Categories
Energy & Matter Researcher news

NY Times, Scientific American: SMU physicist presents team’s important dark matter find

CDMS-detectors-s.jpgPhysicists have been searching for dark matter — the substance that makes up most of the matter in the universe — for decades. Now an international collaboration of physicists working in an abandoned mine in Minnesota have announced there’s a chance they may have spotted a glimpse of the subatomic particles.

One of two scientists presenting the finding simultaneously on opposite coasts was physicist Jodi Cooley, an SMU assistant professor of experimental particle physics.

nytlogo152x23.gifThe New York Times and Scientific American, among others, were there to take note. The Times article “At a Mine’s Bottom, Hints of Dark Matter” was reported by Dennis Overbye and was published in the Dec. 17 edition of The Times.

Scientific American‘s John Matson reported the story in “Dark Matter Researchers Still in the Dark as Underground Search Returns Uncertain Results” also on Dec. 17.

Excerpt:

By DENNIS OVERBYE
The New York Times
An international team of physicists working in the bottom of an old iron mine in Minnesota said Thursday that they might have registered the first faint hints of a ghostly sea of subatomic particles known as dark matter long thought to permeate the cosmos.

More SMU Research
New Paluxysaurus mount
3D dinosaur track
Hunt for Higgs boson

The particles showed as two tiny pulses of heat deposited over the course of two years in chunks of germanium and silicon that had been cooled to a temperature near absolute zero. But, the scientists said, there was more than a 20 percent chance that the pulses were caused by fluctuations in the background radioactivity of their cavern, so the results were tantalizing, but not definitive.

Gordon Kane, a physicist from the University of Michigan, called the results “inconclusive, sadly,” adding, “It seems likely it is dark matter detection, but no proof.”

Dr. Kane said results from bigger and thus more sensitive experiments would be available in a couple of months.

The team, known as the Cryogenic Dark Matter Search, announced its results in a pair of simultaneous talks by Jodi Cooley from Southern Methodist University at the SLAC National Acceleratory Laboratory in California and by Lauren Hsu of the Fermi National Accelerator Laboratory in Illinois at Fermilab, and they say they plan to post a paper on the Internet.

Read “At a Mine’s Bottom, Hints of Dark Matter

Excerpt:

By JOHN MATSON
Scientific American
A hotly anticipated announcement regarding a possible signature of dark matter delivered some grist for the physics mill Thursday but failed to produce the blockbuster result some had predicted. In a Webcast talk from Stanford University, Jodi Cooley, a particle physicist at Southern Methodist University, presented the latest results from the Cryogenic Dark Matter Search 2 (CDMS-2), a series of detectors buried deep underground in a former iron mine in northern Minnesota. (The first CDMS experiment was located at Stanford, much closer to the surface.) CDMS-2, she said, detected two signals that fit the bill for the passage of dark matter particles, but other possibilities could not be ruled out.

Dark matter is thought to make up roughly a quarter of the universe but has never been directly observed. In present-day estimates of the universe’s makeup, ordinary atoms (such as those we detect as the visible universe) contribute only about 5 percent; the bulk of the cosmos takes the form of so-called dark energy, under whose influence the universe is expanding at an increasing clip. Dark matter’s presence has for decades been inferred from its gravitational effects on large-scale structures such as galaxy clusters, but because it does not interact much with ordinary matter and does not emit or absorb light — hence the “dark” moniker — it has so far proved impossible to observe firsthand.

Read “Dark Matter Researchers Still in the Dark as Underground Search Returns Uncertain Results

Other coverage:
Live blogging: Discover
Science News
U.S. News & World Report
The Seattle Times

Related links:
CDMS: Lay explanation of the research findings
Video: Jodi Cooley announcing from SLAC
Jodi Cooley
Symmetry Magazine: Dark Matter Experiment Results Announced
Fermilab: Dark matter and supersymmetry FAQ
Fermilab images: Cryogenic Dark Matter Search
Fermi National Accelerator Laboratory
CERN: Recipe for a Universe
Nobel Prize: Why is there something instead of nothing?
Fermilab: Dark Universe Debate
ATLAS
CERN FAQ
SMU Department of Physics
Dedman College of Humanities and Sciences

Categories
Energy & Matter Researcher news

Hunt for Higgs boson: Mass of top quark narrows search

New high-energy particle research by a team working with data from Fermi National Accelerator Laboratory further heightens the uncertainty about the exact nature of a key theoretical component of modern physics — the massive fundamental particle called the Higgs boson.

