Categories
Energy & Matter Researcher news

NY Times, Scientific American: SMU physicist presents team’s important dark matter find

CDMS-detectors-s.jpgPhysicists have been searching for dark matter — the substance that makes up most of the matter in the universe — for decades. Now an international collaboration of physicists working in an abandoned mine in Minnesota have announced there’s a chance they may have spotted a glimpse of the subatomic particles.

One of two scientists presenting the finding simultaneously on opposite coasts was physicist Jodi Cooley, an SMU assistant professor of experimental particle physics.

nytlogo152x23.gifThe New York Times and Scientific American, among others, were there to take note. The Times article “At a Mine’s Bottom, Hints of Dark Matter” was reported by Dennis Overbye and was published in the Dec. 17 edition of The Times.

Scientific American‘s John Matson reported the story in “Dark Matter Researchers Still in the Dark as Underground Search Returns Uncertain Results” also on Dec. 17.

Excerpt:

By DENNIS OVERBYE
The New York Times
An international team of physicists working in the bottom of an old iron mine in Minnesota said Thursday that they might have registered the first faint hints of a ghostly sea of subatomic particles known as dark matter long thought to permeate the cosmos.

More SMU Research
New Paluxysaurus mount
3D dinosaur track
Hunt for Higgs boson

The particles showed as two tiny pulses of heat deposited over the course of two years in chunks of germanium and silicon that had been cooled to a temperature near absolute zero. But, the scientists said, there was more than a 20 percent chance that the pulses were caused by fluctuations in the background radioactivity of their cavern, so the results were tantalizing, but not definitive.

Gordon Kane, a physicist from the University of Michigan, called the results “inconclusive, sadly,” adding, “It seems likely it is dark matter detection, but no proof.”

Dr. Kane said results from bigger and thus more sensitive experiments would be available in a couple of months.

The team, known as the Cryogenic Dark Matter Search, announced its results in a pair of simultaneous talks by Jodi Cooley from Southern Methodist University at the SLAC National Acceleratory Laboratory in California and by Lauren Hsu of the Fermi National Accelerator Laboratory in Illinois at Fermilab, and they say they plan to post a paper on the Internet.

Read “At a Mine’s Bottom, Hints of Dark Matter

Excerpt:

By JOHN MATSON
Scientific American
A hotly anticipated announcement regarding a possible signature of dark matter delivered some grist for the physics mill Thursday but failed to produce the blockbuster result some had predicted. In a Webcast talk from Stanford University, Jodi Cooley, a particle physicist at Southern Methodist University, presented the latest results from the Cryogenic Dark Matter Search 2 (CDMS-2), a series of detectors buried deep underground in a former iron mine in northern Minnesota. (The first CDMS experiment was located at Stanford, much closer to the surface.) CDMS-2, she said, detected two signals that fit the bill for the passage of dark matter particles, but other possibilities could not be ruled out.

Dark matter is thought to make up roughly a quarter of the universe but has never been directly observed. In present-day estimates of the universe’s makeup, ordinary atoms (such as those we detect as the visible universe) contribute only about 5 percent; the bulk of the cosmos takes the form of so-called dark energy, under whose influence the universe is expanding at an increasing clip. Dark matter’s presence has for decades been inferred from its gravitational effects on large-scale structures such as galaxy clusters, but because it does not interact much with ordinary matter and does not emit or absorb light — hence the “dark” moniker — it has so far proved impossible to observe firsthand.

Read “Dark Matter Researchers Still in the Dark as Underground Search Returns Uncertain Results

Other coverage:
Live blogging: Discover
Science News
U.S. News & World Report
The Seattle Times

Related links:
CDMS: Lay explanation of the research findings
Video: Jodi Cooley announcing from SLAC
Jodi Cooley
Symmetry Magazine: Dark Matter Experiment Results Announced
Fermilab: Dark matter and supersymmetry FAQ
Fermilab images: Cryogenic Dark Matter Search
Fermi National Accelerator Laboratory
CERN: Recipe for a Universe
Nobel Prize: Why is there something instead of nothing?
Fermilab: Dark Universe Debate
ATLAS
CERN FAQ
SMU Department of Physics
Dedman College of Humanities and Sciences

Categories
Energy & Matter Researcher news

Hunt for Higgs boson: Mass of top quark narrows search

New high-energy particle research by a team working with data from Fermi National Accelerator Laboratory further heightens the uncertainty about the exact nature of a key theoretical component of modern physics — the massive fundamental particle called the Higgs boson.

