Categories
Earth & Climate Energy & Matter Researcher news Technology

West Virginia is hot bed for geothermal resources: Green energy source in coal country, says Google-funded SMU research

New research produced by Southern Methodist University’s Geothermal Laboratory, funded by a grant from Google.org, suggests that the temperature of the Earth beneath the state of West Virginia is significantly higher than previously estimated and capable of supporting commercial baseload geothermal energy production.

Geothermal energy is the use of the Earth’s heat to produce heat and electricity. “Geothermal is an extremely reliable form of energy, and it generates power 24/7, which makes it a baseload source like coal or nuclear,” said David Blackwell, Hamilton Professor of Geophysics and Director of the SMU Geothermal Laboratory.

The SMU Geothermal Laboratory has increased its estimate of West Virginia’s geothermal generation potential to 18,890 megawatts, assuming a conservative 2 percent thermal recovery rate. The new estimate represents a 75 percent increase over estimates in MIT’s 2006 “The Future of Geothermal Energy” report and exceeds the state’s total current generating capacity, primarily coal based, of 16,350 megawatts.

Researchers from SMU’s Geothermal Laboratory will present a detailed report on the discovery at the 2010 Geothermal Resources Council annual meeting in Sacramento, Oct. 24-27. Summary of the report.

New heat discovered after adding data points to geologic model
The West Virginia discovery is the result of new detailed mapping and interpretation of temperature data derived from oil, gas, and thermal gradient wells — part of an ongoing project to update the Geothermal Map of North America that Blackwell produced with colleague Maria Richards in 2004. Temperatures below the earth almost always increase with depth, but the rate of increase (the thermal gradient) varies due to factors such as the thermal properties of the rock formations.

“By adding 1,455 new thermal data points from oil, gas, and water wells to our geologic model of West Virginia, we’ve discovered significantly more heat than previously thought,” Blackwell said. “The existing oil and gas fields in West Virginia provide a geological guide that could help reduce uncertainties associated with geothermal exploration and also present an opportunity for co-producing geothermal electricity from hot waste fluids generated by existing oil and gas wells.”

Eastern region of West Virginia hot enough for commercial production
The high temperature zones beneath West Virginia revealed by the new mapping are concentrated in the eastern portion of the state (Figure 1). Starting at depths of 4.5 km (greater than 15,000 feet), temperatures reach over 150°C (300°F), which is hot enough for commercial geothermal power production.

Traditionally, commercial geothermal energy production has depended on high temperatures in existing subsurface reservoirs to produce electricity, requiring unique geological conditions found almost exclusively in tectonically active regions of the world, such as the western United States.

New technologies, drilling methods for wider range of geologic conditions
Newer technologies and drilling methods can be used to develop resources in wider ranges of geologic conditions. Three non-conventional geothermal resources that can be developed in areas with little or no tectonic activity or volcanism such as West Virginia are:

  • Low-Temperature Hydrothermal — Energy is produced from areas with naturally occurring high fluid volumes at temperatures ranging from 80°C (165°F) to 150°C (300°F) using advanced binary cycle technology. Low-Temperature systems have been developed in Alaska, Oregon, and Utah.
  • Geopressure and Co-produced Fluids Geothermal — Oil and/or natural gas produced together with hot geothermal fluids drawn from the same well. Geopressure and Co-produced Fluids systems are currently operating or under development in Wyoming, North Dakota, Utah, Louisiana, Mississippi, and Texas.
  • Enhanced Geothermal Systems (EGS) — Areas with low natural rock permeability but high temperatures of more than 150°C (300°F) are “enhanced” by injecting fluid and other reservoir engineering techniques. EGS resources are typically deeper than hydrothermal and represent the largest share of total geothermal resources. EGS is being pursued globally in Germany, Australia, France, the United Kingdom, and the U.S. EGS is being tested in deep sedimentary basins similar to West Virginia’s in Germany and Australia.

Next: More geological information needed to refine estimates
“The early West Virginia research is very promising,” Blackwell said, “but we still need more information about local geological conditions to refine estimates of the magnitude, distribution, and commercial significance of their geothermal resource.”

