The May 2011 issue of Earth Magazine reports on the research of SMU paleontologists in the SMU Huffington Department of Earth Sciences.
In a project led by SMU paleontologist Thomas L. Adams, the scientists used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile.
They have shared their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.
The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says Adams. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation.
Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites. SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say. Click here to see a large image of the Earth magazine cover.
Book a live interview
To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.
Dinosaurs are now leaving their footprints on computers — in 3-D. Having 3-D scans of dinosaur footprints in a computer database could be the surest form of preservation of these delicate fossils, researchers say.
Dinosaur tracks found outdoors can’t always be excavated and moved indoors for preservation and study. That includes a theropod dinosaur footprint that is embedded in a bandstand made of limestone and fossil wood in Glen Rose, Texas — a town just southeast of Dinosaur Valley State Park. So a team led by Thomas Adams of Southern Methodist University in Texas decided to create a 3-D model of the print.
They used a high-resolution laser scanner the size of a small briefcase to map the shape of the footprint with beams of laser light from multiple angles. The laser scanner produces what is known as a point cloud, with each point representing a part of the object. The point cloud is then “smoothed” by software to produce a continuous surface.
Paleontologists propose the new term “digitype” for full-resolution three-dimensional digital models that preserve and archive endangered fossils
Portable laser scanning technology allows researchers to tote their latest fossil discovery from the field to the lab in the form of lightweight digital data stored on a laptop. But sharing that data as a 3D model with others requires standard formats that are currently lacking, say paleontologists at Southern Methodist University.
The SMU researchers used portable laser scanning technology to capture field data of a huge 110 million-year-old Texas dinosaur track and then create to scale an exact 3D facsimile. They share their protocol and findings with the public — as well as their downloadable 145-megabyte model — in the online scientific journal Palaeontologia Electronica.
The model duplicates an actual dinosaur footprint fossil that is slowly being destroyed by weathering because it’s on permanent outdoor display, says SMU paleontologist Thomas L. Adams, lead author of the scientific article. The researchers describe in the paper how they created the digital model and discuss the implications for digital archiving and preservation. Click here for the download link.
“This paper demonstrates the feasibility of using portable 3D laser scanners to capture field data and create high-resolution, interactive 3D models of at-risk natural history resources,” write the authors.
“3D digitizing technology provides a high-fidelity, low-cost means of producing facsimiles that can be used in a variety of ways,” they say, adding that the data can be stored in online museums for distribution to researchers, educators and the public.
SMU paleontologist Louis L. Jacobs is one of the coauthors on the article.
“The protocol for distance scanning presented in this paper is a roadmap for establishing a virtual museum of fossil specimens from inaccessible corners across the globe,” Jacobs said.
Paleontologists propose the term “digitype” for digital models Scientists increasingly are using computed tomography and 3D laser scanners to produce high-quality 3D digital models, say Adams and his colleagues, including to capture high-resolution images from remote field sites.
SMU’s full-resolution, three-dimensional digital model of the 24-by-16-inch Texas footprint is one of the first to archive an at-risk fossil, they say.
Book a live interview
To book a live or taped interview with Thomas Adams in the SMU News Broadcast Studio call News and Communications at 214-768-7650 or email news@smu.edu.
Laser scanning is superior to other methods commonly used to create a model because the procedure is noninvasive and doesn’t harm the original fossil, the authors say. Traditional molding and casting procedures, such as rubber or silicon molds, can damage specimens.
But the paleontologists call for development of standard formats to help ensure data accessibility.
“Currently there is no single 3D format that is universally portable and accepted by all software manufacturers and researchers,” the authors write.
Digitype is baseline for measuring future deterioration SMU’s digital model archives a fossil that is significant within the scientific world as a type specimen — one in which the original fossil description is used to identify future specimens. The fossil also has cultural importance in Texas. The track is a favorite from well-known fossil-rich Dinosaur Valley State Park, where the iconic footprint draws tourists.
The footprint was left by a large three-toed, bipedal, meat-eating dinosaur, most likely the theropod Acrocanthosaurus. The dinosaur probably left the footprint as it walked the shoreline of an ancient shallow sea that once immersed Texas, Adams said. The track was described and named in 1935 as Eubrontes (?) glenrosensis. Tracks are named separately from the dinosaur thought to have made them, he explained.
“Since we can’t say with absolute certainty they were made by a specific dinosaur, footprints are considered unique fossils and given their own scientific name,” said Adams, a doctoral candidate in the Roy M. Huffington Department of Earth Sciences at SMU.
The fossilized footprint, preserved in limestone, was dug up in the 1930s from the bed of the Paluxy River in north central Texas about an hour’s drive southwest of Dallas. In 1933 it was put on prominent permanent display in Glen Rose, Texas, embedded in the stone base of a community bandstand on the courthouse square.