Analysis of data from particle collisions resulting in two leptons helps improve measurements of the mass of another heavy subatomic particle called the top quark, says physicist Robert Kehoe at SMU, who led the team that calculated the measurement.

Improving the measurement of the mass of the top quark bears on the nature of the Higgs, says Kehoe, an assistant professor in SMU’s Department of Physics.

The Higgs was postulated in the 1960s to help explain how basic elements of the universe fit together and interact. It is responsible for a phenomenon called the Higgs mechanism, which gives mass to the fundamental particles of nature.

Physicists have searched for more than four decades to observe the never-before-seen Higgs. Now they hope it will be observed in the next few years since data started flowing recently from the world’s newest and largest high-energy particle accelerator, the CERN laboratory’s Large Hadron Collider near Geneva, Switzerland.

Physicists theorize that the top quark — because of its sizable mass — is sensitive to the Higgs and therefore may point to it. They theorize that knowing the mass of the top quark narrows the range of where the Higgs will be detected in CERN’s LHC collisions. The top quark is one of 16 species of subatomic particles that physicists have observed. It was predicted in the 1970s and observed in 1995. Increasingly precise measurements of its mass have been achieved almost every year since, and physicists closely watch the incremental measurements of the top quark.

Fermilab’s DZero control room.

The two-lepton analysis by Kehoe and SMU post-doctoral researcher Peter Renkel looked at data taken over four years during high-energy collisions at Fermilab, a Department of Energy proton-antiproton collider in Batavia, Ill.

The two-lepton analysis is one of almost a dozen analyses of the mass of the top quark at a Fermilab experiment called “DZero.” The DZero experiment involves 500 physicists and is one of Fermilab’s two large experimental collaborations of scientists. The top quark mass was first observed simultaneously by these two experiments. Several measurements of the top quark’s mass from these two experiments are combined to a “world average” value.

The two-lepton analysis contributed to the latest world average measurement. The analysis looked at particles resulting from smashing protons that break apart and disintegrate. The events are very rare, and the detector can’t see two of the important “ghost” particles — neutrinos — produced by the collision. However, the two leptons are well-measured events and are not seen in other “background” collisions where top quarks are not produced. This allows a rapidly improving precision to be achieved.

The two-lepton research was published in November in the article “Measurement of the top quark mass in final states with two leptons” in “Physical Review D,” the American Physical Society’s journal of particles, fields, gravitation and cosmology. SMU physicists collaborated on the research with scientists at Boston University. The SMU portion of the work was funded by the Department of Energy.

The new world average is so precise that it constrains more tightly than ever the range of possible measurements for the mass of the Higgs, Kehoe says.

If the Higgs does prove different than currently expected, physicists may have to rework their long-standing theoretical framework, known as the Standard Model. Scientists worldwide are hoping to validate the Standard Model — which has worked well for more than 30 years to explain everything from radioactivity to computer chips — by actually observing the Higgs.

“The new results may be an indication that the Higgs boson has different properties than the Standard Model indicates,” Kehoe says. “It’s very difficult to devise a theory without some mechanism that mimics fairly well the Higgs mechanism. But if the underlying cause of this mechanism is significantly different, that will have a major impact on the fundamentals of the Standard Model. It could point to something deeper than the standard Higgs boson at work, and that is very interesting.”

The Standard Model of Fundamental Particles. Credit: Fermilab


The measured value of the top quark mass may even go beyond constraining the standard Higgs. It may suggest that our current understanding of the Higgs is not correct, he says.

If the Higgs does not show up where the constraints indicate, the top measurement may force consideration of new theoretical possibilities that lie outside the existing Standard Model, Kehoe says.

Previous measurements have put the top quark at almost the mass of a gold atom. The new world average measurement puts the top quark at about 186 times the mass of the proton. While the value has changed only a small amount from previous measurements, the percentage of error on the measurement is progressively smaller, in this case less than 1 percent.