Zachary Frone, an SMU graduate student researching the area said, “More detailed research on subsurface characteristics like depth, fluids, structure and rock properties will help determine the best methods for harnessing geothermal energy in West Virginia.” The next step in evaluating the resource will be to locate specific target sites for focused investigations to validate the information used to calculate the geothermal energy potential in this study.

The team’s work may also shed light on other similar geothermal resources. “We now know that two zones of Appalachian age structures are hot — West Virginia and a large zone covering the intersection of Texas, Arkansas, and Louisiana known as the Ouachita Mountain region,” said Blackwell. “Right now we don’t have the data to fill in the area in between,” Blackwell continued, “but it’s possible we could see similar results over an even larger area.”

Discovery could enhance U.S. energy security
Blackwell thinks the finding opens exciting possibilities for the region. “The proximity of West Virginia’s large geothermal resource to east coast population centers has the potential to enhance U.S. energy security, reduce CO2 emissions, and develop high paying clean energy jobs in West Virginia,” he said.

SMU’s Geothermal Laboratory conducted this research through funding provided by Google.org’s RE<C initiative, which is dedicated to using the power of information and innovation to advance breakthrough technologies in clean energy.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.Kimberly Cobb

Categories
Earth & Climate Energy & Matter Researcher news

SMU Geothermal Lab and DOE host Wyoming geothermal conference

800px-Geothermal_energy_methods.pngThe U.S. Department of Energy’s Rocky Mountain Oilfield Testing Center, RMOTC, in partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory, NREL, and Southern Methodist University Geothermal Laboratory, hosted a two-day “Geothermal in the Oil Field” symposium in Casper, Wyo., Aug. 18-19, 2010.

The event highlighted the application of low-temperature geothermal power production in oil and gas operations and other settings in the western United States.

This first-of-its-kind symposium provided valuable information on this emerging domestic power source. Speakers covered low-temperature projects throughout the western U.S. and provided participants an opportunity to learn about the remarkable potential for power generation using co-produced fluids from existing oil, gas, and industrial infrastructure with minimal additional environmental impacts.

On Day 1, RMOTC hosted field tours of nearby formations at Alcova Reservoir that correlate to the producing formations at NPR-3 and the test site located at the Naval Petroleum Reserve No. 3 (NPR-3) 35 miles north of Casper, Wyoming.

Day 2 was a day of technical presentations and panel discussions by DOE and industry representatives.

To view the list of speakers and presentations, go to http://www.rmotc.doe.gov/symposium.html.

Background information on low-temperature geothermal activities at RMOTC is available at http://www.rmotc.doe.gov/press.html and http://www.rmotc.doe.gov/PDFs/geothermal.pdf.

For more information on the geothermal energy activities taking at NREL please visit http://www.nrel.gov/geothermal/.

NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy LLC.

Categories
Earth & Climate Energy & Matter Researcher news

DOE awards SMU $5.25 million to expand U.S. geothermal production

geothermal-map-of-north-america.jpgThe Geothermal Laboratory at SMU has been awarded $5.25 million by the U.S. Department of Energy to help provide data for the planned National Geothermal Data System.

The grant allocation is part of $338 million in Recovery Act funding that was announced Oct. 29 by DOE Secretary Steven Chu. The funding is intended to help dramatically expand geothermal production in the United States.

800px-Geothermal_energy_methods.pngSMU will work with a diverse team of experts from academia, industry and national labs with experience in conventional hydrothermal geothermal resource assessment, Enhanced Geothermal Systems, oil and gas data, geopressure geothermal and produced water non-conventional geothermal systems in providing the data, including:

  • An expanded and updated version of the SMU Heat Flow database that covers the whole onshore U.S. and offshore regions in the Gulf of Mexico.
  • The Geothermal Resources Council library with over 36K in documents and over 1.3 million pages on geothermal research
  • Extensive information on Enhanced Geothermal System research including legacy data files and the latest developing results of research in the northeastern U.S.
  • Core logs, well logs, and current and legacy geopressure data from the Texas Bureau of Economic Geology covering many states
  • Detailed nationwide data on produced water collected from numerous states’ oil and gas agencies and several federal agencies plus relevant geological, spatial, well bore, injection/disposal, and water well data.

blackwell.jpg
Principal investigators are SMU’s David Blackwell, Hamilton Professor of Geothermal Studies, and Fabian Moerchen of Siemens Corporate Research. The project team also includes Jefferson Tester, the Kroll Professor of Chemical Engineering at Cornell University; William Gosnold, chair of geology and geological engineering at the University of North Dakota; Seiichi Nagihara, associate professor of geosciences at Texas Tech University; John Veil, manager of the water policy program at the Argonne National Laboratory and Martin Kay, president of MLKay Technology LLC.