Analysis of data from particle collisions resulting in two leptons helps improve measurements of the mass of another heavy subatomic particle called the top quark, says physicist Robert Kehoe at SMU, who led the team that calculated the measurement.

Improving the measurement of the mass of the top quark bears on the nature of the Higgs, says Kehoe, an assistant professor in SMU’s Department of Physics.

The Higgs was postulated in the 1960s to help explain how basic elements of the universe fit together and interact. It is responsible for a phenomenon called the Higgs mechanism, which gives mass to the fundamental particles of nature.

Physicists have searched for more than four decades to observe the never-before-seen Higgs. Now they hope it will be observed in the next few years since data started flowing recently from the world’s newest and largest high-energy particle accelerator, the CERN laboratory’s Large Hadron Collider near Geneva, Switzerland.

Physicists theorize that the top quark — because of its sizable mass — is sensitive to the Higgs and therefore may point to it. They theorize that knowing the mass of the top quark narrows the range of where the Higgs will be detected in CERN’s LHC collisions. The top quark is one of 16 species of subatomic particles that physicists have observed. It was predicted in the 1970s and observed in 1995. Increasingly precise measurements of its mass have been achieved almost every year since, and physicists closely watch the incremental measurements of the top quark.

Fermilab’s DZero control room.

The two-lepton analysis by Kehoe and SMU post-doctoral researcher Peter Renkel looked at data taken over four years during high-energy collisions at Fermilab, a Department of Energy proton-antiproton collider in Batavia, Ill.

The two-lepton analysis is one of almost a dozen analyses of the mass of the top quark at a Fermilab experiment called “DZero.” The DZero experiment involves 500 physicists and is one of Fermilab’s two large experimental collaborations of scientists. The top quark mass was first observed simultaneously by these two experiments. Several measurements of the top quark’s mass from these two experiments are combined to a “world average” value.

The two-lepton analysis contributed to the latest world average measurement. The analysis looked at particles resulting from smashing protons that break apart and disintegrate. The events are very rare, and the detector can’t see two of the important “ghost” particles — neutrinos — produced by the collision. However, the two leptons are well-measured events and are not seen in other “background” collisions where top quarks are not produced. This allows a rapidly improving precision to be achieved.

The two-lepton research was published in November in the article “Measurement of the top quark mass in final states with two leptons” in “Physical Review D,” the American Physical Society’s journal of particles, fields, gravitation and cosmology. SMU physicists collaborated on the research with scientists at Boston University. The SMU portion of the work was funded by the Department of Energy.

The new world average is so precise that it constrains more tightly than ever the range of possible measurements for the mass of the Higgs, Kehoe says.

If the Higgs does prove different than currently expected, physicists may have to rework their long-standing theoretical framework, known as the Standard Model. Scientists worldwide are hoping to validate the Standard Model — which has worked well for more than 30 years to explain everything from radioactivity to computer chips — by actually observing the Higgs.

“The new results may be an indication that the Higgs boson has different properties than the Standard Model indicates,” Kehoe says. “It’s very difficult to devise a theory without some mechanism that mimics fairly well the Higgs mechanism. But if the underlying cause of this mechanism is significantly different, that will have a major impact on the fundamentals of the Standard Model. It could point to something deeper than the standard Higgs boson at work, and that is very interesting.”

The Standard Model of Fundamental Particles. Credit: Fermilab


The measured value of the top quark mass may even go beyond constraining the standard Higgs. It may suggest that our current understanding of the Higgs is not correct, he says.

