Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News

Inverse: There is no limit to human speed — Fast, faster, fastest, and fastest-er.

“Weyand doesn’t see a future where records stop being broken; there are just too many different ways to legally influence performance through better training and better technology.”

Science writer Jacqueline Ronson tapped the expertise of SMU biomechanics expert Peter Weyand for an article on the news web site Inverse.com that examines the possibility for humans to continue running faster and faster — and faster.

Ronson cites physiologist Weyand’s numerous research findings, which have explored the mechanics of how sprinters like Usain Bolt and other world-class athletes are able to run so fast that they continually break speed records. The article “There is no limit to human speed” published Aug. 11, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology & Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Jacqueline Ronson
Inverse.com

Usain Bolt seems to run impossibly fast: His record time of 9.58 seconds in the 100-meter sprint seems unbeatable — yet that’s what was said about so many of the record holders before.

But surely there must be a hard limit to human speed, after which no more records will be broken? Humans, after all, cannot run infinitely fast.

Peter Weyand, a physiologist who has studied the biomechanics of running for two decades, says no.

“You can always be confident, no matter how fast somebody runs, it’s possible to go faster,” he tells Inverse. “You’re never going to have absolutely perfect conditions and an absolutely perfect person and an absolutely perfect race all come together at the same time.”

Here’s a neat fact: If you can sprint, you can be as fast as Usain Bolt. Back in the late 1990s, Weyand and a team of researchers measured a bunch of different people running at their top speed, and they had something in common: Within a very small margin, they all took the same amount of time to swing a leg through the stride from back to front. “Whether you’re fast, slow, or in between, the repositioning time for the limb at top speed is basically the same,” he says.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Health & Medicine SMU In The News Student researchers

Scientific American: Blade Runners — Do High-Tech Prostheses Give Runners an Unfair Advantage?

Four years after Oscar Pistorius made history at the London Olympics, the question remains unanswered

Science writer Larry Greenemeier cited the research of SMU biomechanics expert Peter Weyand for an article in Scientific American that examines the pros and cons of carbon-fiber blade prosthetics used by athlete amputees.

Greenemeier cites Weyand’s research findings from a study of Olympic blade-runner Oscar Pistorius to determine whether the double-amputee had a competitive advantage from his carbon-fiber prosthetic legs. The article “Blade Runners: Do High-Tech Prostheses Give Runners an Unfair Advantage?” published Aug. 5, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Larry Greenemeier
Scientific American

Paralympic long jump champ Markus Rehm’s bid to compete in the 2016 Rio de Janeiro Olympics fell short in July when he could not prove that his carbon-fiber “blade” prosthesis didn’t give him an advantage. His baffling case serves as a reminder that four years after South African sprinter Oscar Pistorius propelled himself into history as the first amputee Olympic athlete to compete using blade prostheses, the technology’s impact on performance remains unclear despite ongoing research.

Blade prostheses, like Rehm uses on his right leg and Pistorius used on both, share some characteristics with biological limbs. The blades store energy as they bear the runner’s weight and then release it as the runner pushes off the ground, much the way a leg’s calf muscles and Achilles’ tendons spring and recoil. But an important difference is the foot, which on a blade prosthetic does not pivot or generate its own energy. A biological foot has muscle fibers that help it push off the ground in a way that creates “metabolic efficiency so your muscles don’t have to put all of the work back in with every step as you’re running,” says David Morgenroth, an assistant professor in the University of Washington’s Department of Rehabilitation Medicine…

…Shortly after track and field’s governing body, the International Association of Athletics Federations (IAAF), banned Pistorius in 2008 from competing against so-called “able-bodied” competitors, he underwent a series of tests at Rice University’s Locomotion Laboratory in an attempt to be reinstated. The researchers concluded that Pistorius used 17 percent less energy than that of elite sprinters on intact limbs. The tests also revealed that it took the South African 21 percent less time to reposition, or swing, his legs between strides. Big disagreements arose over how to interpret the research.

Southern Methodist University’s Peter Weyand and Matt Bundle from the University of Montana saw a clear overall advantage in Pistorius’s faster leg swings and more energy-efficient stride, which they said could create up to a seven-second advantage in the 400-meter race. “The more mass you have closer to the axis—in this case, your hips—the easier it is to stop the rotation and then turn it around,” Bundle says. “Whereas if you had that same amount of mass located a long way away from the axis—in your lower legs and feet—it becomes much more difficult to stop it and get it going in the opposite direction.”

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News

Scientific American: Have We Reached the Athletic Limits of the Human Body?

Record-breaking has slowed, but science could find new ways to make us keep getting stronger and faster

Science writer Bret Stetka tapped the expertise of SMU biomechanics expert Peter Weyand for an article in Scientific American examining the potential for humans to continue improving strength and speed beyond what has already been achieved.

Stetka quotes Weyand for his expertise on the mechanics of running and speed of world-class sprinters like Usain Bolt. The article “Have We Reached the Athletic Limits of the Human Body?” published Aug. 5, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Bret Stetka
Scientific American

At this month’s summer’s Olympic Games in Rio, the world’s fastest man, Usain Bolt—a six-foot-five Jamaican with six gold medals and the sinewy stride of a gazelle—will try to beat his own world record of 9.58 seconds in the 100-meter dash.

If he does, some scientists believe he may close the record books for good.

Whereas myriad training techniques and technologies continue to push the boundaries of athletics, and although strength, speed and other physical traits have steadily improved since humans began cataloguing such things, the slowing pace at which sporting records are now broken has researchers speculating that perhaps we’re approaching our collective physiological limit—that athletic achievement is hitting a biological brick wall.

