Categories
Energy & Matter Feature Health & Medicine Learning & Education Plants & Animals Researcher news SMU In The News Student researchers Technology Videos

The New York Times: Something Strange in Usain Bolt’s Stride

The New York Times covers the research of SMU locomotion expert Dr. Peter Weyand and his SMU Locomotor Performance Lab in “Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.”

Bolt is the fastest sprinter ever in spite of — or because of? — an uneven stride that upends conventional wisdom.

The New York Times reporter Jeré Longman covered the research of SMU biomechanics expert Peter Weyand and his colleagues Andrew Udofa and Laurence Ryan for a story about Usain Bolt’s apparent asymmetrical running stride.

The article, “Something Strange in Usain Bolt’s Stride,” published July 20, 2017.

The researchers in the SMU Locomotor Performance Laboratory reported in June that world champion sprinter Usain Bolt may have an asymmetrical running gait. While not noticeable to the naked eye, Bolt’s potential asymmetry emerged after the researchers dissected race video to assess his pattern of ground-force application — literally how hard and fast each foot hits the ground. To do so they measured the “impulse” for each foot.

Biomechanics researcher Udofa presented the findings at the 35th International Conference on Biomechanics in Sport in Cologne, Germany. His presentation, “Ground Reaction Forces During Competitive Track Events: A Motion Based Assessment Method,” was delivered June 18.

The analysis thus far suggests that Bolt’s mechanics may vary between his left leg to his right. The existence of an unexpected and potentially significant asymmetry in the fastest human runner ever would help scientists better understand the basis of maximal running speeds. Running experts generally assume asymmetry impairs performance and slows runners down.

Udofa has said the observations raise the immediate scientific question of whether a lack of symmetry represents a personal mechanical optimization that makes Bolt the fastest sprinter ever or exists for reasons yet to be identified.

Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education & Human Development, is director of the Locomotor Lab.

An expert on human locomotion and the mechanics of running, Weyand has been widely interviewed about the running controversy surrounding double-amputee South African sprinter Oscar Pistorius. Weyand co-led a team of scientists who are experts in biomechanics and physiology in conducting experiments on Pistorius and the mechanics of his racing ability.

For his most recently published research, Weyand was part of a team that developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

They described the two-mass model earlier this year in the Journal of Experimental Biology in their article, “A general relationship links gait mechanics and running ground reaction forces.” It’s available at bitly, http://bit.ly/2jKUCSq.

The New York Times subscribers or readers with remaining limited free access can read the full story.

EXCERPT:

By Jeré Longman
The New York Times

DALLAS — Usain Bolt of Jamaica appeared on a video screen in a white singlet and black tights, sprinting in slow motion through the final half of a 100-meter race. Each stride covered nine feet, his upper body moving up and down almost imperceptibly, his feet striking the track and rising so rapidly that his heels did not touch the ground.

Bolt is the fastest sprinter in history, the world-record holder at 100 and 200 meters and the only person to win both events at three Olympics. Yet as he approaches his 31st birthday and retirement this summer, scientists are still trying to fully understand how Bolt achieved his unprecedented speed.

Last month, researchers here at Southern Methodist University, among the leading experts on the biomechanics of sprinting, said they found something unexpected during video examination of Bolt’s stride: His right leg appears to strike the track with about 13 percent more peak force than his left leg. And with each stride, his left leg remains on the ground about 14 percent longer than his right leg.

This runs counter to conventional wisdom, based on limited science, that an uneven stride tends to slow a runner down.

So the research team at S.M.U.’s Locomotor Performance Laboratory is considering a number of questions as Bolt prepares for what he said would be his final performances at a major international competition — the 100 meters and 4×100-meter relay next month at the world track and field championships in London.

Among those questions: Does evenness of stride matter for speed? Did Bolt optimize this irregularity to become the fastest human? Or, with a more balanced stride during his prime, could he have run even faster than 9.58 seconds at 100 meters and 19.19 seconds at 200 meters?

“That’s the million-dollar question,” said Peter Weyand, director of the S.M.U. lab.

The S.M.U. study of Bolt, led by Andrew Udofa, a doctoral researcher, is not yet complete. And the effect of asymmetrical strides on speed is still not well understood. But rather than being detrimental for Bolt, the consequences of an uneven stride may actually be beneficial, Weyand said.

It could be that Bolt has naturally settled into his stride to accommodate the effects of scoliosis. The condition curved his spine to the right and made his right leg half an inch shorter than his left, according to his autobiography.

Initial findings from the study were presented last month at an international conference on biomechanics in Cologne, Germany. Most elite sprinters have relatively even strides, but not all. The extent of Bolt’s variability appears to be unusual, Weyand said.

“Our working idea is that he’s probably optimized his speed, and that asymmetry reflects that,” Weyand said. “In other words, correcting his asymmetry would not speed him up and might even slow him down. If he were to run symmetrically, it could be an unnatural gait for him.”

Antti Mero, an exercise physiologist at the University of Jyvaskyla in Finland, who has researched Bolt’s fastest races, said he was intrigued by the S.M.U. findings.

The New York Times subscribers or readers with remaining limited free access can read the full story.

Leave a Reply

Your email address will not be published. Required fields are marked *