Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

KERA Think: Tiny Particles, Big Impact

SMU physicist Thomas Coan talked with KERA about the neutrino, an elusive fundamental particle that scientists are working to understand using one of the most powerful physics experiments in the world.

KERA public radio 90.1 hosted SMU physicist Thomas E. Coan on Krys Boyd‘s “Think” program Oct. 29. Coan and Boyd discussed neutrinos, one of the most elusive particles in the Standard Model’s “particle zoo.”

Neutrinos are the subject of the NOvA experiment, with the goal to better understand the origins of matter and the inner workings of the universe.

One of the largest and most powerful neutrino experiments in the world, NOvA is funded by the National Science Foundation and the U.S. Department of Energy.

At the heart of NOvA are its two particle detectors — gigantic machines of plastic and electronic arrays. One detector is at the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago and the other is at Ash River, Minn. near the Canadian border.

Designed and engineered by about a hundred U.S. and international scientists, NOvA is managed by Fermilab. NOvA’s detectors and its particle accelerator officially start up the end of October 2014.

Coan, an associate professor in the SMU Department of Physics, is a member of the NOvA experiment. He is co-convener of NOvA’s calibration and alignment group, guiding a crew of international scientists who handle responsibility for understanding the response of NOvA’s detector when it is struck by neutrinos.

Neutrinos are invisible fundamental particles that are so abundant they constantly bombard us and pass through us at a rate of more than 100,000 billion particles a second. Because they rarely interact with matter, they have eluded scientific observation.

Listen to the podcast Tiny Particles, Big Impact.

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news

Hunt begins for elusive neutrino particle at one of the world’s largest, most powerful detectors

Elusive particle that is one of the building blocks of matter holds the key to space, time, matter, energy and origins of the universe

When scientists pour 3.0 million gallons of mineral oil into what are essentially 350,000 giant plastic tubes, the possibility of a leak can’t be overlooked, says SMU physicist Thomas E. Coan.

The oil and tubes are part of the integral structure of the world’s newest experiment to understand neutrinos — invisible fundamental particles that are so abundant they constantly bombard us and pass through us at a rate of more than 100,000 billion particles a second.

Neutrinos rarely interact with matter and so mostly pass through objects completely unnoticed. The purpose of NOvA, as the new experiment is called, is to better understand neutrinos. That knowledge may lead to a clearer picture of the origins of matter and the inner workings of the universe, Coan said.

”Neutrinos are thought to play a key but still somewhat murky role in explaining how the universe evolved to contain just the matter we see today and somehow disposing of the antimatter present at the Big Bang,” he said.

A massive pivoting machine moves one block of the NOvA far detector across the hall in Ash River, Minn., to connect it with the rest of the detector. Each block measures 50 feet by 50 feet by 6 feet, and was assembled from PVC modules. (Credit: Fermilab)
A massive pivoting machine moves one block of the NOvA far detector across the hall in Ash River, Minn., to connect it with the rest of the detector. Each block measures 50 feet by 50 feet by 6 feet, and was assembled from PVC modules. (Credit: Fermilab)

Coan is an associate professor in the SMU Department of Physics and a member of the NOvA experiment. “Solving this riddle is likely to require many experiments to get the story correct,” he said. “NOvA is a next step along what is likely to be a twisty path.”

At the heart of NOvA are its two particle detectors — gigantic machines of plastic and electronic arrays, one at the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago and the other in Ash River, Minn. near the Canadian border.

Designed and engineered by about a hundred U.S. and international scientists, NOvA is managed by Fermilab. NOvA’s detectors and its particle accelerator officially start up the end of October.

“There are essentially zero leaks,” Coan said. “This was a bit of a surprise. It guarantees that critical electronics won’t be damaged by leaking oil and that the detector will be highly efficient for detecting the neutrinos we aim at it.”

One of the largest and most powerful neutrino experiments in the world, NOvA is funded by the National Science Foundation and the U.S. Department of Energy.