“If we make a precise prediction of where the Higgs is and it’s not there, then something is wrong. We’ve just found a major flaw in the model,” says Kehoe, whose work has focused for 16 years on the top quark, including as a graduate student on DZero working directly on the discovery analysis. “It would tell us that the model is oversimplified and that reality is much more complicated.” — Margaret Allen

Categories
Energy & Matter

Before God particle, scientists must learn soul of new machine

After a huge success in first testing, followed by a very public meltdown last September, the Large Hadron Collider may be ready for action again as early as June.

But before the science can proceed, the world’s scientists must come to terms with the complex organism they have created, says one project manager.

“We will have to understand the detector first,” says Ryszard Stroynowski, chair and professor of physics at SMU.

Stroynowski is U.S. Coordinator for the Liquid Argon Calorimeter, the literal and experimental heart of ATLAS, the largest particle detector in the LHC array.

Pictured right: Work progressing in the LHC tunnel.
Photo courtesy of CERN.

The first priority for operation of the ATLAS detector is “to get all those billions of elements to work together in synch again,” Stroynowski says. “We want to see during the summer whether the circulating beam will induce any noise in the system.”

Stroynowski leads an SMU delegation that includes Fredrick Olness, professor of physics, and Robert Kehoe and Jingbo Ye, assistant professors of physics, all in Dedman College. Kehoe is currently at CERN for his research.

The SMU team is focusing on three projects in parallel:

  • improvements of the graphic and software interfaces for control and monitoring of the detector and of the quality of its data
  • preparation of the software packages to analyze the data
  • design and prototyping of the modifications of the readout electronics that will be needed for future upgrades of the experiment to much higher-intensity beams — a six-year research and development project led by Jingbo Ye in SMU’s Physics Electronics Lab.

The LHC is considered the world’s largest physics experiment. The particle accelerator is a 27-kilometer circular tunnel that lies 100 meters underground near Geneva on the French-Swiss border. It uses a magnetic field to propel high-energy protons into each other.

A mechanical failure in September 2008 damaged 53 of the super-sized magnets that power and focus the accelerator’s beams. The final replacement magnet was lowered into place April 30. Repairs in the tunnel now focus on connecting the magnets together and installing new safety and monitoring systems to prevent similar incidents from happening again.

In addition, the 37 damaged magnets that were replaced by spares will be refurbished to serve as spares themselves. Sixteen magnets sustained only minimal damage and were repaired and reinstalled.

The earlier malfunction has resulted in a frustrating wait — one that has had a “rather demoralizing” effect on the students and postdoctoral fellows whose time at the LHC may come and go during downtime, Stroynowski says. Yet the importance of protecting the vast high-energy array from future trauma can’t be overstated, and “the goal is worth the wait, as the payoff may be enormous,” he says.

Scientists and technicians at the European Organization for Nuclear Research — called by its acronym, CERN — in Geneva have maintained an aggressive rehabilitation schedule. The ATLAS detector itself was closed on May 5, marking an end to checks and re-checks of the electronics, cables and other connections. Repairs to the accelerator’s underground ring are scheduled to be completed at the end of May.

Beams will start in June, initially at a relatively low 450 gigaelectron volts (GeV) per beam to ensure the integrity of the new parts and connections. Scientists will raise the energy over a couple of days to 2 teraelectron volts (TeV) per beam, and finally to the LHC’s target operational level of 5 TeV per beam.

The ATLAS team will start taking shifts in July and expects to have useful data starting in October 2009, Stroynowski says. The LHC will then run continuously for 11 months.

Stroynowski says he doesn’t expect any major discoveries by this time next year, but that he hopes “significant results” will come early in 2011.

The LHC’s proton collisions release even smaller pieces of matter, and the Atlas particle detector helps measure the tracks they leave. The huge, international project is directed at finding the “Higgs boson,” a subatomic “God particle” that physicists believe could help explain the origin of our Universe.

