Tyler Evans: Swelling as a stabilizing mechanism in irradiated thin films (the sequel)

Winner: Mathematics (Graduate)

Co-author: Scott Norris

The fields of nanoscale pattern formation and nanostructural engineering are still in their infancy (relative to many other scientific areas). Much research is still centered around identifying and quantifying the relevant nanoscale mechanisms responsible for experimentally-observed results, since the same physical forces operating at the nanoscale may look very different than at the macroscale. Here, we provide further results on a recently-identified candidate mechanism (swelling, or radiation damage) that could explain the observed angle-independent lack of nanostructuring in thin films amorphized at high energy. We present new analytical and numerical results, characterization of the mechanism in its full parameter space, and an unexpected, mathematically-interesting bifurcation.

Tyler Evans
Program: PhD in Mathematics
Faculty mentor: Scott Norris

Leave a Reply

Your email address will not be published.