Armed with images of the burst, astronomers can now analyze the data in order to understand more about the structure of the universe at its infancy
The U.K.’s widely read newspaper the Daily Mail covered the astronomy research of physicist Robert Kehoe, SMU professor, and two graduate students in the SMU Department of Physics, Farley Ferrante and Govinda Dhungana.
The astronomy team in May reported observation of intense light from the enormous explosion of a star more than 12 billion years ago — shortly after the Big Bang — that recently reached Earth and was visible in the sky.
Known as a gamma-ray burst, light from the rare, high-energy explosion traveled for 12.1 billion years before it was detected and observed by a telescope, ROTSE-IIIb, owned by SMU.
Gamma-ray bursts are believed to be the catastrophic collapse of a star at the end of its life. SMU physicists report that their telescope was the first on the ground to observe the burst and to capture an image.
Recorded as GRB 140419A by NASA’s Gamma-ray Coordinates Network, the burst was spotted at 11 p.m. April 19 by SMU’s robotic telescope at the McDonald Observatory in the Davis Mountains of West Texas.
Daily Mail reporter Jonathan O’Callaghan reported the news in his article “Huge 12 billion-year-old explosion in space has been spotted from Earth – and it could reveal secrets of the early universe.”
EXCERPT:
By Jonathan O’Callaghan
Daily MailOne of the biggest and hottest explosions in the universe – a rare event known as a gamma-ray burst (GRB) – has been spotted on camera.
And this particular event, caused by the enormous explosions of a star, occurred shortly after the Big Bang about 12.1 billion years ago.
The intense light recently reached Earth and it could give astronomers useful information about the conditions in the young universe.
Gamma-ray bursts are believed to be the catastrophic collapse of a star at the end of its life.
The observation was made by the telescope Rotse-IIIB at the McDonald Observatory in the Davis Mountains of West Texas, owned by the Southern Methodist University (SMU) in Dallas.
SMU physicists report that their telescope was the first on the ground to observe the burst, and to capture an image.
This particular explosion, first spotted back in April, was recorded as GRB 140419A by Nasa’s Gamma-ray Coordinates Network (GCN).
Gamma-ray bursts are not well understood by astronomers, but they are considered important, according to Farley Ferrante, a graduate student in SMU’s Department of Physics, who monitored the observations along with two astronomers in Turkey and Hawaii.
‘As Nasa points out, gamma-ray bursts are the most powerful explosions in the universe since the Big Bang,’ he said.
‘These bursts release more energy in 10 seconds than our Earth’s sun during its entire expected lifespan of 10 billion years.’
Some of these GRBs appear to be related to supernovae and correspond to the end-of-life of a massive star, said Dr Robert Kehoe, physics professor and leader of the SMU astronomy team.
‘Gamma-ray bursts may be particularly massive cousins to supernovae, or may correspond to cases in which the explosion ejecta are more beamed in our direction. By studying them, we learn about supernovae,’ Kehoe said.