The theory behind the Higgs boson holds that all particles had no mass just after the “Big Bang.” As the Universe cooled and the temperature fell below a critical value, an invisible force field composed of subatomic particles called the “Higgs boson” developed throughout the cosmos. Particles that interact with the field gain mass and particles that never interact have no mass. But the theory remains unproven because no one has ever seen the Higgs boson at work. — Kathleen Tibbetts

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Dr. Stroynowski or to book him in the SMU studio, call SMU News & Communications at 214-768-7650 or UT Dallas Office of Media Relations at 972-883-4321.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.

Categories
Energy & Matter Researcher news

Science morphs into science fiction in “Angels & Demons”

“Antimatter” is one of the big stars in the new Ron Howard film “Angels & Demons.” After seeing the movie, people may wonder how much of the science in the film is actually real.

SMU Physics Professor Fredrick Olness says the new action thriller exploits cutting-edge science to create an exciting tale of science fiction mystery and imagination. “Angels & Demons” takes key ideas that are based upon scientific fact, Olness comments, and then exaggerates the details for the purpose of storytelling — and that’s the transformation from “science” to “science fiction.”

In the movie, which opened May 15, members of a centuries-old secret society steal a small container of antimatter from the CERN particle physics laboratory in Europe and threaten to blow up the Vatican. Tom Hanks, as a Harvard professor, tries to stop the society.

“Angels & Demons” is billed as the prequel to the 2006 box-office hit “The Da Vinci Code,” both of which are based on books by best-selling author Dan Brown.

video.jpgWatch the official “Angels & Demons” movie trailer

When asked to separate fact from fiction, Olness noted:

Atlas%20event.png• CERN is indeed an international particle physics laboratory near Geneva, Switzerland where hundreds of scientists from around the world study the fundamental laws of nature.

Pictured right: Atlas collision event

• While it is also true that CERN has created antimatter, it would take more than a billion years (with current technology) to make the quantity of antimatter described in the movie. If you collected all the antimatter that CERN has ever created, it would only power an electric light bulb for a few minutes.

• It is true that when antimatter and matter meet, they annihilate into pure energy; however, antimatter is not a source of energy. The production of antimatter is very inefficient, so it takes much more energy to create the antimatter than you get back.

• It is also true that we are able to store antimatter, but scientists don’t actually keep antimatter on the lab shelf. Even small quantities of antimatter are difficult to store. Charged antimatter can be stored in a “magnetic bottle,” but the repulsive force of the antimatter charges greatly limits the quantity. Uncharged (neutral) antimatter cannot be contained by a “magnetic bottle.”

• The CERN laboratory was established in 1954 and has a long history of important scientific discoveries. Two of the discoveries from the CERN lab have been awarded Nobel Prizes, and CERN is the birthplace of the World Wide Web.

Olness spent his 2007-08 sabbatical in residence at CERN as part of a team of SMU scientists working with the Large Hadron Collider, which is featured in the opening scenes from “Angels & Demons.”

The collider, known as the LHC, is the world’s largest and highest-energy particle accelerator. Located near Geneva on the French-Swiss border, the LHC consists of a 17-mile, circular ring of magnets that lies 100 meters beneath the earth’s surface.

“Having spent a year at CERN, I particularly enjoyed the special effects during the LHC scene.” Olness commented. “They paid attention to the details, and even made the background dialogue in the LHC control room credible.”

The purpose of the LHC is to collide two counter-rotating beams of protons traveling at nearly the speed of light. The idea is to smash the protons into smaller particles, and to then gather the mountain of data that results from these “events.” The data will help scientists understand what may have occurred when our Universe came into existence just after the Big Bang. As noted in the movie, LHC scientists are searching for the hypothesized “God particle,” or more scientifically the “Higgs boson.”

As a theoretical physicist, Olness develops the computer models necessary to decipher the results of the LHC experiments. In addition to expanding our knowledge of fundamental science, research at CERN has contributed to important technological innovations such as the World Wide Web, massively parallel (GRID) computing, and improvements in medical imaging.

Tom Hanks toured CERN in February and was visibly impressed with its massive LHC particle accelerator, according to a CERN web site about the science behind the movie.

Olness, with wand, gives a nod to “Star Wars”
at the 2001 SMU Physics Circus

Hanks commented at CERN: “Magic is not happening here, magic is being explained here.”

CERN quotes Hanks as saying the movie “Angels & Demons” will inspire kids to take a greater interest in science.

