Categories
Learning & Education SMU In The News Subfeature

Inside Higher Ed: The truth about bias response teams is more complex than often thought

DALLAS (SMU) – Are bias response teams political correctness police on college campuses? Or are they a quick fix for dealing with prejudice and bias?

In an opinion piece in Inside Higher Ed, a team of professors, including Southern Methodist University’s S. Kiersten Ferguson, argues that the truth is more complex.

They note that bias response teams — which handle reports of incidents that may involve prejudice from students, faculty or staff — are well-intentioned but often lack sufficient resources and time to carry out their charges. And they often get caught in the middle of demands from two different groups, neither of which they are typically able to fully satisfy.

Read the story here.

EXCERPT:

By Ryan A. Miller, Tonia Guida, Stella Smith, S. Kiersten Ferguson and Elizabeth Medina   

Inside Higher Ed

“University of Michigan brings back the Soviet Union with its bias response team,” the conservative-libertarian website The College Fix announced last spring. Similar headlines have warned that such teams punish free speech and are the latest example of political correctness run amok in higher education.

Claims that bias response teams function as the thought police on campuses are false. The truth about these teams is more complex, and less nefarious, than headlines acknowledge. Through our research, including an article we published in The Review of Higher Education, we’ve sought to understand the purpose and functions of bias response teams from the perspectives of administrators who run them at 19 colleges throughout the nation.

Misconceptions about bias response teams abound. What do these teams generally do? They:

  • Receive reports of incidents that may involve prejudice from students, faculty and staff;
  • Reach out and seek to support those who file reports;
  • Engage those who were the subjects of reports in voluntary, educational conversations; and
  • Monitor trends in the campus climate to inform educational efforts.

They also refer incidents that go beyond the scope of the team’s purview — crucially, those that involve institutional policy violations or criminal acts — to the professionals on the campus who are already designated to handle them, such as student conduct offices or campus police.

What do bias response teams not do? In the vast majority of cases, they do not have the power to discipline or sanction any campus community member. Bias response teams generally adopt a nonregulatory approach. They do not shut down free speech or charge into classrooms to stop offensive statements from faculty members or students. A federal judge in the University of Michigan case brought by Speech First affirmed as much, remarking “The university considers this voluntary and the student has no obligation to come in.”

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

Categories
Energy & Matter Researcher news SMU In The News Subfeature

New power generation technology using waste heat from geothermal plants tested by SMU

The Geothermal Laboratory at Southern Methodist University (SMU) has just completed a research project that aims to use ultra-low-grade heat (150 °F to 250 °F) normally discarded by geothermal facilities to generate additional electricity. A central component of this project was the proprietary bottoming cycle technology of PwrCor, Inc., an advanced technology company that focuses on renewable energy solutions for Waste-to-Heat Power, Geothermal, and Solar markets.

Maria Richards

SMU’s Geothermal Laboratory, which is a research facility devoted to broadening the understanding and use of geothermal energy, compiled information such as ambient air temperature, injection temperature, and injection flow rate to quantify the total thermal energy within the spent geothermal fluids already being produced, but not utilized, by 31 of 73 U.S.-based geothermal sites for which data was available. What they found was that roughly 427 MWe can be generated from the spent geothermal fluids of currently existing facilities. This represents about 15% of the capacity of the sites looked at in the study.

“Geothermal energy is the work-horse of green power production.  Unlike various others, it operates 24/7, is suitable for baseload power supply, occupies a small footprint, and is designed to last,” noted Maria Richards, Geothermal Lab Coordinator for the Geothermal Laboratory. “PwrCor is working to improve the efficiency of our geothermal power infrastructure, and we commend their efforts.”

PwrCor is currently working with companies in the fuel cell and reciprocating engines industries, but they are also involved in initiatives in geothermal, oil and gas, and solar thermal. Their technology that allows for the cost-effective conversion of low-grade and ultra-low-grade heat to mechanical power and electricity could be revolutionary for businesses that could convert wasted heat to additional electrical power.

