Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Researcher news SMU In The News Subfeature

New psychological study: Teaching people to experience and recognize joy

DALLAS (SMU) – Researchers at SMU and UCLA are enrolling subjects for a five-year study of a treatment for a psychological condition known as anhedonia – the inability to find pleasure in any aspect of life. A grant of approximately $4 million from the National Institute of Mental Health will allow professors Alicia Meuret and Thomas Ritz at SMU and Michelle G. Craske at UCLA to study the effectiveness of their treatment in 168 people suffering from this very specific symptom.

Professor Alicia Meuret
Professor Alicia Meuret

“The goal of this novel therapeutic approach is to train people to develop psychological muscle memory – to learn again how to experience joy and identify that experience when it occurs,” said Meuret, professor of psychology and director of SMU’s Anxiety and Depression Research Center. “Anhedonia is an aspect of depression, but it also is a symptom that really reaches across psychiatric and non-psychiatric disorders. It’s the absence or the lack of experiencing rewards.”

People suffering from depression often report feeling down or blue, loss of appetite and having difficulty sleeping or concentrating, all described generally as “negative affect.” Meuret explained that there is another other side to depression – the reduction of all that is positive. This reveals itself in someone who says he or she is not especially anxious or depressed, but nothing gives them joy anymore.

“They don’t feel motivated to do anything, and when they do things that formerly gave them pleasure, they just don’t enjoy them anymore,” Meuret said. “We call that a deficit in the reward system – a reduction to reward sensitivity.”

Historically, treatments for affective disorders such as anxiety and depression have been aimed at reducing negative affect, Meuret said.  Over the next five years, Meuret, Ritz and Craske will treat 168 people using a type of cognitive behavioral therapy aimed at teaching people to seek out and recognize the positive aspects of life – increasing their sensitivity to reward. They will compare their results with a more traditional approach of treating the negative affect side of their problems.

Professor Thomas Ritz
Professor Thomas Ritz

The monitoring of treatment success will include simple biomarkers of enjoyment. “The heart beats faster in joy, something that has been shown to be absent in anhedonia,” said Ritz, an SMU professor of psychology who specializes in studying the relationship between biology and psychology in affective disorders and chronic disease. Other measures will capture immune activity, which is important as an indicator of long-term health.

Clinical psychology graduate students working on the project are Juliet Kroll, Divya Kumar, Natalie Tunnell, Anni Hasration, Andres Roques and Rebecca Kim, a recent SMU alumna, who will coordinate the day-to-day administration of the project.

Those interested in participating in the study may phone Rebecca Kim at 214-768-2188 or fill out the pre-screen form here.

The NIMH-funded study will follow the training framework of an SMU-UCLA pilot study conducted from 2014-2018:

  • The first half of the treatments are targeted at changing behavior, using strategies where the patient learns to seek out pleasant activities that they have previously enjoyed. Scheduled “homework” records that they list their mood before and after the activity, savoring the pleasurable moments in these activities. When resuming a session, the patient recalls the activity as if experiencing it in real time, such as, “I see Amy. I feel a connection with her. We walk on the street, and I can see the leaves changing.”
  • Cognitive training provides exercises that identify the positive aspects of various activities, taking responsibility for those activities and imagining what they would feel like.
  • The last module is compassion training, helping the patient to again learn to share love and kindness with another person, cultivating gratitude and generosity and learning to generate and savor positive feelings in the moment.

“Rather than saying to our patients, ‘Let me help you feel less bad,’ we are saying, ‘Let me help you re-learn how to feel good,” Meuret said.  “It’s very rewarding as a researcher psychologist that these patients can feel again – feel something positive.  I think there’s nothing worse than losing this sense of reward.”

Categories
Earth & Climate Feature Fossils & Ruins Global Learning & Education Plants & Animals SMU In The News Student researchers Subfeature

New Smithsonian Exhibit Reflects the Passion of SMU Professor and an Army of Student Fossil Hounds

Sea Monsters Unearthed: Life in Angola’s Ancient Seas opens Nov. 9 at National Museum of Natural History

DALLAS (SMU October 15, 2018) – Once the exhibit opens, “Sea Monsters Unearthed: Life in Angola’s Ancient Seas” will allow visitors to visually dive into the cool waters off the coast of West Africa as they existed millions of years ago when the continents of Africa and South America were drifting apart. It’s a unique opportunity to examine fossils of ancient marine reptiles and learn about the forces that continue to mold life both in out of the ocean.