SMU graduate student Biao Wang is 300 feet underground in front of the close detector. Under the direction of SMU physicist Thomas Coan, Wang works on the maintenance and trouble shooting of the detector as an on-call expert for the cooling system of the read-out electronics.
SMU graduate student Biao Wang is 300 feet underground in front of the NOvA close detector. Under the direction of SMU physicist Thomas Coan, Wang works on the maintenance and trouble shooting of the detector as an on-call expert for the cooling system of the read-out electronics.

It has the world’s most powerful beam of neutrinos, is the most powerful accelerator neutrino experiment ever built in the United States, and is the longest distance neutrino experiment in the world.

Coan, a co-convener of NOvA’s calibration and alignment group, guides a crew of international scientists who handle responsibility for understanding the response of NOvA’s detector when it is struck by neutrinos.

“The detector has been behaving extremely well,” Coan said, noting NOvA scientists were delighted by the machine’s successful performance during testing after five years of construction.

Neutrino beam will travel near speed of light
Central to the detector are its rectangular plastic tubes staggered in horizontal and vertical layers. As neutrinos strike the oil-filled plastic tubes, the interaction makes the oil — liquid scintillator — faintly glow and creates various particles.

Special green fiberoptic cables in the plastic tubes transmit the faint glow from the liquid scintillator to photosensors at one end of each tube, where the light is converted to bursts of electricity which in turn are sent to nearby computers.

When a neutrino strikes an atom in the liquid scintillator filling the 15-kiloton far detector, it releases a burst of charged particles. Scientists can detect these particles and use them to learn about neutrino interactions.
When a neutrino strikes an atom in the liquid scintillator filling the 15-kiloton far detector, it releases a burst of charged particles. Scientists can detect these particles and use them to learn about neutrino interactions.

“We don’t actually see the neutrinos,” Coan said. “We see the particles that are the after-party — the final state particles produced by the neutrinos after they strike the detector.”

SMU’s supercomputer ManeFrame will have a high-profile role with NOvA. SMU will contribute four million processing hours each year to the experiment, Coan said.

The process begins when NOvA’s underground accelerator near Chicago shoots a beam of neutrinos at nearly the speed of light to the particle detectors. Plans call for the accelerator to run for six years or more, stopping only occasionally for maintenance breaks.

“This is a long process,” Coan said. “That is uncommon in our modern culture where we tend to expect quick results. But it will take time for us to capture enough data to do all the science we want to do. It will take years. In a couple weeks Fermilab will start bringing the beam back — which is a more complicated process than just pushing a few buttons and starting it up.”

Scientists hope to discover the properties of neutrinos
NOvA’s purpose is to capture a significant volume of data to allow scientists to draw conclusions about the properties of neutrinos.

Those properties may hold answers to the nature of matter, energy, space and time, and lead to understanding the origins of the universe.

Specifically, Coan said, NOvA physicists want to know how different types of neutrinos morph from one kind to another, the probability for that to occur, the relative weight of neutrinos, and the difference in behavior between neutrinos and anti-neutrinos.

NOvA’s particle detectors were both constructed within the neutrino beam sent from Fermilab in Batavia, Ill. to northern Minnesota. The 300-ton near detector observes the neutrinos as they embark on their journey through the earth, with no tunnel needed. The 14,000-ton far detector spots those neutrinos after their 500-mile trip, and allows scientists to analyze how they change over that long distance.

Construction on NOvA’s two massive neutrino detectors began in 2009. The Department of Energy in September said construction of the experiment was completed on schedule and under budget.

Scientists predict detectors will catch only a few neutrinos a day
For the next six years, Fermilab will send tens-of thousands of billions of neutrinos every second in a beam aimed at both detectors, and scientists expect to catch only a few each day in the far detector.

From this data, scientists hope to learn more about how and why neutrinos change between one type and another. The three types, called flavors, are the muon, electron and tau neutrino. Over longer distances, neutrinos can flip between these flavors.