Joe Batir, a research geologist for the Geothermal Laboratory at SMU, said, “There is a great deal of heat being underutilized in geothermal power generating facilities around the United States.  Technology that can convert even a small portion of this underutilized heat into additional power has the potential of bringing major benefits to both geothermal power producers and to the environment.”– Globe News Wire and SMU

SMU’s research was featured in Think Geoenergy.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

Categories
Health & Medicine Researcher news SMU In The News Subfeature

Long exposure to protein inhibitor may be the key to more effective chemotherapy for treatment-resistant cancers, SMU finds

SMU researchers find success in treating drug-resistant prostate cancer cells in the lab

DALLAS (SMU) – Researchers at SMU’s Center for Drug Discovery, Design and Delivery (CD4) have succeeded in lab testing the use of chemotherapy with a specific protein inhibitor so that the chemotherapeutic medication is better absorbed by drug-resistant cancer cells without harming healthy cells. The approach could pave the way for a more effective way to treat cancers that are resistant to treatment.

A mix of drugs is frequently used to shrink cancer tumors or keep tumor cells from spreading to other parts of the body. But chemotherapy is so toxic that the mix often kills healthy cells, too, causing dreadful side effects for cancer patients. And eventually, many cancers learn how to resist chemotherapy, making it less effective over time.

“When multidrug resistance evolves, this leaves the patient with a very poor prognosis for survival and the oncologist with few, if any, effective tools, such as chemotherapy medicines, to treat what is very likely an aggressive and/or metastatic cancer at this point,” said John Wise, associate professor in the SMU Department of Biological Sciences and co-author of a study on the findings published Friday in PLOS One.

Much of the research led by CD4 director Pia Vogel and Wise is centered on a class of proteins called ABC transporters, a key factor in why many cancers resist chemotherapy.

Long exposure to P-gp inhibitor and chemotherapy decreased cancer cell survival, as assessed by colony formation. Credit: SMU

“These transporters are defensive proteins and are normally very, very good for us. They protect us from toxic chemicals by literally pumping them out of the cell, almost like a sump pump removes water from one’s cellar,” Vogel said.

But when someone has cancer, these proteins do more harm than good.

“One protein, P-glycoprotein, can pump nearly all chemotherapeutics out of the cancer cell, thereby making the cancer resistant to many drugs and untreatable,” Wise noted.

For this reason, SMU researchers tested the combination of using an inhibitor that temporarily shuts down P-glycoprotein’s ability to remove drugs from the cancer cells along with chemotherapeutics on prostate cancer cells grown in the lab, which have been shown to be resistant to multiple chemotherapeutic drugs.

The SMU team was able to show that if inhibitors of P-glycoprotein are used during and after the multidrug resistant cancer cells have been exposed to the chemotherapy drugs, then the cancer cells become much more sensitive to the chemotherapeutics.

The recipe for success was giving cancer cells a dose of both chemotherapy drugs and the P-gp inhibitor for two hours. Researchers then washed the prostate cancer cells to get rid of any residual chemotherapy drugs before giving the cells another dose of just P-gp inhibitor for 22 hours, lead author and SMU Ph.D. doctoral candidate Amila K. Nanayakkara explained.

Pia Vogel and John Wise

Prostate cancer cells that were given this treatment were shown to retain chemotherapy drugs at a much higher level compared to cancer cells not treated with the P-glycoprotein inhibitor. And after about 24 hours, much fewer of these cancer cells survived in this treatment compared to the cells which had not seen the inhibitor.

When the same tests were performed on normal noncancerous cells, “there was no sign of extra toxicity to the healthy cells using this method,” Wise added.

One issue, though, is how to duplicate this method in a patient’s body. “Once you’ve taken a chemotherapy drug, it’s not easy to remove it after just two hours,” said co-author Vogel, a professor in the SMU Department of Biological Sciences.

