Categories
Culture, Society & Family Feature Health & Medicine Learning & Education Mind & Brain Videos

People who deeply grasp the pain or happiness of others also process music differently in the brain

Higher empathy people appear to process music like a pleasurable proxy for a human encounter — in the brain regions for reward, social awareness and regulation of social emotions.

People with higher empathy differ from others in the way their brains process music, according to a study by researchers at Southern Methodist University, Dallas and UCLA.

The researchers found that compared to low empathy people, those with higher empathy process familiar music with greater involvement of the reward system of the brain, as well as in areas responsible for processing social information.

“High-empathy and low-empathy people share a lot in common when listening to music, including roughly equivalent involvement in the regions of the brain related to auditory, emotion, and sensory-motor processing,” said lead author Zachary Wallmark, an assistant professor in the SMU Meadows School of the Arts.

But there is at least one significant difference.

Highly empathic people process familiar music with greater involvement of the brain’s social circuitry, such as the areas activated when feeling empathy for others. They also seem to experience a greater degree of pleasure in listening, as indicated by increased activation of the reward system.

“This may indicate that music is being perceived weakly as a kind of social entity, as an imagined or virtual human presence,” Wallmark said.

Researchers in 2014 reported that about 20 percent of the population is highly empathic. These are people who are especially sensitive and respond strongly to social and emotional stimuli.

The SMU-UCLA study is the first to find evidence supporting a neural account of the music-empathy connection. Also, it is among the first to use functional magnetic resonance imaging (fMRI) to explore how empathy affects the way we perceive music.

The new study indicates that among higher-empathy people, at least, music is not solely a form of artistic expression.

“If music was not related to how we process the social world, then we likely would have seen no significant difference in the brain activation between high-empathy and low-empathy people,” said Wallmark, who is director of the MuSci Lab at SMU, an interdisciplinary research collective that studies — among other things — how music affects the brain.

“This tells us that over and above appreciating music as high art, music is about humans interacting with other humans and trying to understand and communicate with each other,” he said.

This may seem obvious.

“But in our culture we have a whole elaborate system of music education and music thinking that treats music as a sort of disembodied object of aesthetic contemplation,” Wallmark said. “In contrast, the results of our study help explain how music connects us to others. This could have implications for how we understand the function of music in our world, and possibly in our evolutionary past.”

The researchers reported their findings in the peer-reviewed journal Frontiers in Behavioral Neuroscience, in the article “Neurophysiological effects of trait empathy in music listening.”

The co-authors are Choi Deblieck, with the University of Leuven, Belgium, and Marco Iacoboni, UCLA. The research was carried out at the Ahmanson-Lovelace Brain Mapping Center at UCLA.

“The study shows on one hand the power of empathy in modulating music perception, a phenomenon that reminds us of the original roots of the concept of empathy — ‘feeling into’ a piece of art,” said senior author Marco Iacoboni, a neuroscientist at the UCLA Semel Institute for Neuroscience and Human Behavior.

“On the other hand,” Iacoboni said, “the study shows the power of music in triggering the same complex social processes at work in the brain that are at play during human social interactions.”

Comparison of brain scans showed distinctive differences based on empathy
Participants were 20 UCLA undergraduate students. They were each scanned in an MRI machine while listening to excerpts of music that were either familiar or unfamiliar to them, and that they either liked or disliked. The familiar music was selected by participants prior to the scan.

Afterward each person completed a standard questionnaire to assess individual differences in empathy — for example, frequently feeling sympathy for others in distress, or imagining oneself in another’s shoes.

The researchers then did controlled comparisons to see which areas of the brain during music listening are correlated with empathy.

Analysis of the brain scans showed that high empathizers experienced more activity in the dorsal striatum, part of the brain’s reward system, when listening to familiar music, whether they liked the music or not.

The reward system is related to pleasure and other positive emotions. Malfunction of the area can lead to addictive behaviors.

Empathic people process music with involvement of social cognitive circuitry
In addition, the brain scans of higher empathy people in the study also recorded greater activation in medial and lateral areas of the prefrontal cortex that are responsible for processing the social world, and in the temporoparietal junction, which is critical to analyzing and understanding others’ behaviors and intentions.

Typically, those areas of the brain are activated when people are interacting with, or thinking about, other people. Observing their correlation with empathy during music listening might indicate that music to these listeners functions as a proxy for a human encounter.