NOvA is specifically designed to study muon neutrinos changing into electron neutrinos. Unraveling this mystery may help scientists understand why the universe is composed of matter, and why that matter was not annihilated by antimatter after the Big Bang.

Scientists also will probe the still-unknown masses of the three types of neutrinos in an attempt to determine which is the heaviest.

“Neutrino research is an important part of the worldwide particle physics program,” said Fermilab Director Nigel Lockyer.

First results expected in 2015
The far detector in Minnesota is believed to be the largest free-standing plastic structure in the world, at 200 feet long, 50 feet high and 50 feet wide. Both detectors are constructed from PVC, and filled with the scintillating liquid that gives off light. The data acquisition system creates 3-D pictures of the interactions for scientists to analyze.

The NOvA far detector in Ash River saw its first long-distance neutrinos in November 2013.

“Building the NOvA detectors was a wide-ranging effort that involved hundreds of people in several countries,” said Gary Feldman, co-spokesperson of the NOvA experiment.

The NOvA collaboration comprises 208 scientists from 38 institutions in the United States, Brazil, the Czech Republic, Greece, India, Russia and the United Kingdom.

NOvA stands for NuMI Off-Axis Electron Neutrino Appearance. NuMI is itself an acronym, standing for Neutrinos from the Main Injector, Fermilab’s flagship accelerator. — Margaret Allen, SMU; Fermilab

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Learning & Education Researcher news Technology

The power of ManeFrame: SMU’s new supercomputer boosts research capacity

950x150 ManeFrame_v2 rev

The enormous capacity of SMU’s new supercomputer ranks it among the largest academic supercomputers in the nation.

ManeFrame, previously known as MANA, was relocated to Dallas from its previous location in Maui, Hawaii. (Courtesy of mauinow.com)
ManeFrame, previously known as MANA, was relocated to Dallas from its former location in Maui, Hawaii. (Courtesy of mauinow.com)

SMU now has a powerful new tool for research – one of the fastest academic supercomputers in the nation – and a new facility to house it.

With a cluster of more than 1,000 Dell servers, the system’s capacity is on par with high-performance computing (HPC) power at much larger universities and at government-owned laboratories. The U.S. Department of Defense awarded the system to SMU in August 2013.

SMU’s Office of Information Technology added the system to the University’s existing – but much smaller – supercomputer. The system is housed in a new facility built at the corner of Mockingbird and Central Expressway. In a contest sponsored by Provost and Vice President for Academic Affairs Paul W. Ludden, faculty and students chose the name “ManeFrame” to honor the Mustang mascot.

The enormous capacity and speed of HPC expands scientific access to new knowledge around key questions about the universe, disease, human behavior, health, food, water, environment, climate, democracy, poverty, war and peace.

“World-changing discoveries rely on vast computing resources,” says President R. Gerald Turner. “ManeFrame quintuples the University’s supercomputing capacity. Our scientists and students will keep pace with the increasing demand for the ever-expanding computing power that is required to participate in global scientific collaborations. This accelerates our research capabilities exponentially.”

ManeFrame potential
With nearly 11,000 central processing unit cores, ManeFrame boasts 40 terabytes (one terabyte equals a trillion bytes) of memory and more than 1.5 petabytes of storage (a petabyte equals a quadrillion bytes), says Joe Gargiulo, SMU’s chief information officer, who led the installation team.

The sciences and engineering primarily use supercomputers, but that is expanding to include the humanities and the arts. So far, SMU’s heavy users are researchers in physics, math, biology, chemistry and economics.

“This technologically advanced machine will have an impact on shaping our world,” says Thomas M. Hagstrom, chair of the Department of Mathematics in Dedman College and director of SMU’s Center for Scientific Computing. “This makes research that solves problems on a large scale much more accessible. ManeFrame’s theoretical peak would be on the order of 120 Teraflops, which is 120 trillion mathematical operations a second.”

Supercomputers can use sophisticated software and step-by-step procedures for calculations, called algorithms, to solve complex problems that can’t be managed in a researcher’s lab, Hagstrom explains.