If the Higgs does not show up where the constraints indicate, the top measurement may force consideration of new theoretical possibilities that lie outside the existing Standard Model, Kehoe says.

Previous measurements have put the top quark at almost the mass of a gold atom. The new world average measurement puts the top quark at about 186 times the mass of the proton. While the value has changed only a small amount from previous measurements, the percentage of error on the measurement is progressively smaller, in this case less than 1 percent.

“If we make a precise prediction of where the Higgs is and it’s not there, then something is wrong. We’ve just found a major flaw in the model,” says Kehoe, whose work has focused for 16 years on the top quark, including as a graduate student on DZero working directly on the discovery analysis. “It would tell us that the model is oversimplified and that reality is much more complicated.” — Margaret Allen

Categories
Earth & Climate Energy & Matter Researcher news

DOE awards SMU $5.25 million to expand U.S. geothermal production

geothermal-map-of-north-america.jpgThe Geothermal Laboratory at SMU has been awarded $5.25 million by the U.S. Department of Energy to help provide data for the planned National Geothermal Data System.

The grant allocation is part of $338 million in Recovery Act funding that was announced Oct. 29 by DOE Secretary Steven Chu. The funding is intended to help dramatically expand geothermal production in the United States.

800px-Geothermal_energy_methods.pngSMU will work with a diverse team of experts from academia, industry and national labs with experience in conventional hydrothermal geothermal resource assessment, Enhanced Geothermal Systems, oil and gas data, geopressure geothermal and produced water non-conventional geothermal systems in providing the data, including:

  • An expanded and updated version of the SMU Heat Flow database that covers the whole onshore U.S. and offshore regions in the Gulf of Mexico.
  • The Geothermal Resources Council library with over 36K in documents and over 1.3 million pages on geothermal research
  • Extensive information on Enhanced Geothermal System research including legacy data files and the latest developing results of research in the northeastern U.S.
  • Core logs, well logs, and current and legacy geopressure data from the Texas Bureau of Economic Geology covering many states
  • Detailed nationwide data on produced water collected from numerous states’ oil and gas agencies and several federal agencies plus relevant geological, spatial, well bore, injection/disposal, and water well data.

blackwell.jpg
Principal investigators are SMU’s David Blackwell, Hamilton Professor of Geothermal Studies, and Fabian Moerchen of Siemens Corporate Research. The project team also includes Jefferson Tester, the Kroll Professor of Chemical Engineering at Cornell University; William Gosnold, chair of geology and geological engineering at the University of North Dakota; Seiichi Nagihara, associate professor of geosciences at Texas Tech University; John Veil, manager of the water policy program at the Argonne National Laboratory and Martin Kay, president of MLKay Technology LLC.

“The primary benefit of this project is that it will support developers of geothermal power plants by decreasing the costs of the resource identification and the risks inherent in the exploration phase,” Blackwell said. “The project will rescue important data from deterioration or complete loss and provide a set of tools to be used by other parties to submit data to the NGDS.”

A distributed network of databases, NGDS was established by the U.S. Department of Energy to collectively build a system for acquisition, management and maintenance of geothermal and related data.

The SMU Geothermal Lab is hosting its annual conference, “Geothermal Energy Utilization Associated with Oil & Gas Development,” Nov. 3-4 on the Dallas campus. Registration is available at the door. Find more information at the conference web site. — Kim Cobb

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Energy & Matter

Geothermal heat: Will Earth’s “hot rocks” become new “Texas tea”?

Texas, which has been the nation’s largest fossil-fuel producer, also has an abundant supply of another natural resource for a different kind of energy boom: clean, renewable, geothermal energy.

Like the oil and gas beneath Texas, there’s a huge quantity of naturally occurring “hot rocks” underground that could be tapped for geothermal energy to produce electricity, according to new research by SMU scientists. South and East Texas have an abundant supply, say the researchers.

iphone%20feb%205%202008%20058.jpg“There is more than enough heat below our feet to take all the state’s industrial consumption off the existing transmission grid,” says Maria Richards, program coordinator for the SMU Geothermal Laboratory.