Common sense tells us that of course there are limits to athletic achievement: Barring some drastic amendment to the laws of physics, no human will ever run at the speed of sound. And physiologically speaking there’s only so much calcium that can flood into a muscle cell causing it to contract; there’s only so much oxygen our red blood cells can shuttle around.

In this vein, in 2008 running enthusiast and Stanford University biologist Mark Denny published a study attempting to determine if there are absolute limits to the speeds animals can run. To do so he analyzed the records of three racing sports with long histories of documentation: track and field and horse racing in the U.S., along with English greyhound racing…

…Bolt may be comforted to know that for Southern Methodist University physiology professor Peter Weyand, one of the leading experts on the biology of performance, we humans haven’t quite reached our athletic ceiling. Weyand explains that when considering endurance, for example, there are two paths to improvement: either increasing the amount of blood being pumped out of the heart or increasing the oxygen concentration in the blood itself, as is the case with blood doping. “I don’t think we’ve hit our limits yet,” he believes, “I think people will find ways to enhance oxygen delivery through the body and squeeze more performance out of humans. The only question is will these approaches be considered legal.”

Read the full story.

Categories
Health & Medicine Researcher news SMU In The News

The Wall Street Journal: The Science Behind Sprinter Usain Bolt’s Speed

Usain Bolt, the fastest-ever human, appears to have an extra gear that propels him ahead of other sprinters. But that’s not what’s going on.

Science writer Matthew Futterman tapped the expertise of SMU biomechanics expert Peter Weyand for an article about the world’s fastest-ever human, Usain Bolt.

Reporting in The Wall Street Journal, Futterman quotes Weyand for his expertise on the mechanics of Usain Bolt’s unusual speed. The article “The Science Behind Sprinter Usain Bolt’s Speed,” published July 28, 2016.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Read the full story.

EXCERPT:

By Matthew Futterman
The Wall Street Journal

Sprinters who have taken on Usain Bolt in the 100-meter dash often describe a moment in the second half of the race when the world’s fastest-ever human just runs away from them.

One minute they are shoulder-to-shoulder with Bolt, believing that this will be the night the legend will be toppled. The next they are staring at his back, watching him raise his hands in triumph, sometimes many meters before he crosses the finish line.

Last week Bolt expressed his usual, unflappable confidence, even though a hamstring injury kept him from Jamaica’s track and field trials. Granted a medical exemption by the country’s athletics federation, he was named to the team even though he couldn’t qualify at the national trials.

“My chances are always the same: Great!” he said. “If everything goes smoothly the rest of the time and the training goes well, I’m going to be really confident going to the championship.” …

…However, a 2012 study by Matthew Bundle of the University of Montana in Missoula and Peter Weyand at Southern Methodist University in Dallas, showed that the greatest decrease in muscular performance occurs within the first seconds of a sprint when runners are still accelerating, which would suggest that deceleration in a race as short as 100 meters may not be related to how sprinters metabolize glycogen.

“Muscle fatigue happens contraction by contraction,” Weyand said. He argues that the biological process that causes the fatigue is still a mystery. It also is very hard to measure, because it is difficult to examine what is happening to an incredibly fast person’s muscles when he can only run at full speed for roughly three seconds.

Still, the idea that muscle fatigue begins instantaneously and with each muscle contraction may say plenty about why Bolt is so hard to beat.

Read the full story.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.

Categories
Culture, Society & Family Energy & Matter Health & Medicine Plants & Animals Researcher news SMU In The News

Scientific American: The Secret to Human Speed — “To sprint like a pro, think like a piston.”

“Weyand has conducted what many researchers consider to be some of the best science to date on the biomechanics of sprinting and how these elite athletes achieve their record-breaking speeds.” — Scientific American

Peter Weyand, human speed, Scientific American, SMU, elite sprinters, speed, biomechanics

The work of SMU biomechanics researcher Peter G. Weyand is featured in the August 2016 issue of the science news magazine Scientific American.

Science writer and associate editor Dina Fine Maron reports on Weyand’s leading-edge research about the key to human speed for sprinters in the article “The Secret to Human Speed” and the video report “How Elite Sprinters Run So Fast.” Hint: “Think like a piston,” says Maron.

Weyand, director of the SMU Locomotor Performance Laboratory, is one of the world’s leading scholars on the scientific basis of human performance. His research on runners, specifically world-class sprinters, looks at the importance of ground forces for running speed, and has established a contemporary understanding that spans the scientific and athletic communities.

In particular, Weyand’s finding that speed athletes are not able to reposition their legs more rapidly than non-athletes debunked a widespread belief. Rather, Weyand and his colleagues have demonstrated sprinting performance is largely set by the force with which one presses against the ground and how long one applies that force.

Weyand is Glenn Simmons Centennial Chair in Applied Physiology and professor of biomechanics in the Department of Applied Physiology and Wellness in SMU’s Annette Caldwell Simmons School of Education and Human Development.

Watch the Scientific American video on “How Elite Sprinters Run So Fast” showing how SMU’s Weyand and his lab study the stride of Olympic athlete Mike Rodgers.

The full story is available from Scientific American behind a paywall.

EXCERPT:

By Dina Fine Marone
Scientific American

… Before (Weyand’s) investigations, the prevailing wisdom about great sprinters was that they are particularly adept at quickly repositioning their limbs for their next step while their feet are in the air … Weyand was the first to test this idea scientifically — and his findings indicate that it is wrong …

… In subsequent work, Weyand further determined that at top speeds the best runners landed with a peak force up to five times their body weight, compared with 3.5 times among the average runner … Recently Weyand’s team additionally figured out how the best sprinters are able to generate those higher forces — and in so doing forced a revision of another central tenet of the running world.

The full story is available from Scientific American behind a paywall.

Follow SMU Research on Twitter, @smuresearch.

For more SMU research see www.smuresearch.com.

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information, www.smu.edu.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.