“We can’t put the Earth’s climate system or study the evolution of the universe in a physical lab,” he says. “You can only study these and other systems in a comprehensive way using high-performance computing.”

Making SMU competitive
Supercomputing gave University physicists a role in the Higgs Boson research at the Large Hadron Collider in Geneva, Switzerland. Joining the collaboration with thousands of scientists around the world, SMU’s team was led by Physics Professor Ryszard Stroynowski. SMU’s physicists tapped the existing HPC on campus to quickly analyze massive amounts of data and deliver results to their international colleagues.

SMU’s team will use ManeFrame to keep pace with an even larger flood of data expected from the Large Hadron Collider.

“ManeFrame makes SMU – which is small by comparison with many of its peer institutions at CERN – nimble and competitive, and that lets us be visible in a big experiment like CERN,” says Stephen Sekula, assistant professor of physics. “So we have to have ideas, motivation and creativity – but having a technical resource like ManeFrame lets us act on those things.”

SMU physicist Pavel Nadolsky has conducted “big data” analyses of subatomic particles on the supercomputer as part of an international physics collaboration. Big data refers to probability distributions that depend on many variables. As users ranging from retailers to the health industry collect multitudes of transactional data every day, requirements for big data analysis are rapidly emerging.

“To keep up in our field, we need resources like ManeFrame,” says Nadolsky, associate professor of physics.

“The world is moving into big-data analysis, whether it’s Google, Facebook or the National Security Administration,” Nadolsky says. “We learn a lot about the world by studying multidimensional distributions: It tells about the origins of the universe; it can win elections by using data mining to analyze voting probabilities over time in specific geographical areas and targeting campaign efforts accordingly; and it can predict what people are doing. To make students competitive they must be trained to use these tools efficiently and ethically.”

ManeFrame will have a high-profile role in the U.S. Department of Energy experiment called NOvA, which studies neutrinos, a little-understood and elusive fundamental particle that may help explain why matter, and not just light, exists in the universe today. SMU will contribute four million processing hours each year to the experiment, says Thomas E. Coan, associate professor of physics and a member of the international team.

“We’re in good company with others providing computing, including California Institute of Technology and Harvard,” Coan says. “It’s one way for SMU to play a prominent role in the experiment. We get a lot of visibility among all the institutions participating in NOvA, which are spread out across five countries.”

Advancing discovery
One of the heaviest users of SMU’s HPC is John Wise, associate professor of biological sciences, who models a key human protein to improve chemotherapy to kill cancer cells. Wise works with the SMU Center for Drug Discovery, Design and Delivery in Dedman College, an interdisciplinary research initiative of the Biology and Chemistry departments and led by Professor of Biological Sciences Pia Vogel.

Within the Mathematics Department, Assistant Professor Daniel R. Reynolds and his team use high-performance computing to run simulations with applications in cosmology and fusion reactors.

Looking to the future, high-performance computing will be increasing in research, business and the arts, according to James Quick, associate vice president for research and dean of graduate studies.

“High-performance computing has emerged as a revolutionary tool that dramatically increases the rates of scientific discovery and product development, enables wise investment decisions and opens new dimensions in artistic creativity,” says Quick, professor of earth sciences. “SMU will use the computational power of ManeFrame to expand research and creativity and develop educational opportunities for students interested in the application of high-performance computing in their fields – be it science, engineering, business or the arts.” – Margaret Allen

Follow SMUResearch.com on twitter at @smuresearch.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News

SMU Daily Campus: Navigating neutrinos — Professor studies most elusive particle in the universe

Thomas Coan, an associate professor in the SMU Department of Physics, works with more than 200 scientists around the world to study one of the universe's most elusive particles — the neutrino. (Photo: Ellen Smith, The Daily Campus)
Thomas Coan, an associate professor in the SMU Department of Physics, works with more than 200 scientists around the world to study one of the universe’s most elusive particles — the neutrino.
(Photo: Ellen Smith, The Daily Campus)

Journalist Lauren Aguirre of the SMU Daily Campus covered the research of SMU physicist Thomas E. Coan, an associate professor in the SMU Department of Physics.