Lab researchers recently completed an assessment of geothermal resources in South and East Texas for the Texas State Energy Conservation Office, or SECO. They found enough heat to supply Texas with clean, renewable, affordable electricity for hundreds of years, Richards says. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 and includes Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.
Maria Richards with a driller on an oil rig.

The SMU analysis will be part of The Energy Report, a SECO report on clean and renewable energy resources in Texas. SECO funded the SMU Geothermal Laboratory research with a $200,000 grant. SMU will submit the assessment to SECO later in June.

Currently Texas gets the bulk of its electricity from natural gas-, coal- and nuclear-powered generating plants. But commercial interest in geothermal energy is growing both in the state and nationwide, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU. Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, says Blackwell, who has advised the industry for the past 40 years.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists.

The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact. The MIT study’s authors said geothermal energy is especially attractive because it is widely available, doesn’t have to be stored to supply minimum demand, and has a small footprint with low or no emissions. It is also considered virtually inexhaustible, according to the Geothermal Energy Association.

The MIT study estimated the U.S. geothermal resource base at more than 13 million exajoules, which is a measurement of stored thermal energy. The extractable portion of that is estimated at more than 200,000 exajoules, or about 2,000 times the annual U.S. consumption in 2005 of primary energy, according to the report.

Currently the U.S. has more geothermal generating capacity online than any other country, about 30% of the world’s total, according to the Geothermal Energy Association.

MikePaul%5B1%5D.JPGTexas is uniquely positioned for geothermal development, according to Blackwell and Richards. That’s due in large part to the state’s thousands of existing oil and gas wells that could be developed in various ways to tap geothermal heat.

Pictured right: Michael Paul, SMU director of energy management and engineering, collects temperatures at a field near Corpus Christi

The SMU Geothermal Lab’s research has proven the potential for drawing electricity from low-temperature geothermal sources through “binary” technology. A binary power plant circulates hot groundwater through an existing oil or gas well to heat a secondary fluid. The resulting vapor then drives turbines to generate electricity.

There are thousands of oil and gas wells in Texas that could be economical for geothermal development, Richards says. That’s especially true since the technology can operate concurrently in oil and gas wells, which would significantly reduce the cost of geothermal exploration. Geothermally produced electricity could then offset the power normally required to operate oil-field production units. Additionally, excess electricity could be sold back to the statewide electric transmission grid. Depleted oil and gas wells that are slated for abandonment could again generate revenue when tapped for geothermal production.

SMU’s regional assessment for SECO covered 91 counties. It calculated the geothermal heat under South and East Texas at 921,085 exajoules, giving the state enormous geothermal potential. Anywhere from 2 percent to 10 percent of that is recoverable, depending on the efficiency of the conversion technology and the location of the resource.

“As humans we have no real concept as to how much heat is below our feet,” Richards says. “We feel the sun in our face, and the wind in our hair, but we don’t feel the Earth’s heat through our feet.”

SMU’s researchers analyzed historical temperature data for wells drilled since the early 1990s. Drilling logs for each hole include temperature recordings taken at various depths. The SMU analysis looked at wells ranging from 2,000 feet to 20,000 feet deep. The researchers were surprised that the temperature in some wells ran as hot as 450 degrees Fahrenheit, Richards says.

Wells drilled from 9,000 feet to 14,000 feet deep, with temperatures downhole of 250 degrees or greater, will likely be economical for geothermal energy. They would be sufficiently hot and reasonably close to the surface. In deeper wells, unless they flow naturally, the binary technology would require too much electricity.

The team of SMU Geothermal Laboratory researchers included six graduate and undergraduate students.