Beyond analysis of the brain scans, the researchers also looked at purely behavioral data — answers to a survey asking the listeners to rate the music afterward.

Those data also indicated that higher empathy people were more passionate in their musical likes and dislikes, such as showing a stronger preference for unfamiliar music.

Precise neurophysiological relationship between empathy and music is largely unexplored
A large body of research has focused on the cognitive neuroscience of empathy — how we understand and experience the thoughts and emotions of other people. Studies point to a number of areas of the prefrontal, insular, and cingulate cortices as being relevant to what brain scientists refer to as social cognition.

Studies have shown that activation of the social circuitry in the brain varies from individual to individual. People with more empathic personalities show increased activity in those areas when performing socially relevant tasks, including watching a needle penetrating skin, listening to non-verbal vocal sounds, observing emotional facial expressions, or seeing a loved one in pain.

In the field of music psychology, a number of recent studies have suggested that empathy is related to intensity of emotional responses to music, listening style, and musical preferences — for example, empathic people are more likely to enjoy sad music.

“This study contributes to a growing body of evidence,” Wallmark said, “that music processing may piggyback upon cognitive mechanisms that originally evolved to facilitate social interaction.” — Margaret Allen, SMU

Categories
Earth & Climate Events Feature Fossils & Ruins Learning & Education Plants & Animals Researcher news Student researchers

Ancient “Sea Monsters” Reveal How the Ever-Changing Planet Shapes Life, Past and Present

Never-Before-Seen Fossils From Angola Bring a Strange Yet Familiar Ocean Into View

The Smithsonian’s National Museum of Natural History will open a new exhibition Nov. 9, 2018 revealing how millions of years ago, large-scale natural forces created the conditions for real-life sea monsters to thrive in the South Atlantic Ocean basin shortly after it formed. “Sea Monsters Unearthed: Life in Angola’s Ancient Seas” will offer visitors the opportunity to dive into Cretaceous Angola’s cool coastal waters, examine the fossils of striking marine reptiles that once lived there and learn about the forces that continue to mold life in the ocean and on land.

Over 134 million years ago, the South Atlantic Ocean basin did not yet exist. Africa and South America were one contiguous landmass on the verge of separating. As the two continents drifted apart, an entirely new marine environment — the South Atlantic — emerged in the vast space created between them. This newly formed ocean basin would soon be colonized by a dizzying array of ferocious predators and an abundance of other lifeforms seizing the opportunity presented by a new ocean habitat.

“Because of our planet’s ever-shifting geology, Angola’s coastal cliffs contain the fossil remains of marine creatures from the prehistoric South Atlantic,” said Kirk Johnson, the Sant Director of the museum. “We are honored by the generosity of the Angolan people for sharing a window into this part of the Earth’s unfolding story with our visitors.”

For the first time, Angolan fossils of colossal Cretaceous marine reptiles will be on public display. Through Projecto PaleoAngola — a collaboration between Angolan, American, Portuguese and Dutch researchers focused on Angola’s rich fossil history — paleontologists excavated and studied these fossils, which were then prepared for the exhibition by a team of scientists and students at Southern Methodist University (SMU) in Dallas. The exhibition was made possible by the Sant Ocean Hall Endowment Fund.

“Fossils tell us about the life that once lived on Earth, and how the environments that came before us evolve over time,” said Louis Jacobs, professor emeritus of paleontology at SMU and collaborating curator for the exhibition. “Our planet has been running natural experiments on what shapes environments, and thereby life, for millions of years. If it weren’t for the fossil record, we wouldn’t understand what drives the story of life on our planet.”

The exhibition will immerse visitors in this Cretaceous environment with lively animations and vivid paleoart murals of life beneath the waves — courtesy of natural history artist Karen Carr — that bring to life 11 authentic fossils from Angola’s ancient seas, full-size fossil reconstructions of a mosasaur and an ancient sea turtle, as well as 3-D scanned replicas of mosasaur skulls. Photomurals and video vignettes will transport visitors to field sites along Angola’s modern rugged coast, where Projecto PaleoAngola scientists unearth the fossil remains from this lost world.

A Strange but Familiar Ocean
“Sea Monsters Unearthed” paints the picture of a flourishing ocean environment that in some ways will look strange to modern eyes, yet still bears striking similarities to today’s marine ecosystems.

