Categories
Culture, Society & Family Earth & Climate Economics & Statistics Energy & Matter Fossils & Ruins Health & Medicine Learning & Education Mind & Brain Plants & Animals Researcher news Technology

2010 a year of advances for SMU scientific researchers at the vanguard of those helping civilization

From picking apart atomic particles at Switzerland’s CERN, to unraveling the mysterious past, to delving into the human psyche, SMU researchers are in the vanguard of those helping civilization understand more and live better.

With both public and private funding — and the assistance of their students — they are tackling such scientific and social problems as brain diseases, immigration, diabetes, evolution, volcanoes, panic disorders, childhood obesity, cancer, radiation, nuclear test monitoring, dark matter, the effects of drilling in the Barnett Shale, and the architecture of the universe.

The sun never sets on SMU research
Besides working in campus labs and within the Dallas-area community, SMU scientists conduct research throughout the world, including at CERN’s Large Hadron Collider, and in Angola, the Canary Islands, Mongolia, Kenya, Italy, China, the Congo Basin, Ethiopia, Mexico, the Northern Mariana Islands and South Korea.

“Research at SMU is exciting and expanding,” says Associate Vice President for Research and Dean of Graduate Studies James E. Quick, a professor in the Huffington Department of Earth Sciences. “Our projects cover a wide range of problems in basic and applied research, from the search for the Higgs particle at the Large Hadron Collider in CERN to the search for new approaches to treat serious diseases. The University looks forward to creating increasing opportunities for undergraduates to become involved as research expands at SMU.”

Funding from public and private sources
In 2009-10, SMU received $25.6 million in external funding for research, up from $16.5 million the previous year.

“Research is a business that cannot be grown without investment,” Quick says. “Funding that builds the research enterprise is an investment that will go on giving by enabling the University to attract more federal grants in future years.”

The funding came from public and private sources, including the National Science Foundation; the National Institutes of Health; the U.S. Departments of Agriculture, Defense, Education and Energy; the U.S. Geological Survey; Google.org; the Alfred P. Sloan Foundation; Texas’ own Hogg Foundation for Mental Health; and the Texas Instruments Foundation.

Worldwide, the news media are covering SMU research. See some of the coverage. Browse a sample of the research:

CERN and the origin of our universe
cern_atlas-thumb.jpgLed by Physics Professor Ryszard Stroynowski, SMU physics researchers belong to the global consortium of scientists investigating the origins of our universe by monitoring high-speed sub-atomic particle collisions at CERN, the world’s largest physics experiment.

Compounds to fight neurodegenerative diseases
Biehl%20lab%20400x300.jpg
Synthetic organic chemist and Chemistry Professor Edward Biehl leads a team developing organic compounds for possible treatment of neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s. Preliminary investigation of one compound found it was extremely potent as a strong, nontoxic neuroprotector in mice.

Hunting dark matter
Dark%20matterthumb.jpgAssistant Professor of Physics Jodi Cooley belongs to a high-profile international team of experimental particle physicists searching for elusive dark matter — believed to constitute the bulk of the matter in the universe — at an abandoned underground mine in Minnesota, and soon at an even deeper mine in Canada.

Robotic arms for injured war vets
Robotic%20hand%20thumb.jpg
Electrical Engineering Chairman and Professor Marc Christensen is director of a new $5.6 million center funded by the Department of Defense and industry. The center will develop for war veteran amputees a high-tech robotic arm with fiber-optic connectivity to the brain capable of “feeling” sensations.

Green energy from the Earth’s inner heat
Yellowstone%20thumb.jpg
The SMU Geothermal Laboratory, under Earth Sciences Professor David Blackwell, has identified and mapped U.S. geothermal resources capable of supplying a green source of commercial power generation, including resources that were much larger than expected under coal-rich West Virginia.

Exercise can be magic drug for depression and anxiety
Exercise%20for%20anxiety%20thumb.jpg
Psychologist Jasper Smits, director of the Anxiety Research and Treatment Program at SMU, says exercise can help many people with depression and anxiety disorders and should be more widely prescribed by mental health care providers.

The traditional treatments of cognitive behavioral therapy and pharmacotherapy don’t reach everyone who needs them, says Smits, an associate professor of psychology.

Virtual reality “dates” to prevent victimization
avatar%20thumb.jpg
SMU psychologists Ernest Jouriles, Renee McDonald and Lorelei Simpson have partnered with SMU Guildhall in developing an interactive video gaming environment where women on virtual-reality dates can learn and practice assertiveness skills to prevent sexual victimization.