But the back story is just as fascinating: SMU Emeritus Professor of Paleontology Louis Jacobs and his SMU colleague Michael Polcyn forged a partnership with collaborators in Angola, Portugal and the Netherlands to explore and excavate Angola’s rich fossil history, while laying the groundwork for returning the fossils to the West African nation. Back in Dallas Jacobs and Polcyn, director of the University’s Digital Earth Sciences Lab, and research associate Diana Vineyard went to work over a period of 13 years with a small army of SMU students to prepare the fossils excavated by Projecto PaleoAngola.

The result is a dynamic exhibit opening Nov. 9 in the Smithsonian’s National Museum of Natural History featuring large vertebrate marine reptiles from the Cretaceous Period — mosasaurs, marine turtles and plesiosaurs. This exhibit will mark the first time Angolan fossils of colossal Cretaceous marine reptiles will be on public display.

“It turns out that Angola is the best place on the surface of the earth to see the rocks that reflect and show the opening of the South Atlantic and the split between South America and Africa,” Jacobs said. But the war of independence in Angola that began in 1961 and ended (after civil war) in 2002 effectively prevented scientists from working this rich fossil zone for nearly 40 years after continental drift and plate tectonics became accepted scientific theory.

When Jacobs and the team arrived to begin digging on the coast of Angola in 2005, they were first on the scene to record this fascinating record of sea life that existed as the South Atlantic Ocean grew between two drifting continents.

SMU students did the important, time-consuming lab work

Over the past 13 years, the fossils were shipped back to Dallas, where over 100 undergraduate students have worked in basement laboratories to painstakingly clean and preserve the fossils. Some were paleontology students, most were not – but they seem to share an appreciation for their unique role in sharing new knowledge.

“Getting fossils out of rocks is a time consuming, labor-intensive operation,” Jacobs said. “But every time a student removes a grain of sand off a fossil, they have the excitement of seeing ancient life that no one else in the world has ever seen. On top of that, these fossils are going on exhibit at the Smithsonian and then back to their own homeland. That gives our students an opportunity that they simply could not get anywhere else. And what’s not to like about that?”

The Smithsonian exhibit, made possible by the Sant Ocean Hall Endowment fund, will immerse visitors in a marine environment from the Cretaceous Period, which began about 145 million years ago and ended about 66 million years ago. It features lively animations and vivid paleoart murals of life beneath the waves courtesy of natural history artist (and longtime Jacobs collaborator) Karen Carr. The exhibit brings to life 11 authentic fossils from Angola’s ancient seas, full-size fossil reconstructions of a mosasaur and a marine turtle, as well as 3-D scanned replicas of mosasaur skulls. Photomurals and video vignettes will take visitors to field sites along Angola’s modern rugged coast, where Projecto PaleoAngola scientists unearthed the fossil remains from this lost world.

“Because of our planet’s ever-shifting geology, Angola’s coastal cliffs contain the fossil remains of marine creatures from the prehistoric South Atlantic,” said Kirk Johnson, the Sant Director of the National Museum of Natural History. “We are honored by the generosity of the Angolan people for sharing a window into this part of the Earth’s unfolding story with our visitors.”

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world. For more information, visit SMU on its website and on Facebook and Twitter.

About the National Museum of Natural History

The National Museum of Natural History is connecting people everywhere with Earth’s unfolding story. The museum is one of the most visited natural history museums in the world with approximately 7 million annual visitors from the U.S. and around the world. Opened in 1910, the museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It is open daily from 10 a.m. to 5:30 p.m. (closed Dec. 25). Admission is free. For more information, visit the museum on its website and on Facebook and Twitter.

In the words of smu students and graduates who sorted, cleaned and preserved fossils for Projecto Paleoangola

Pictured (L to R): Yasmin Jackson, Tania Doblado Speck, Harrison Schumann and Evan Snyder

Evan Snyder (SMU 2019)

“This experience allowed me to work on a project far bigger than myself. Exhibits just like this one excited me as a young child and led to my study of science. I’d love to think that my work will have the same impact on kids today. Working on this project also taught me how to work on challenging and stressful tasks with the right balance of confidence and care to meet deadlines with quality work.”

Yasmin Jackson (SMU 2019)

“I was able to go to the Smithsonian for the first time through this project. I really liked being able to see all of the different exhibits that are currently in the museum and imagine what our exhibit will be like in the midst of all of it.”

Harrison Schuman (SMU 2019)

“Dr. Jacobs is an inspiring individual to be around. Despite being a world-class expert in paleontology, he made himself very approachable and was always personally invested in all of the students working on the project. This kind of attitude encourages students like me to pursue careers in science.”

