Frontburner: Texas’ Bone Wars Studied by SMU Professor

SMU Department of Biological Sciences

Frontburner: Texas’ Bone Wars Studied by SMU Professor

Jason Heid, an editor with D Magazine's popular Frontburner blog, covered the research of SMU vertebrate paleontologist Louis L. Jacobs and the infamous Bone Wars of the late 1800s. The Bone Wars refers to a flurry of fossil speculation across the American West escalated into a high-profile national feud. Drawn into the spectacle were two scientists from the Lone Star State, geologist Robert T. Hill, now acclaimed as the Father of Texas Geology, and naturalist Jacob Boll, who made many of the state’s earliest fossil discoveries.

Texas frontier scientists who uncovered state’s fossil history had role in epic Bone Wars

In the late 1800s, furious fossil speculation across the American West escalated into a high-profile national feud called the Bone Wars. Vertebrate paleontologist Louis L. Jacobs unveils how the Bone Wars touched Texas through the lives of two Lone Star scientists, geologist Robert T. Hill and naturalist Jacob Boll.

Moving 3D computer model of key human protein is powerful new tool in fight against cancer

A picture is worth 1,000 words when it comes to understanding how things work, but 3D moving pictures are even better. That’s true for scientists trying to stop cancer by better understanding the proteins that make some chemotherapies unsuccessful. Now SMU biochemist John G. Wise at SMU has brought to life in a moving 3D computer model the structure of a key protein related to recurring cancers.

Human diabetes has new research tool: Overfed fruit flies that develop insulin resistance

Johannes Bauer, SMU, fruit flies, diabetesWith Type 2 human diabetes climbing at alarming rates in the United States, researchers are seeking treatments for the disease, which has been linked to obesity and poor diet. Now biologists at Southern Methodist University, Dallas, report they have developed a new discovery tool that will help researchers better understand this deadly disease.

Modeling the human protein in search of cancer treatment: An SMU Researcher Q&A

SMU biologists Pia Vogel and John Wise in the SMU Department of Biological Sciences are using the computational power of the SMU high-performance supercomputer to screen millions of drug compounds. They hope to find a compound that can be developed into a drug that re-enables chemotherapy after it fails to work against recurring cancer.

Blocking enzyme may prove novel way to thwart HIV

Harrod%2CRobert%20lab4.jpgIn 1996 the introduction of "triple cocktail" drug therapy transformed AIDS from a death sentence into a manageable chronic disease. The drug regimen, also known as HAART for highly active antiretroviral treatment, involved treating patients with three or more classes of antiviral medicines.

But the virus fought back. It mutates easily, and the mutations caused resistance to first one and then another drug making up the cocktail. Unsettling reports of newly infected patients with the drug-resistant virus meant researchers needed to find new ways to fight HIV infection.

November 21, 2008|Categories: Health & Medicine|Tags: , , , |

Aids, cancer targeted by biology researchers

Harrod%2CRobert%20lab2.jpgIn his third-floor laboratory in Dedman Life Sciences Building, biologist Robert Harrod and his team are zeroing in on a new way to inhibit the virus that causes AIDS. They already have shown that their approach, which involves the rare genetic disorder Werner syndrome, works when the disorder's enzyme defect is introduced into cells.

Now they are trying to find practical ways to use this pathway to inhibit the AIDS virus. The beauty of this approach is that the AIDS virus will not be able to mutate in a way that can defeat this treatment, says Harrod, associate professor in the Biological Sciences Department of Dedman College.

Vik named 2008 SMU Ford Research Fellow

vik.jpgSteven Vik, in the Department of Biological Sciences of Dedman College, has received an SMU 2008 Ford Research Fellowship.

A professor in the Department of Biological Sciences, Vik's research interests include protein structure and function, and the biochemistry of membrane-bound enzymes. His work focuses on key mechanisms of bioenergetics, the study of how living systems get and use the energy sources required to sustain life.

May 30, 2008|Categories: Researcher news|Tags: , |
Load More Posts