“This turned out to be a wonderful project for the students,” Richards says. “With President Barack Obama’s push for more emphasis on science and renewable energy, these are students on the leading edge of that whole process. And they are focused on a project that was funded by the state of Texas.” — Margaret Allen

Related links:
SMU Geothermal Energy Utilization Conference
SECO: Texas Geothermal Energy
Google invests in SMU geothermal research
Google video on advanced geothermal technology
CBN News: Geothermal energy right under our feet
SMU Research News: Earth’s inner heat can generate electric power
SMU geothermal home
SMU Geothermal Laboratory
David Blackwell
Renewable Electricity Production Tax Credit
Roy M. Huffington Department of Earth Sciences

Categories
Earth & Climate Energy & Matter Events Technology

SMU conference: Geothermal energy from oil, gas wells

Enhancing existing oil and gas wells for the purpose of producing electricity from the Earth’s heat will be the focus of an annual international geothermal conference at SMU in November. The conference is coordinated by the SMU Geothermal Laboratory and SMU’s Roy M. Huffington Department of Earth Sciences.

Geothermal Energy Utilization Associated with Oil and Gas Development” will connect landowners with technical, operational and financial players interested in embarking on a geothermal energy project. The two-day conference is set for Nov. 3-4.

Geothermal energy can be extracted from well fluids using compact turbines with binary fluids, according to Maria Richards, program coordinator for the SMU Geothermal Laboratory. The systems are now sized to fit a single well or multiple wells with approximately 120 degrees Fahrenheit temperature differential between produced and cooling temperatures.

This is a good year to start a project, Richards says. In addition to federal passage of the Renewable Electricity Production Tax Credit, there’s also federal stimulus money available for renewable energy projects. Texas and other oil-producing states with thousands of existing oil and gas wells are uniquely positioned for economical geothermal development, says David Blackwell, one of the country’s foremost authorities on geothermal energy and a professor at SMU who has advised the geothermal industry for the past 40 years. Projects are being submitted now for Texas demonstration sites in response to a request for proposals from the Department of Energy. Proposals are due in July.

“Geothermal energy produces clean, renewable electrical power that is considered a base load source since it produces 24 hours a day, 365 days a year,” Richards says. “This capability to generate power gives a new revenue stream to low-yield producers with high-water volume and a reason to keep them producing.”

The conference is sponsored by Pratt & Whitney, SMU Cox Executive Education, the Texas State Energy Conservation Office, Perma Works LLC, Telios, the Research Partnership to Secure Energy for America, Gulf Coast Green Energy, Hilcorp Energy Co., and Texas Alliance of Energy Producers.

SMU Geothermal Laboratory researchers recently completed an assessment of geothermal resources for the Texas State Energy Conservation Office. It found that the volume of geothermal heat in the ground beneath Texas could supply the state with clean, renewable, affordable electricity for hundreds of years. Some of the state’s largest urban areas sit atop the vast regional geothermal zone, which extends east from Interstate 35 beneath Dallas-Fort Worth, Houston, Austin, Corpus Christi and Kilgore.

Over the past 12 months, SMU’s Geothermal Laboratory has received a record number of requests from private entities asking for help in developing commercial projects, Blackwell says.

Pioneers in assessing the nation’s geothermal resources, Blackwell and Richards revealed the potential for widespread geothermal development with their Geothermal Map of North America, published in 2004 by the American Association of Petroleum Geologists. The two also helped author a 2007 study led by Massachusetts Institute of Technology that found geothermal energy could supply a substantial amount of the energy the United States will need in the future, likely at competitive prices and with minimal environmental impact.

Geothermal projects and research, while cutting-edge, are not new for SMU, Richards says.

“When I talk about the SMU Geothermal Laboratory at a professional meeting, I mention the fact that it’s been around for 40 years,” she says. “It’s not just a start-up because of a trend. We’ve been doing this for a long time — and we’re still at the leading edge.”

Related links:
What, how, where: Geothermal energy from oil wells
Geothermal heat: Will Earth’s ‘hot rocks’ become new Texas tea?
SMU Geothermal Laboratory
Roy M. Huffington Department of Earth Sciences
Pratt & Whitney
SMU Cox Executive Education
Texas State Energy Conservation Office
Perma Works LLC
Telios
Research Partnership to Secure Energy for America
Gulf Coast Green Energy
Hilcorp Energy Co.
Texas Alliance of Energy Producers.