Coan collaborates with more than 200 scientists around the world to study one of the universe’s most elusive particles — the neutrino.

Neutrinos could yield crucial information about the early moments of the universe, according to Coan and other scientists on the NOvA experiment, which will gather data from a detector in Minnesota.

“Neutrinos are fascinating. They are, besides light, the most numerous particle in the universe yet are notoriously difficult to study since they interact with the rest of matter so feebly,” he said. “Produced in many venues, from laboratories to stars and even bones, they may be their own anti-particles and perhaps play a key role in explaining why any matter at all exists today and survived annihilation with its sister anti-matter produced all the way back in the Big Bang, many billions of years ago.”

The NUMI Off-Axis electron neutrino Appearance, or NOvA, is the world’s longest-distance neutrino experiment. It consists of two huge particle detectors placed 500 miles apart, and its job is to explore the properties of an intense beam of neutrinos.

The Daily Campus article published Feb. 27, “Navigating neutrinos: Professor studies most elusive particle in the universe.”

Read the full story.

EXCERPT:

By Lauren Aguirre
The Daily Campus

Thomas Coan, an associate professor in the SMU Department of Physics, is working with over 200 scientists from around the world to study one of the universe’s most elusive particles — the neutrino.

Neutrinos are one of the most abundant particles in the universe, but are hard to detect because they rarely interact with other particles. The NuMI Off-Axis electron neutrino Appearance, or NOvA, experiment may explain the makeup of the universe.

“Neutrinos play a key role in explaining why anti-matter still exists,” Coan said.

Anti-matter are particles that have the same mass as ordinary matter people are familiar with, but anti-matter has opposite charges. When matter and anti-matter collide, they annihilate each other. According to the NOvA experiment website, studying neutrinos can help explain why the universe has more matter than anti-matter. Because humans are made of regular matter, understanding the balance between these two particles can explain why humans exist.

“By understanding these fundamental questions, we can get down to the fundamental levels of how the universe works,” said Brian Rebel, a staff scientist at Fermilab, the organization that is managing NOvA.

Coan started working at SMU in 1994 and joined the NOvA collaboration in 2005.

Read the full story.

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Earth & Climate Energy & Matter Researcher news Videos

NOvA experiment glimpses neutrinos, one of nature’s most abundant, and elusive particles

Ghostly particles that constantly bombard us can offer clues to the early moments of our universe

Scientists hunting one of nature’s most elusive, yet abundant, elementary particles announced today they’ve succeeded in their first efforts to glimpse neutrinos using a detector in Minnesota.

Neutrinos are generated in nature through the decay of radioactive elements and from high-energy collisions between fundamental particles, such as in the Big Bang that ignited the universe.

Light and ghostly, however, they are unaffected by magnetic fields and travel at the speed of light.

The neutrinos that currently bombard the earth from space are mostly produced by the nuclear reactions that power our sun.

More than 200 physicists from around the world collaborate on the massive neutrino experiment called NOvA, which has taken a decade to design and build.

Their goal is to discover more details about neutrinos, which were theorized in 1930 and first observed in 1956.

The NOvA detector viewed from Google earth
The NOvA detector viewed from Google earth. Click to enlarge.

“These first few neutrino events are a confirmation that NOvA’s basic detector design and construction that dozens of people have worked on for a good fraction of a decade are sound,” said Thomas E. Coan, an associate professor in the SMU Department of Physics, who is a researcher in the NOvA collaboration.

Studying neutrinos could yield crucial information about the early moments of the universe, Coan said.

“Neutrinos are fascinating. They are, besides light, the most numerous particle in the universe yet are notoriously difficult to study since they interact with the rest of matter so feebly,” he said. “Produced in many venues, from laboratories to stars and even bones, they may be their own anti-particles and perhaps play a key role in explaining why any matter at all exists today and survived annihilation with its sister anti-matter produced all the way back in the Big Bang, many billions of years ago.”