Peculiar plesiosaurs — massive reptiles with long necks, stout bodies and four large flippers — swam alongside 27-foot-long toothy marine lizards called mosasaurs and more familiar creatures like sea turtles. From surprising mosasaur stomach contents to the one of the oldest known sea turtles found in Africa, fossils and reconstructions of these species will offer visitors a fuller picture of their remarkable life histories and the ecosystems they were a part of.

The exhibition will also explore deeper similarities across the ecology and anatomy of ocean animals then and now. After the marine reptiles that dominated these waters went extinct 66 million years ago, modern marine mammals would not only later replace them as top predators in the world’s ocean, but also converge on many of the same body shapes and survival strategies.

The Forces That Shape Life, Then and Now
This unique period in Earth’s history reveals how key geologic and environmental forces contributed to the early establishment and evolution of life in the South Atlantic. As Africa and South America drifted apart and a new ocean basin formed, trade winds blowing along the new Angolan coastline created the conditions for upwelling, an ocean process that drives the circulation of nutrients from the deep ocean to its surface. These nutrients in turn jump-started the food web that attracted the ferocious marine reptile predators featured throughout the exhibition.

Just as tectonic forces helped create this Cretaceous marine environment, they also shaped the arid coastal cliffs where the fossils are found today. Starting 45,000 years ago, a geologic process called uplift caused Earth’s crust to bulge along Angola’s coast, lifting part of the seafloor out of the water — and along with it, the layers upon layers of fossil-filled rocks where Projecto PaleoAngola scientists work.

Though humans do not operate on a tectonic scale, their actions also have major impacts on ocean life. Humans are now the ocean’s top predators, with one-fifth of the world’s population relying on food from upwelling-based ecosystems. Scientists caution that with such great pressure on modern upwelling-based fisheries, overfishing could change the future of life in the ocean by threatening fish populations, marine ecosystems and even human health. — National Museum of Natural History

About the National Museum of Natural History
The National Museum of Natural History is connecting people everywhere with Earth’s unfolding story. The museum is one of the most visited natural history museums in the world with approximately 7 million annual visitors from the U.S. and around the world. Opened in 1910, the museum is dedicated to maintaining and preserving the world’s most extensive collection of natural history specimens and human artifacts. It is open daily from 10 a.m. to 5:30 p.m. (closed Dec. 25). Admission is free. For more information, visit the museum on its website and on Facebook and Twitter.

Categories
Events Feature Learning & Education Researcher news Slideshows Student researchers Videos

SMU students share their research at SMU Research Day 2018

SMU Research Day 2018 featured posters and abstracts from 160 student entrants who have participated this academic year in faculty-led research, pursued student-led projects, or collaborated on team projects with graduate students and faculty scientists.

SMU strongly encourages undergraduate students to pursue research projects as an important component of their academic careers, while mentored or working alongside SMU graduate students and faculty.

Students attack challenging real-world problems, from understanding the world’s newest particle, the Higgs Boson, or preparing mosasaur fossil bones discovered in Angola, to hunting for new chemical compounds that can fight cancer using SMU’s high performance ManeFrame supercomputer.

A highlight for student researchers is SMU Research Day, organized and sponsored by the Office of Research and Graduate Studies and which was held this year on March 28-29 in the Hughes-Trigg Student Center.

The event gives students the opportunity to foster communication between students in different disciplines, present their work in a professional setting, and share the outstanding research conducted at SMU.

Find out the winners of the poster session from the SMU Office of Graduate Studies.

Categories
Culture, Society & Family Feature Learning & Education Mind & Brain Student researchers Technology

SMU student to share innovative texting app at SXSW Red Bull Launch Institute

Users earn rewards with the “Just Drive” app designed to prevent distracted driving.

Neha Husein gripped her steering wheel as her car jolted forward, hit from behind on one of Dallas’ busiest and most dangerous freeways. Shaken, but not injured, the high school senior surveyed the significant damage to her car. The cause of the crash? The driver behind her was texting while driving.

The 2014 collision was the SMU junior’s inspiration to develop a solution to stop drivers from texting while driving, a practice that killed 455 Texans and played a role in 109,660 crashes in Texas in 2016. Her smart-phone app, “Just Drive,” awards points to drivers who lock their phones while driving. Those points can then be redeemed for coupons or free food, drinks or merchandise.

