Categories
Dedman College of Humanities and Sciences Dedman College Research Earth Sciences Faculty News

New landslides on US West Coast detected by SMU scientists

SMU News

Originally Posted: September 27, 2021

Team of Dallas-based university researchers use satellite radar imagery to reveal hundreds of unseen landslides occurring in western states

SMU geophysicists have used satellite imagery to identify more than 600 slow-moving landslides occurring near the U.S. West Coast.

Fewer than 5% of these landslides in California, Oregon and Washington state had previously been identified.

Geophysics professor Zhong Lu and his team at SMU (Southern Methodist University) were awarded nearly $1 million over the past 4 years from the NASA Interdisciplinary Research in Earth Science Program and the NASA Earth Surface and Interior Focus Area to study landslides on the West Coast.

Most of the large landslides they found were in the mountain ranges of western Washington, southwestern Oregon and northwestern California. In some cases, the identified landslides were within 0.5 to 5 kilometers of multiple towns and roads.

“These landslides are currently moving slowly. But they’re already in a state of force imbalance. So some other external forces, like earthquakes or rainfall, could shift them into a disaster,” said Yuankun Xu, a postdoctoral researcher who works in Lu’s SMU Radar Laboratory and lead author of a study published in the journal Landslides.

Co-author Lu, Shuler-Foscue Chair at SMU’s Roy M. Huffington Department of Earth Sciences, said, “We don’t want to give the impression that these landslides are in trouble tomorrow. No, these landslides have a life expectancy ranging from years to a thousand years.”

Still, the researchers urged policymakers in these western states to monitor the movement of the now-identified landslides so they can prevent a catastrophe from happening.

“I would be very concerned if living, working or commuting upon or near any of the landslides,” said study co-author William H. Schulz, a research geologist in the USGS’ Landslide Hazards Program. “However, humans can and have successfully dealt with individual landslides and potentially unstable slopes in the past. Detailed studies performed by professionals involving engineering geologic characterization and modeling are needed for any landslide to accurately estimate and mitigate potential future hazards.”

Other scientists who helped with this study were Jinwoo Kim, SAR/InSAR Research Scientist at the SMU Radar Laboratory and Kelli Baxstrom, a research geologist in the USGS’ Landslide Hazards Program.

Landslides kill thousands of people every year worldwide

Landslides occur when masses of rock, soil or earth fall down a slope because of gravity. They cause thousands of deaths each year around the world, and in the United States alone, damage exceeds $2 billion annually from these slides.

Yet, landslides can be hard to spot before they become a danger, when heavy rainfall suddenly causes the land to shift quickly.

Of the 617 landslides detected in western US states, only 29 of them were already included in the national landslide database. These landslides are typically found through human-reported events and geological maps.

“The landslides that we previously knew about are ones that people can easily spot from the highway or in city areas,” Lu said. “Those are very rapid-moving landslides.”

Other landslides, however, are harder to identify due to tree cover or because there is no obvious crack in the topography, he explained.

Xu, Lu and the rest of the research team used radar satellite images to unravel previously unidentified landslides from space. These images, taken from 2007 to 2011 and 2015 to 2019, came from radar instruments called Phased Array type L-band Synthetic Aperture Radar (PALSAR) mounted on the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellites.

With this interferometric synthetic aperture radar technology (called InSAR, for short) the satellite images allow scientists to detect changes that aren’t visible to the naked eye. The satellite technology can capture ground motion with a precision of sub-inches or better, at a spatial resolution of a few yards over thousands of miles, say the researchers.

Essentially, any movement of the ground surface toward or away from the satellite can be measured and depicted as a “picture.” This picture shows how much the surface has moved or deformed during the time between images. READ MORE