Related links:
CERN: “Angels & Demons”
CERN FAQ: Angels & Demons
Fredrick Olness home page
Olness’ tour of CERNvideo.jpg
CERN Scientists: Large Hadron Collider rapvideo.jpg
Movie trailer: Angels & Demonsvideo.jpg
Dan Brown: Angels & Demons
CERN: The basics
Labreporter.com: The science behind the Large Hadron Collidervideo.jpg
CERN: The God particlevideo.jpg
SMU Physics Department
Dedman College of Humanities and Sciences

Categories
Energy & Matter

Proton-smasher’s awaited flood of data creates big job for SMU researchers

At 10 p.m. on a Saturday night in April, a handful of SMU scientists continue working at the European Organization for Nuclear Research, called by its acronym CERN, in Geneva, Switzerland. A scattering of lights illuminates the windows in several buildings along the Rue Einstein, where researchers from dozens of countries and hundreds of institutions are combining their expertise on the Large Hadron Collider (LHC) — the biggest physics experiment in history.

Ryszard Stroynowski, chair and professor of physics at SMU, points out each building in succession to a group of visitors. “By October, every light in every one of these windows will be on all night,” he says.

By then, the LHC is expected to be fully tested and ready to work. When the largest particle accelerator ever constructed becomes fully operational, it will hurl protons at one another with precision to a fraction of a micron and with velocities approaching the speed of light. These conditions will allow physicists to recreate and record conditions at the origin of the universe — and possibly discover the mechanisms that cause particles in space to acquire their differences in mass.

For Stroynowski, who has worked for almost 20 years to help make the experiment a reality, words seem inadequate to capture the anticipation surrounding its imminent activation.

“It is somewhat like that of a 6-year-old kid on Christmas Eve, waiting for Santa Claus,” he says. “The time stretches almost unbearably long.”

The LHC will be the site of several experiments in high-energy physics with high-profile collaborators such as Harvard and Duke and national laboratories including Argonne, Brookhaven, Lawrence Berkeley and Fermilab. None of the experiments is more imposing than ATLAS, one of two general-purpose particle detectors in the LHC array. At about 42 meters long and weighing 7,000 tons, ATLAS fills a 12-story cavern beneath the CERN facilities in Meyrin, Switzerland, just outside Geneva. It is a tight fit: ATLAS overwhelms even the vast space it occupies. A catwalk, not quite wide enough for two people to stand side by side, encircles the device and allows an occasional dizzying view into its works.

Size Matters
The detector’s scale will help to focus and release the maximum amount of energy from each subatomic collision. A series of bar codes on each of its parts ensure that the detector’s components, whether palm-sized or room-sized, are aligned and locked with the perfect precision required for operability. Scientists from 37 countries and regions and 167 institutions participated in its design and construction.

As U.S. coordinator for the literal and experimental heart of the ATLAS detector — its Liquid Argon Calorimeter — Stroynowski is helping to finalize the last details of the detector’s operation in anticipation of the extensive testing, scheduled to begin in August. He leads an SMU delegation that includes Fredrick Olness, professor, and Robert Kehoe and Jingbo Ye, assistant professors in the SMU Department of Physics in Dedman College.

SMU scientists are completing work on the computer software interfaces that will control the device, which measures energy deposited by the flying debris of smashed atoms. A cadre of University graduate students and postdoctoral fellows also is working on data processing for ATLAS’ 220,000 channels of electronic signals, an information stream larger than the Internet traffic of a small country.

An estimated 53,000 visitors crowded the CERN facilities on the organization’s “Day of Open Doors” April 6, eager for a glimpse of the work that CNN International has named one of the “Seven Wonders of the Modern World.”

At the beginning of May, the areas were sealed off in preparation for the first round of testing. Computers will remotely control the ATLAS experiment, which will not be touched by human hands because of the radiation released by the atomic collisions. Safety is the reason for the elaborate lockdown procedure involving more than 80 keys, each coded to a different individual’s biometric data. The system is designed to lock out any use of the device if even one key is unaccounted for.

“ATLAS has been built to run for at least 15 years with no direct human intervention,” Stroynowski says. “It will be as if we have shot it into space.”

