

Did you know...

• A solid understanding of the properties of operations is necessary for the successful completion of problem-solving tasks!

Why?

• Understanding mathematical properties of operations enables students to generalize and apply their understanding of each type of operation to a variety of mathematical contexts.

• There are four basic operations that students must understand:

Ideas in Mathematics: Properties of Operations Properties of Operations Cet's take a closer look!			
Property Type	Definition	Example	
Associative property of addition	If three whole numbers (a,b,c) are being added: 1. The sum will be the same when the first two are added first and that sum is added to the third number, or 2. The second two num- bers are added first and that sum is added to the first number (a +b) + c = a + (b+c)	Jenny has 2 pencils, 6 markers, and nine pieces of paper in her back- pack. Mark has 9 pencils, 2 pieces of paper, and six markers in his backpack. Who has the most school supplies? a=2,b=6,c=9 (2 + 6) + 9 = 2 + (9 + 6) 8 + 9 = 2 + 15 8 + 9 = 17 2 + 15 = 17	
Commutative property of addition	When we add whole (a,b) num- bers in any order, the sum will not change a + b = b + a	a = 8 and b = 3 8 + 3 = 3 + 8 8 + 3 = 11 3 + 8 = 11	
Additive identity property of 0	The whole number 0 is called the additive identity, because when we add 0 to any whole number, the sum is identical to that whole number. a + 0 = a 0 + a = a	a = 13 13 + 0 = 13 0 + 13 = 13	
Existence of additive inverses *also called zero pair	For every a there exists –a so that: a + (–a) = (–a) + a = 0	a = 6 6 + (-6) = (-6) + 6 = 0	

Ideas in Mathematics: Properties of Operations Properties of Operations Called Algebra: Supporting Let's take a closer look!			
Property Type	Definition	Example	
Associative property of multiplication	When we multiply three whole numbers, the product will be the same if: 1. The first two are mul- tiplied first and that product is multiplied by the third, or 2. If the second two num- bers are multiplied first and that product is multiplied by the third number. $(a \times b) \times c = a \times (b \times c)$	a = 5, b = 3, c = 4 (5 x 3) x 4 = 5 x (3 x 4) 15 x 4 = 12 x 5 15 x 4 = 60 12 x 5 = 60	
Commutative property of multiplication	The product of two whole num- bers is the same, no matter the order of the factors. a x b = b x a	a = 9 and b = 9 x 5 = 45 5 x 9 = 45	
Multiplicative identity property 1	In multiplication, the whole num- ber 1 is called the multiplicative identity. The product of a whole number multiplied by 1 is identical to that whole number. a x 1 = 1 x a	a = 16 16 x 1 = 16 1 x 16 = 16	
Existence of multiplica- tive inverses	The multiplicative inverse of a number is such that the product of a and this number equals 1. It is the reciprocal of the number, 1/a, because a(1/a) = 1	a= -3 (-3) (- 1/3) = 1 Thus, the multiplicative inverse of -3 is - 1/3	

Additional Resources:

https://iris.peabody.vanderbilt.edu/wpcontent/uploads/pdf_case_studies/ics_alg1.pdf

http://pressbooks-dev.oer.hawaii.edu/math111/chapter/properties-of-operations/

https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/MPS_PG_043012.pdf