Categories
Energy & Matter Health & Medicine Learning & Education Researcher news SMU In The News

Dallas Innovates: SMU Study Finds Simpler Way to Explain Physics of Running

Dallas Innovates covered the research of Peter Weyand and colleagues in the SMU Locomotor Laboratory, who developed a concise approach to understanding the mechanics of human running.

The research could have implications on shoe design, rehabilitation practices, and running performance.

Reporter Heather Noel with Dallas Innovates covered the research of Peter Weyand and the SMU Locomotor Laboratory. Weyand, who is Glenn Simmons Professor of Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development, is the director of the Locomotor Lab.

Other authors on the study were Laurence Ryan, a physicist and research engineer in the lab, and
Kenneth Clark , previously with the lab and now an assistant professor in the Department of Kinesiology at West Chester University in West Chester, Penn.

The three have developed a concise approach to understanding the mechanics of human running. The research has immediate application for running performance, injury prevention, rehab and the individualized design of running shoes, orthotics and prostheses. The work integrates classic physics and human anatomy to link the motion of individual runners to their patterns of force application on the ground — during jogging, sprinting and at all speeds in between.

The Dallas Innovates article, “SMU Study Finds Simpler Way to Explain Physics of Running,” published Feb. 2, 2017.

Read the full story.

EXCERPT:

By Heather Noel
Dallas Innovates

Understanding the physics of running all comes down to the motion of two body parts, according to researchers at Southern Methodist University.

Their findings published recently in the Journal of Experimental Biology, concluded that running can be explained in a lot simpler terms than scientists previously thought. After examining Olympic-caliber runners, they came up with a “two-mass model” that uses the lower leg that comes into contact with the ground and the sum total of the rest of the body to determine ground force.

“The foot and the lower leg stop abruptly upon impact, and the rest of the body above the knee moves in a characteristic way,” said Kenneth Clark, SMU grad and assistant professor in the Department of Kinesiology at West Chester University, in a release.

“This new simplified approach makes it possible to predict the entire pattern of force on the ground — from impact to toe-off — with very basic motion data.”

The research could have implications on shoe design, injury prevention, rehabilitation practices, and running performance.

“The approach opens up inexpensive ways to predict the ground reaction forces and tissue loading rates. Runners and other athletes can know the answer to the critical functional question of how they are contacting and applying force to the ground,” said Laurence Ryan, a physicist and research engineer at SMU’s Locomotor Performance Laboratory, in a release.

Read the full story.