Currently, the initial test run is scheduled to begin Sept. 1.

The Waiting Game
Once data start streaming in, the game of expectations management begins. The ATLAS detector will produce a staggering amount of raw information from each collision, and the most useful bits will be few and far between. Out of 40 million events per second, the researchers hope to pinpoint 10 events a year. The challenge seems a little like looking for a needle in a haystack the size of Mars.

“We may get what we’re looking for on the first try, or it may take us three years to find anything we can use,” Stroynowski says. “A big part of our job is to make sure we’re ready when we do.”

Among those entrusted with that task are graduate students and postdoctoral fellows in SMU’s Physics Department, including Rozmin Daya, Kamile Dindar, Ana Firan, Daniel Goldin, Haleh Hadavand, Julia Hoffman, Yuriy Ilchenko, Renat Ishmukhametov, David Joffe, Azeddine Kasmi, Zhihua Liang, Peter Renkel, Ryan Rios and Pavel Zarzhitsky.

“I came to SMU for postdoctoral work specifically because of the department’s involvement in the ATLAS project,” says David Joffe, a native of Canada who received his Ph.D. in physics from Northwestern University. “For particle physicists, being part of this is really a once-in-a-lifetime opportunity.”

For Julia Hoffman, who received her doctorate from Soltans Institute for Nuclear Studies in her native Poland, that opportunity has meant expanding her own horizons.

“I learn new, and I mean really new, things every day,” she says. “Different programming languages, different views on physics analysis. I’m learning how it all works from the inside. I work with students and gain new responsibilities. This kind of experience means better chances to find a permanent position that will be as exciting as this one.”

The SMU group works with formulae based in Monte Carlo methods, the “probabilistic models that use repeated random sampling of vast quantities of numbers” to impose a semblance of order on the chaos created when atoms forcibly disintegrate. Results are highly detailed simulations of known physics that will help make visible the tiny deviations researchers hope to detect when ATLAS begins taking data.

These unprecedented computing challenges also have become an impetus for new SMU research initiatives. James Quick, SMU associate vice president for research and dean of graduate studies, hopes to contain ATLAS’ vast data-processing requirements with a large-capability computing center located on campus.

Quick visited CERN in April to discuss the details with Stroynowski and other key personnel. The proposed center would provide a first-priority data processing infrastructure for SMU physicists and a powerful new resource for researchers in other schools and departments. During the inevitable LHC downtime, as beams are calibrated and software is debugged, the SMU center’s computing power would be available for campus researchers in every field across engineering, the sciences and business.

“The ATLAS experiment presents an opportunity for the University to step up in a big way, and one that will benefit the entire campus,” Quick says.

He envisions a data processing farm of 1,000 central processing units, each connected to an Internet backbone to allow the fastest possible return on SMU’s ATLAS input. Speed and access are the keys, Stroynowski says, paraphrasing Winston Churchill: “The winner gets the oyster, and the runner-up gets the shell.”

Those who have made their careers in high-energy physics are well aware of the stakes involved in the LHC, he adds, and being the first to process certain data could separate a potential Nobel Prize winner from those who will make the same discovery a day late.

As a group, high-energy physicists are accustomed to taking the long view — and for SMU researchers, the long view has been especially helpful. The ghost of the Superconducting Super Collider, which would have made its home in North Texas, still shadows the recent triumphs at CERN.

The SSC brought Stroynowski to the University, and its 1993 demise through congressional defunding was the impetus for the LHC project. The questions haven’t gone away because the experiment has changed venues, Stroynowski says. Yet even now, as the first test nears, his anticipation is tempered by caution.

“I don’t think we’ll get a beam all the way around [the LHC tunnel] on the first try,” he says.

Indeed, the subject of whether scientists will achieve a beam collision during the first tests or after additional calibration has been the subject of a few lively wagers.

“I think we’ll have to wait at least a few more weeks for that milestone,” he adds. “But in this case, I’ll be more than happy to be wrong.” — Kathleen Tibbetts

SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Dr. Biehl or Dr. D’Mello or to book them in the SMU studio, call SMU News & Communications at 214-768-7650 or UT Dallas Office of Media Relations at 972-883-4321.

SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.