, shelter, communications and health care. — Kimberly Cobb

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Economics & Statistics Researcher news SMU In The News Technology

The Guardian: Weatherwatch — Can the intensity of a hurricane be predicted?

Science journalist David Hambling has covered the hurricane modeling research of SMU engineers Yu Su, Michael Hahsler and Margaret Dunham in the U.K. daily newspaper The Guardian. The article published in Hambling’s Oct. 12 column “Weatherwatch.”

Su, Hahsler and Dunham have written a white paper on their method for predicting hurricanes: “Learning a Prediction Interval Model for Hurricane Intensities.” The three scientists are in the SMU Lyle School‘s Department of Computer Science and Engineering.

Read the full story.

EXCERPT:

By David Hambling
The Guardian

It is possible to predict the track of a hurricane with a reasonable degree of accuracy several days in advance. Unfortunately predicting intensity is less certain, and potential victims don’t know whether to expect a rather heavy thunderstorm or something truly apocalyptic. Evacuation may be a wise precautionary measure, but when the promised devastation does not occur it looks like crying wolf.

Researchers at the Southern Methodist University in Dallas, Texas are developing a new modelling technique to predict the speed of hurricane winds. Known as the Learning Prediction Intensity Interval model, it is based on data mining using an advanced machine learning process. The computer itself works out the pattern of intensity development from a large pool of raw data, unlike existing methods where humans cherry-pick the most relevant historical data for a regression model to fit the current situation.

Read the full story.

Categories
Culture, Society & Family Health & Medicine Mind & Brain Researcher news SMU In The News Technology

KERA: Engineering Hope: Research To Aid Injured Troops

Reporter B.J. Austin with Dallas area Public Radio station KERA has interviewed SMU engineers Marc Christensen and Volkan Otugen who are working as part of a consortium with industry and other universities to develop technology that will someday help amputees have “feeling” in their artificial limbs.

The research is funded through a $5.6 million grant from the U.S. Department of Defense and industry for a center led by SMU’s Lyle School of Engineering. The goal is to develop revolutionary technology for advanced prosthetic limbs that will help amputees returning from war in Iraq and Afghanistan.

Two-way fiber optic communication between prosthetic limbs and peripheral nerves will be key to operating realistic robotic arms, legs and hands that not only move like the real thing, but also “feel” sensations like pressure and heat.

KERA’s coverage aired Oct. 10 as part of a larger series on “Engineering Hope: Groundbreaking Research That Could Change Our Lives..”

Read the full story and watch the video.

EXCERPT:

KERA News
This week, KERA 90.1 is airing a series of reports: “Engineering Hope: Groundbreaking Research That Could Change Our Lives.” In today’s report KERA’s BJ Austin visits a lab where researchers from North Texas universities are developing the next generation of prosthetic limbs for injured soldiers. It’s cutting-edge research that could allow amputees to move more naturally and sense feeling with their artificial limbs.

In a busy Starbucks, two things make 28 year old Clint Barkley stand out in the crowd: his clean cut good looks and his walk.

Barkley: We were just south of Fallujah in 2005. We ran over a land mine. I lost my left leg. Our gunner lost both of his feet below his knee.

The former Marine from Bedford walks unevenly, slightly stiff, but full of confidence. He wears a ten pound, titanium leg. It attaches mid-thigh and has a computerized knee.

Barkley: It reads your body weight, how you’re moving and it reacts accordingly. I put my heel down then as I go and put all the pressure in my toe it knows I’m taking a step so it releases and kicks the foot back forward for me.

But what it doesn’t do is allow a smooth, natural gait. And the leg does not allow him to feel the gravel in a driveway or the heat of an asphalt parking lot in August. But that could be in his future.

A consortium of scientists and engineers in North Texas and elsewhere are working on a way for the brain, the body’s nerve impulses and an artificial limb to “talk” to each other. That could allow an amputee to “think” about moving an artificial arm or leg and the limb would respond immediately and more naturally. Conversely, the artificial limb would talk to the brain, giving it sensory input, thereby allowing the amputee to “feel.” The research is being led by Marc Christensen, Professor of Engineering Innovation at Southern Methodist University. But, part of the project is taking place in a noisy, unassuming lab at the University of North Texas. That’s where Christensen talked about the research, being funded initially by a 5.5 million dollar grant from the Department of Defense.

Read the full story and watch the video.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.