Alexandra Lippas (SMU 2011)

“It is because of Dr. Jacobs that I was able to be a part of this project. He encouraged students from other branches of science to work on this study. I think it demonstrates that different perspectives can lead to great discovery.”

Connor Flynn (SMU 2014)

“My time in the lab will be a source of stories for years to come and a point of pride for a lifetime. Its lessons in patience, care and passion for the labor will never be forgotten. Dr. Jacobs’ words ‘There’s nothing so broken you can’t fix it,’ carried me through more lab accidents than i care to admit — both at SMU and beyond.”

Jennifer Welch (SMU 2019)

“Dr. Jacobs is so incredibly smart, I could point out any part of the vertebrae and he would tell me what it’s for, why it was there, how that impacted the life of the animal and the stories that told about the land where the animal lived.”

Stephen Tyler Armstrong (SMU 2012)

“As an engineering major, this project exposed me to areas of research and career paths I would otherwise not encountered. It was really interesting to work so closely with those conducting the research to learn about a subject outside of my realm.”

For more information about undergraduate students working in SMU’s earth sciences labs.

Categories
Culture, Society & Family Learning & Education Researcher news Subfeature

Letting kids shape how they learn algebra

SMU math educator Candace Walkington will use a $1 million NSF grant to help expand tool that allows kids to create and solve algebra problems related to their own interests.

Read more about Professor Walkington’s research in this Forbes article.

Categories
Feature Learning & Education Researcher news Subfeature Technology

SMU Engineering Profs Receive NSF Grant to Build Multi-Dimensional Drone Communication Framework

DALLAS (SMU) – Faculty and students in SMU’s Lyle School of Engineering will use an $849,839 grant from the National Science Foundation to improve unmanned aerial vehicle (drone) communications, with the potential to enable the next wave of drone applications ranging from delivery of consumer goods to supporting autonomous combat and search and rescue efforts.

The award to Joseph Camp and Dinesh Rajan in the Electrical Engineering Department begins funding their work Oct. 1, 2018 and will extend through Sept. 30, 2021. The objective is to build infrastructure for Multi-Dimensional Drone Communications Infrastructure (MuDDI) to address research issues related to three-dimensional (3-D) connectivity, distributed antennas across a drone swarm and 3-D swarm formations that optimize the transmission to intended receivers.

MuDDI will allow the SMU team to rent and equip indoor space relatively close to campus for repeatable experimentation.  “This will allow us to run our experiments in a controlled environment with the ability to precisely measure the wireless transmission characteristics,” Camp said.

The project will include:

  • Building a programmable drone platform that can dynamically switch across multiple antennas with various positions and orientations on the drone that increase signal from a particular drone to direct transmissions across the extremes of physical dimensions.
  • Experimental analysis of the various channel feedback mechanisms that have been identified but have yet to be evaluated on drones with in-flight vibrations and mobility patterns and various swarm formations.
  • Constructing and incorporating large-scale antenna arrays over the surface of the ceiling and surrounding walls in the test facility to capture various multiple-input/multiple-output (MIMO) transmission patterns of a single drone seeking 3-D connectivity, distributed drone swarm creating various formations, and a massive-MIMO ground station.
  • Integrating a massive-MIMO control station that can direct transmissions to, and track the mobility of, in-flight systems enabling research on the various beam widths and multi-user beam patterns that may be simultaneously allocated among large antenna arrays.

“When you start to think about drones, the communication issues are not 2D anymore – they are 3D,” Camp said. “When we built a drone platform at SMU in Taos last summer, we put the antennas on top of the drone so they wouldn’t interfere with landing gear. What we then found out was when the drone got to a certain height, it could only communicate from side-to-side, not directly below it.”

 

“When drones are required to talk to other drones, the communication, by definition, can be in any direction at any point in time,” Camp said. “We make the assumption that radios are expensive in terms of power, weight, and cost and that a switching mechanism from these radios to a greater number of antennas could significantly lower the resource consumption of a drone communications platform. In addition, if carefully designed, multiple drones could team to form a large antenna array to improve communication range.”

The research being directed by Camp and Rajan could have far-reaching applications for the future of UAV communications, including increasing Internet connectivity during natural disasters as well as commercial and military applications, all of which require coordination of multiple entities across various altitudes, from in-flight to ground-based stations. Potential applications also include deploying WiFi in underserved, low-income neighborhoods.

A warehouse in close proximity to campus currently is being outfitted to the specific dimensions required for faculty and students to analyze data and applications for this project. In addition, interested students can join Camp each June at SMU’s campus in Taos, NM, where he teaches an “Introduction to Drone Communications” class where students learn the fundamentals of experimentation research for the purposes of
design novel measurement studies for drone communications.