Husein is one of six college entrepreneurs selected to participate March 10 in the Red Bull Launch Institute at Austin’s South by Southwest Interactive Festival. She will meet with industry leaders and other entrepreneurs to further develop and amplify her project. The institute is scheduled from 3 to 6:30 p.m. at Palazzo Lavaca, 1614 Lavaca St., Austin.

She’s not being judgmental. Everyone has texted while driving, Husein says.

“We are used to multitasking, and sitting in traffic gets boring,” she says.

But the marketing and human rights major believes positive reinforcement can change behavior. Rewards are motivating to millennials like Husein. According to the Texas Department of Transportation, drivers age 16 to 34 are most likely to text while driving, but Husein is betting the app will appeal to all ages.

“Expecting incentives is a generational thing, but it’s a human thing too,” she says. “People enjoy rewards.”

Husein first presented “Just Drive” at SMU’s October 2017 Big Ideas pitch contest. She won $1,000 for her 90-second pitch and used it to create a wireframe app mock-up. The Big Ideas pitch contest is part of SMU’s Engaged Learning program, a campus wide initiative designed to enhance student learning by connecting a personal passion to academic learning and turning it into a personal project. Faculty mentorship is a key part of the Engaged Learning program.

Husein’s mentor, SMU law professor Keith Robinson, is a specialist in patent, intellectual property and technology law and co-directs the Tsai Center for Law, Science and Innovation in SMU’s Dedman School of Law. He also teaches a class to law students on designing legal apps.

“I like people who show initiative and are willing to bet on themselves,” says Robinson, who meets weekly with Husein to discuss intellectual property issues and trademark application. “Neha has developed an app for a relatable problem, one that can save lives.”

Husein is a Carrollton, Texas, native who grew up with an entrepreneur mindset. She remembers manning a toy cash register alongside her father at his convenience store. He was on hand in February 2018 to see his daughter present her business plan at the second stage of SMU’s Big Ideas competition – and win $5,000 in start-up funds.

“Just Drive is a perfect combination of my interests in human rights and marketing,” Husein says. “It combines business with a philanthropic cause.”

She plans to launch the “Just Drive” app in September, 2018. — Nancy George, SMU

Categories
Culture, Society & Family Economics & Statistics Learning & Education Researcher news SMU In The News

Inside Higher Ed: Study Finds Deferred Action for Childhood Arrivals Increased Educational Attainment

It also cut teen pregnancy.

Journalist Elizabeth Redden with the website Inside Higher Ed covered the research of SMU government policy expert Elira Kuka. Her working paper, “Do Human Capital Decisions Respond to the Returns to Education? Evidence from DACA,” was released in February by the National Bureau of Economic Research.

Kuka, an assistant professor in the SMU Department of Economics, and her colleagues found that the Deferred Action for Childhood Arrivals program under fire by the Trump Administration has significantly changed the lives of young people who came to the United States illegally as children.

Kuka’s research focus is on understanding how government policy effects individual behavior and well-being, the extent to which it provides social insurance during times of need, and its effectiveness in alleviation of poverty and inequality.

Her current research topics include the potential benefits of the Unemployment Insurance (UI) program, the protective power of the U.S. safety net during recessions and various issues in academic achievement.

Read the full story.

EXCERPT:

By Elizabeth Redden
Inside Higher Ed

A new working paper released by the National Bureau of Economic Research argues that the Deferred Action for Childhood Arrivals program had a “significant impact” on the educational and life decisions of undocumented immigrant youth, resulting in a 45 percent decrease in teen birth rates, a 15 percent increase in high school graduation rates and a 20 percent increase in college enrollment rates. The researchers found differential effects by gender, with most of the gains in college enrollment concentrated among women. For men alone, the effect of DACA on college enrollment was not statistically significant.

DACA, which was established by former president Obama in 2012, gave certain undocumented immigrant students who were brought to the U.S. illegally as children temporary protection from deportation and authorization to work in the U.S. DACA recipients have faced uncertainty over their future since September, when President Trump announced plans to end the program after six months.

“Our main conclusion from this paper is that future labor market opportunities or just opportunities in general really matter,” said Elira Kuka, one of the authors of the paper, titled “Do Human Capital Decisions Respond to the Returns to Education? Evidence From DACA,” and an assistant professor of economics at Southern Methodist University.

“People are worried, ‘Why are there some populations that are not going to high school and not investing in education?’” Kuka said. “Maybe the reason is they don’t see improved opportunities — but if they see improved labor outcomes they will actually invest in their education.”

Read the full story.