NOvA is the world’s longest-distance neutrino experiment
The NUMI Off-Axis electron neutrino Appearance, or NOvA, is the world’s longest-distance neutrino experiment. It consists of two huge particle detectors placed 500 miles apart, and its job is to explore the properties of an intense beam of neutrinos.

“NOvA represents a new generation of neutrino experiments,” said Fermilab Director Nigel Lockyer. “We are proud to reach this important milestone on our way to learning more about these fundamental particles.”

Scientists generate a beam of the particles for the NOvA experiment using one of the world’s largest accelerators, located at the Department of Energy’s Fermi National Accelerator Laboratory near Chicago. They aim this beam in the direction of the two particle detectors, one near the source at Fermilab and the other in Ash River, Minn., near the Canadian border. The detector in Ash River is operated by the University of Minnesota under a cooperative agreement with the Department of Energy’s Office of Science.

Billions of those particles are sent through the earth every two seconds, aimed at the massive detectors. Once the experiment is fully operational, scientists will catch a precious few each day.

“It is both intellectually and emotionally satisfying,” said SMU’s Coan, “akin to a great adventure, to be detecting neutrinos in Northern Minnesota that are produced some 500 miles to the south at Fermi National Laboratory near Chicago, after making thousands of engineering and scientific decisions that had to be spot-on to see these events.”

Scientists will use NOvA to understand three changing flavors of neutrinos
Neutrinos are curious particles. They come in three types, called flavors, and change between them as they travel. The two detectors of the NOvA experiment are placed so far apart to give the neutrinos the time to oscillate from one flavor to another while traveling at nearly the speed of light. Even though only a fraction of the experiment’s larger detector, called the far detector, is fully built, filled with scintillator and wired with electronics at this point, the experiment has already used it to record signals from its first neutrinos.

“That the first neutrinos have been detected even before the NOvA far detector installation is complete is a real tribute to everyone involved,” said University of Minnesota physicist Marvin Marshak, Ash River Laboratory director. “This early result suggests that the NOvA collaboration will make important contributions to our knowledge of these particles in the not so distant future.”

Once completed, NOvA’s near and far detectors will weigh 300 and 14,000 tons, respectively. Crews will put into place the last module of the far detector early this spring and will finish outfitting both detectors with electronics in the summer.

The NOvA collaboration is made up of 208 scientists from 38 institutions in the United States, Brazil, the Czech Republic, Greece, India, Russia and the United Kingdom. The experiment receives funding from the U.S. Department of Energy, the National Science Foundation and other funding agencies.

The NOvA experiment is scheduled to run for six years. Because neutrinos interact with matter so rarely, scientists expect to catch just about 5,000 neutrinos or antineutrinos during that time. Scientists can study the timing, direction and energy of the particles that interact in their detectors to determine whether they came from Fermilab or elsewhere.

“Seeing neutrinos in the first modules of the detector in Minnesota is a major milestone”
Fermilab creates a beam of neutrinos by smashing protons into a graphite target, which releases a variety of particles. Scientists use magnets to steer the charged particles that emerge from the energy of the collision into a beam. Some of those particles decay into neutrinos, and the scientists filter the non-neutrinos from the beam.

Fermilab started sending a beam of neutrinos through the detectors in September, after 16 months of work by about 300 people to upgrade the lab’s accelerator complex.

Different types of neutrinos have different masses, but scientists do not know how these masses compare to one another. A goal of the NOvA experiment is to determine the order of the neutrino masses, known as the mass hierarchy, which will help scientists narrow their list of possible theories about how neutrinos work.

“Seeing neutrinos in the first modules of the detector in Minnesota is a major milestone,” said Fermilab physicist Rick Tesarek, deputy project leader for NOvA. “Now we can start doing physics.” — Andre Salles, Fermilab, and Margaret Allen, SMU

Follow SMUResearch.com on Twitter.

For more information, www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.