Camp is an Associate Professor of Electrical Engineering and Computer Science and Engineering in SMU’s Lyle School of Engineering. He joined the SMU faculty in 2009 after receiving his Ph.D. in ECE from Rice University. He received the National Science Foundation CAREER Award in 2012.

Rajan is Cecil and Ida Green Endowed Professor of Engineering. He has served as professor and chair of the Electrical Engineering Department in the Lyle School, and received an NSF CAREER Award in 2006. He joined SMU in 2002 and earned his Ph.D. in electrical and computer engineering from Rice University.

About SMU

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls approximately 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools.

About the Bobby B. Lyle School of Engineering

SMU’s Bobby B. Lyle School of Engineering, founded in 1925, is one of the oldest engineering schools in the Southwest. The school offers eight undergraduate and 29 graduate programs, including master’s and doctoral degrees, through the departments of Civil and Environmental Engineering; Computer Science and Engineering; Electrical Engineering; Engineering Management, Information, and Systems; and Mechanical Engineering. Lyle students participate in programs in the unique Deason Innovation Gym, providing the tools and space to work on immersion design projects and competitions to accelerate leadership development and the framework for innovation; the Hart Center for Engineering Leadership, helping students develop nontechnical skills to prepare them for leadership in diverse technical fields; the Caruth Institute for Engineering Education, developing new methodologies for incorporating engineering education into K-12 schools; and the Hunter and Stephanie Hunt Institute for Engineering and Humanity, combining technological innovation with business expertise to address global poverty.

Categories
Energy & Matter Feature Global Learning & Education SMU In The News Technology

SMU Physicist Explains Significance of Latest Cern Discovery Related to the Higgs Boson

Stephen Sekula says observation of the Higgs particle transforming into bottom quarks confirms the 20th-century recipe for mass

DALLAS (SMU) – Scientists conducting physics experiments at CERN’s Large Hadron Collider have announced the discovery of the Higgs boson transforming, as it decays, into subatomic particles called bottom quarks, an observation that confirms that the “Standard Model” of the universe – the 20th century recipe for everything in the known physical world – is still valid.

This new discovery is a big step forward in the quest to understand how the Higgs enables fundamental particles to acquire mass. Many scientists suspect that the Higgs could interact with particles outside the Standard Model, such as dark matter – the unseen matter that does not emit or absorb light, but may make up more than 80 percent of the matter in the universe.

After several years of work experiments at both ATLAS and CMS – CERN detectors that use different types of technology to investigate a broad range of physics –have demonstrated that 60 percent of Higgs particles decay in the same way. By finding and mapping the Higgs boson interactions with known particles, scientists can simultaneously probe for new phenomena.

SMU played important roles in the analysis announced by CERN Aug. 28, including:

  • Development of the underlying analysis software framework (Stephen Sekula, SMU associate professor of physics was co-leader of the small group that included SMU graduate student Peilong Wang and post-doctoral researcher Francesco Lo Sterzo, that does this for the larger analysis for 2017-2018)
  • Studying background processes that mimic this Higgs boson decay, reducing measurement uncertainty in the final result.

“The Standard Model is the recipe for everything that surrounds us in the world today.  Sekula explained. “It has been tested to ridiculous precision. People have been trying for 30-40 years to figure out where or if the Standard Model described matter incorrectly. Like any recipe you inherit from a family member, you trust but verify. This might be grandma’s favorite recipe, but do you really need two sticks of butter? This finding shows that the Standard Model is still the best recipe for the Universe as we know it.”

Scientists would have been intrigued if the Standard Model had not survived this test, Sekula said, because failure would have produced new knowledge.

“When we went to the moon, we didn’t know we’d get Mylar and Tang,” Sekula said. “What we’ve achieved getting to this point is we’ve pushed the boundaries of technology in both computing and electronics just to make this observation. Technology as we know it will continue to be revolutionized by fundamental curiosity about why the universe is the way it is.

“As for what we will get from all this experimentation, the honest answer is I don’t know,” Sekula said. “But based on the history of science, it’s going to be amazing.”

About CERN

At CERN, the European Organization for Nuclear Research, physicists and engineers are probing the fundamental structure of the universe. They use the world’s largest and most complex scientific instruments to study the basic constituents of matter – the fundamental particles. The particles are made to collide together at close to the speed of light. The process gives the physicists clues about how the particles interact, and provides insights into the fundamental laws of nature. Founded in 1954, the CERN laboratory sits astride the Franco-Swiss border near Geneva.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas.  SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.