“The primary benefit of this project is that it will support developers of geothermal power plants by decreasing the costs of the resource identification and the risks inherent in the exploration phase,” Blackwell said. “The project will rescue important data from deterioration or complete loss and provide a set of tools to be used by other parties to submit data to the NGDS.”

A distributed network of databases, NGDS was established by the U.S. Department of Energy to collectively build a system for acquisition, management and maintenance of geothermal and related data.

The SMU Geothermal Lab is hosting its annual conference, “Geothermal Energy Utilization Associated with Oil & Gas Development,” Nov. 3-4 on the Dallas campus. Registration is available at the door. Find more information at the conference web site. — Kim Cobb

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Energy & Matter

Geothermal heat: Will Earth’s “hot rocks” become new “Texas tea”?

Texas, which has been the nation’s largest fossil-fuel producer, also has an abundant supply of another natural resource for a different kind of energy boom: clean, renewable, geothermal energy.

Like the oil and gas beneath Texas, there’s a huge quantity of naturally occurring “hot rocks” underground that could be tapped for geothermal energy to produce electricity, according to new research by SMU scientists. South and East Texas have an abundant supply, say the researchers.

iphone%20feb%205%202008%20058.jpg“There is more than enough heat below our feet to take all the state’s industrial consumption off the existing transmission grid,” says Maria Richards, program coordinator for the SMU Geothermal Laboratory.

Lab researchers recently completed an assessment of geothermal resources in South and East Texas for the Texas State Energy Conservation Office, or SECO. They found enough heat to supply Texas with clean, renewable, affordable electricity for hundreds of years, Richards says. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 and includes Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.
Maria Richards with a driller on an oil rig.

The SMU analysis will be part of The Energy Report, a SECO report on clean and renewable energy resources in Texas. SECO funded the SMU Geothermal Laboratory research with a $200,000 grant. SMU will submit the assessment to SECO later in June.

Currently Texas gets the bulk of its electricity from natural gas-, coal- and nuclear-powered generating plants. But commercial interest in geothermal energy is growing both in the state and nationwide, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU. Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, says Blackwell, who has advised the industry for the past 40 years.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists.

The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact. The MIT study’s authors said geothermal energy is especially attractive because it is widely available, doesn’t have to be stored to supply minimum demand, and has a small footprint with low or no emissions. It is also considered virtually inexhaustible, according to the Geothermal Energy Association.

The MIT study estimated the U.S. geothermal resource base at more than 13 million exajoules, which is a measurement of stored thermal energy. The extractable portion of that is estimated at more than 200,000 exajoules, or about 2,000 times the annual U.S. consumption in 2005 of primary energy, according to the report.

Currently the U.S. has more geothermal generating capacity online than any other country, about 30% of the world’s total, according to the Geothermal Energy Association.

MikePaul%5B1%5D.JPGTexas is uniquely positioned for geothermal development, according to Blackwell and Richards. That’s due in large part to the state’s thousands of existing oil and gas wells that could be developed in various ways to tap geothermal heat.

Pictured right: Michael Paul, SMU director of energy management and engineering, collects temperatures at a field near Corpus Christi

The SMU Geothermal Lab’s research has proven the potential for drawing electricity from low-temperature geothermal sources through “binary” technology. A binary power plant circulates hot groundwater through an existing oil or gas well to heat a secondary fluid. The resulting vapor then drives turbines to generate electricity.

There are thousands of oil and gas wells in Texas that could be economical for geothermal development, Richards says. That’s especially true since the technology can operate concurrently in oil and gas wells, which would significantly reduce the cost of geothermal exploration. Geothermally produced electricity could then offset the power normally required to operate oil-field production units. Additionally, excess electricity could be sold back to the statewide electric transmission grid. Depleted oil and gas wells that are slated for abandonment could again generate revenue when tapped for geothermal production.