The footprint already shows visible damage from erosion, and eventually it will be destroyed by gravity and exposure to the elements, Adams said. The 3D model provides a baseline from which to measure future deterioration, he said.
In comparing the 3D model to an original 1930s photograph made of the footprint, the researchers discovered that some surface areas have fractured and fallen away. By comparing the 3D model with a synthetically altered version, the researchers were able to calculate volume change, which in turn enables reconstruction of lost volume for restoration purposes.
Model comprises 52 scans totaling 2 gigabytes Adams and his research colleagues took a portable scanner to the bandstand site to capture the 3D images. They employed a NextEngine HD Desktop 3D scanner and ScanStudio HD PRO software running on a standard Windows XP 32 laptop. The scanner and laptop were powered from outlets on the bandstand. The researchers used a tent to control lighting and maximize laser contrast.
Because of the footprint’s size — about 2 feet by 1.4 feet (64 centimeters by 43 centimeters) — multiple overlapping images were required to capture the full footprint.
Raw scans were imported into Rapidform XOR2 Redesign to align and merge them into a single 3D model. The final 3D model was derived from 52 overlapping scans totaling 2 gigabytes, the authors said.
The full-resolution 3D digital model comprises more than 1 million poly-faces and more than 500,000 vertices with a resolution of 1.2 millimeters. It is stored in Wavefront format. In that format the model is about 145 megabytes. The model is free for downloading from a link on Palaeontologia Electronica‘s web site.
3D digital footprint also available as a QuickTime virtual object A smaller facsimile is also available from the journal as a QuickTime Virtual Reality object. In that format, users can slide their mouse pointer over the 3D footprint image to drag it to a desired viewing angle, and zoom and pan. Click here for the link to the QuickTime video.
Besides the 3D model, included with the Palaeontologia Electronica article is a link to a pdf of the original 1935 scientific article in which SMU geology professor Ellis W. Shuler described and identified the dinosaur that made the track.
SMU is a private university in Dallas where nearly 11,000 students benefit from the national opportunities and international reach of SMU’s seven degree-granting schools. For more information see www.smu.edu.
SMU has an uplink facility on campus for live TV, radio or online interviews. To speak with Adams or to book him in the SMU studio, call SMU News & Communications at 214-768-7650.
Using portable 3D laser technology, scientists have preserved electronically a rare 110 million-year-old fossilized dinosaur footprint that was previously excavated and built into the wall of a bandstand at a Texas courthouse in the 1930s.
The laser image preserves what is called a “type specimen” footprint — an original track used many years ago to describe a new species of dinosaur, says paleontologist Thomas L. Adams at SMU.
Portable 3D laser scanners capture original fossil morphology and texture, making it possible to use the data for rapid 3D prototyping in foam or resin, Adams says.
The footprint embedded in the bandstand has been exposed to the elements for nearly 75 years, causing portions of it to erode, Adams says. Erosional loss has affected the outer edge of the toes and heel, altering the initial shape of the track impression.
The track of the ichnospecies Eubrontes glenrosensis was excavated in 1933 from a main track layer in a riverbed in what is now 1,500-acre Dinosaur Valley State Park in Somervell County near Glen Rose. Not long after the track was excavated, the citizens of Glen Rose built a stone bandstand and embedded the track within one of its walls.
The track was described in 1935 by Ellis W. Shuler, SMU’s first geology professor.
Adams says the footprint is that of a three-toed, bipedal, meat-eating dinosaur, with the most likely candidate being the theropod named Acrocanthosaurus, found mostly in Texas, North Carolina and Oklahoma.
“The track is scientifically very important,” says Adams, who is earning his doctoral degree in paleontology at SMU. “But it’s also a historical and cultural icon for Texas.”
Dinosaur Valley State Park boasts the ancient shoreline of a 113 million-year-old sea and is renowned for some of the best preserved dinosaur footprints in the world. The bandstand track is a popular draw for tourists passing through Glen Rose, which is one hour southwest of Dallas.
In an effort to preserve the specimen, as well as to compare its present state with the original description, Adams used a portable 3D laser scanner to perform in situ digitization of the track.
The scans were post-processed to generate high-resolution 3D digital models of the track. Finally the models were rendered in various media formats such as Quicktime VR Virtual Reality and Tagged Image File Format for viewing, publication and archival purposes.
Adams will make the raw scan data and industry-standard 3D object files format available for download.
The research demonstrates the advantages of using portable laser scanners to capture field data and create high-resolution, interactive models that can be digitally archived and made accessible to others via the Internet for further research and education.
“It’s a nice way to share scientific data,” Adams says.