Still, the researchers argued that it is worth further research, because there are currently few options for cancer patients once their disease becomes resistant to multiple chemotherapies.

“Our paper shows these remarkable effects when the inhibitor is present during, and importantly, after exposure to chemotherapeutic,” Wise said. “And while ‘washing’ is not feasible in humans, the kidneys and other organs are in a sense doing the washing step for a patient. These organs are washing the chemotherapy from the bloodstream and therefore, out of cancer cells. So in that way, we think our preliminary cell culture studies may be translatable at least in principle to animals and people.”

News MedicalDallas Innovates and others wrote about the new research.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

 

 

Categories
Researcher news SMU In The News Subfeature

The Dallas Morning News: HMS, Australia team up to solve a global health challenge

DALLAS (SMU) – Southern Methodist University (SMU) has teamed up with Texas-based HMS, the Digital Health CRC (Cooperative Research Centre) and Stanford University to tackle some of the world’s most significant health challenges using ‘big data.’ Dallas Morning News’ business reporter Melissa Repko covered the news on the collaboration, which was announced on Tuesday.

There are two key health care challenges that the coalition is looking to address: the global opioid epidemic and the high rates of avoidable hospital readmissions. The first research project conducted by Stanford University students will tackle the opioid crisis. The second project—led by Daniel Heitjan, Chair of Statistical Science at SMU—will focus on preventable hospital readmissions, which is when patients unexpectedly return to a hospital within 30 days of an earlier hospital stay.

As Repko reported, HMS is providing a key piece of the puzzle: A massive database of more than 2 million patients that researchers can use to find patterns and flag people who are at risk. Researchers will use the Medicaid claims data that HMS clients agree to share. It will be stripped of personal details such as names and addresses that could identify a patient.

Created last year by the Australian government with a seven-year grant, the Digital Health CRC is comprised of more than 80 businesses, universities and health technology providers. Its goal, working with HMS, SMU and Stanford University, is to develop and test digital health solutions that will solve “a vexing problem for both the U.S. and Australia: Health care costs that are skyrocketing, even as outcomes lag behind,” Repko wrote.

Victor Pantano, chief executive of Digital Health CRC, said the immensity and significance of the project reminds him of the Apollo space program. He lives in Canberra, the Australian capital. It’s near a former NASA tracking station called Honeysuckle Creek. The tracking station — a collaboration between scientists in the U.S. and Australia — received and relayed to the world the first images of astronaut Neil Armstrong walking on the moon.

 

Researchers from the two countries are partnering again to explore “one of the most exciting frontiers in the modern age: the use of big data and digital technologies to deliver better health systems and better health outcomes into the future,” he said.

Read the Dallas Morning News article here.  

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.

 

Categories
Researcher news SMU In The News Subfeature

Is blinded review enough? How gendered outcomes arise even under anonymous evaluation, SMU study shows

DALLAS (SMU) – Even when a scientist’s gender wasn’t revealed, female scientists got a lower score than males for grant proposals they submitted for review, according to a working paper led by Southern Methodist University professor Julian Kolev.

The study found that female scientists were more likely to use narrower, more topic-specific language than male applicants for grant research proposals they sent to the Bill & Melinda Gates Foundation.  Men, on the other hand, tended to use less precise terms, which reviewers gave higher scores for.

The findings suggest that different communication styles are a key driver of the gender score gap, Kolev told Science Magazine in a recent interview.

“Broad words are something that reviewers and evaluators may be swayed by, but they’re not really reflecting a truly valuable underlying idea,” said Kolev, an assistant professor of strategy and entrepreneurship at Southern Methodist University’s Cox School of Business and the lead author of the study. It’s “more about style and presentation than the underlying substance.”

Read more about the study in two recent articles done by Science and Nature.

About SMU

SMU is the nationally ranked global research university in the dynamic city of Dallas. SMU’s alumni, faculty and nearly 12,000 students in seven degree-granting schools demonstrate an entrepreneurial spirit as they lead change in their professions, communities and the world.