SMU’s regional assessment for SECO covered 91 counties. It calculated the geothermal heat under South and East Texas at 921,085 exajoules, giving the state enormous geothermal potential. Anywhere from 2 percent to 10 percent of that is recoverable, depending on the efficiency of the conversion technology and the location of the resource.

“As humans we have no real concept as to how much heat is below our feet,” Richards says. “We feel the sun in our face, and the wind in our hair, but we don’t feel the Earth’s heat through our feet.”

SMU’s researchers analyzed historical temperature data for wells drilled since the early 1990s. Drilling logs for each hole include temperature recordings taken at various depths. The SMU analysis looked at wells ranging from 2,000 feet to 20,000 feet deep. The researchers were surprised that the temperature in some wells ran as hot as 450 degrees Fahrenheit, Richards says.

Wells drilled from 9,000 feet to 14,000 feet deep, with temperatures downhole of 250 degrees or greater, will likely be economical for geothermal energy. They would be sufficiently hot and reasonably close to the surface. In deeper wells, unless they flow naturally, the binary technology would require too much electricity.

The team of SMU Geothermal Laboratory researchers included six graduate and undergraduate students.

“This turned out to be a wonderful project for the students,” Richards says. “With President Barack Obama’s push for more emphasis on science and renewable energy, these are students on the leading edge of that whole process. And they are focused on a project that was funded by the state of Texas.” — Margaret Allen

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Renewable Electricity Production Tax Credit
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Energy & Matter Events Technology

SMU conference: Geothermal energy from oil, gas wells

Enhancing existing oil and gas wells for the purpose of producing electricity from the Earth’s heat will be the focus of an annual international geothermal conference at SMU in November. The conference is coordinated by the SMU Geothermal Laboratory and SMU’s Roy M. Huffington Department of Earth Sciences.

Geothermal Energy Utilization Associated with Oil and Gas Development” will connect landowners with technical, operational and financial players interested in embarking on a geothermal energy project. The two-day conference is set for Nov. 3-4.

Geothermal energy can be extracted from well fluids using compact turbines with binary fluids, according to Maria Richards, program coordinator for the SMU Geothermal Laboratory. The systems are now sized to fit a single well or multiple wells with approximately 120 degrees Fahrenheit temperature differential between produced and cooling temperatures.

This is a good year to start a project, Richards says. In addition to federal passage of the Renewable Electricity Production Tax Credit, there’s also federal stimulus money available for renewable energy projects. Texas and other oil-producing states with thousands of existing oil and gas wells are uniquely positioned for economical geothermal development, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU who has advised the geothermal industry for the past 40 years. Projects are being submitted now for Texas demonstration sites in response to a request for proposals from the Department of Energy. Proposals are due in July.

“Geothermal energy produces clean, renewable electrical power that is considered a base load source since it produces 24 hours a day, 365 days a year,” Richards says. “This capability to generate power gives a new revenue stream to low-yield producers with high-water volume and a reason to keep them producing.”

The conference is sponsored by Pratt & Whitney, SMU Cox Executive Education, the Texas State Energy Conservation Office, Perma Works LLC, Telios, the Research Partnership to Secure Energy for America, Gulf Coast Green Energy, Hilcorp Energy Co., and Texas Alliance of Energy Producers.

SMU Geothermal Laboratory researchers recently completed an assessment of geothermal resources for the Texas State Energy Conservation Office. It found that the volume of geothermal heat in the ground beneath Texas could supply the state with clean, renewable, affordable electricity for hundreds of years. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 beneath Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.

Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, Blackwell says.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists. The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact.

Geothermal projects and research, while cutting-edge, are not new for SMU, Richards says.

“When I talk about the SMU Geothermal Laboratory at a professional meeting, I mention the fact that it’s been around for 40 years,” she says. “It’s not just a start-up because of a trend. We’ve been doing this for a long time — and we’re still at the leading edge.”

Related links:
What, how, where: Geothermal energy from oil wells
Geothermal heat: Will Earth’s ‘hot rocks’ become new Texas tea?
SMU Geothermal Laboratory
Roy M. Huffington Department of Earth Sciences
Pratt & Whitney
SMU Cox Executive Education
Texas State Energy Conservation Office
Perma Works LLC
Telios
Research Partnership to Secure Energy for America
Gulf Coast Green Energy
Hilcorp Energy Co.
Texas Alliance of Energy Producers.