With assertive resistance training, young women have reduced how often they are sexually victimized, the psychologists say.

Controlled drug delivery agents for diabetes
brent-sumerlin.thumb.jpgAssociate Chemistry Professor Brent Sumerlin leads a team of SMU chemistry researchers — including postdoctoral, graduate and undergraduate students — who fuse the fields of polymer, organic and biochemistries to develop novel materials with composite properties. Their research includes developing nano-scale polymer particles to deliver insulin to diabetics.

Sumerlin, associate professor of chemistry, was named a 2010-2012 Alfred P. Sloan Research Fellow, which carries a $50,000 national award to support his research.

Human speed
Usain_Bolt_Berlin%2Csmall.jpgAn expert on the locomotion of humans and other terrestrial animals, Associate Professor of Applied Physiology and Biomechanics Peter Weyand has analyzed the biomechanics of world-class athletes Usain Bolt and Oscar Pistorius. His research targets the relationships between muscle function, metabolic energy expenditure, whole body mechanics and performance.

Weyand’s research also looks at why smaller people tire faster. Finding that they have to take more steps to cover the same distance or travel at the same speed, he and other scientists derived an equation that can be used to calculate the energetic cost of walking.

Pacific Ring of Fire volcano monitoring
E_crater1%20thumb.jpgAn SMU team of earth scientists led by Professor and Research Dean James Quick works with the U.S. Geological Survey to monitor volcanoes in the Pacific Ocean’s Ring of Fire near Guam on the Northern Mariana Islands. Their research will help predict and anticipate hazards to the islands, the U.S. military and commercial jets.

The two-year, $250,000 project will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow.

Reducing anxiety and asthma
Mueret%20thumb.jpgA system of monitoring breathing to reduce CO2 intake is proving useful for reducing the pain of chronic asthma and panic disorder in separate studies by Associate Psychology Professor Thomas Ritz and Assistant Psychology Professor Alicia Meuret.

The two have developed the four-week program to teach asthmatics and those with panic disorder how to better control their condition by changing the way they breathe.

Breast Cancer community engagement
breast%20cancer%20100x80.jpgAssistant Psychology Professor Georita Friersen is working with African-American and Hispanic women in Dallas to address the quality-of-life issues they face surrounding health care, particularly during diagnosis and treatment of breast cancer.

Friersen also examines health disparities regarding prevention and treatment of chronic diseases among medically underserved women and men.

Paleoclimate in humans’ first environment
Cenozoic%20Africa%20150x120%2C%2072dpi.jpgPaleobotanist and Associate Earth Sciences Professor Bonnie Jacobs researches ancient Africa’s vegetation to better understand the environmental and ecological context in which our ancient human ancestors and other mammals evolved.

Jacobs is part of an international team of researchers who combine independent lines of evidence from various fossil and geochemical sources to reconstruct the prehistoric climate, landscape and ecosystems of Ethiopia in particular. She also identifies and prepares flora fossil discoveries for Ethiopia’s national museum.

Ice Age humans
BwD%20Clovis%20type%20specimens%20II%20150x120px.jpg
Anthropology Professor David Meltzer explores the western Rockies of Colorado to understand the prehistoric Folsom hunters who adapted to high-elevation environments during the Ice Age.

Meltzer, a world-recognized expert on paleoIndians and early human migration from eastern continents to North America, was inducted into the National Academy of Scientists in 2009.

Understanding evolution
Cane%20rate%2C%20Uganda%2C%2020%20mya%20400x300.jpgThe research of paleontologist Alisa WInkler focuses on the systematics, paleobiogeography and paleoecology of fossil mammals, in particular rodents and rabbits.

Her study of prehistoric rodents in East Africa and Texas, such as the portion of jaw fossil pictured, is helping shed more light on human evolution.

Categories
Earth & Climate Fossils & Ruins Researcher news

Italy honors supervolcano fossil discovery; Capellini Medal to SMU’s James Quick

Award recognizes a foreign geoscientist for significant contribution to Italian geology

BRIEFLY: Italian geologists in September will award the Capellini Medal to SMU scientist James E. Quick, recognizing discovery of an enormous 280 million-year-old fossil supervolcano in the Italian Alps.

 

The discovery has sparked worldwide scientific interest and a budding regional geotourism industry. Quick led scientists from the University of Trieste to make the discovery.

“There will be another supervolcano explosion. We don’t know where,” Quick says. “Sesia Valley could help us to predict the next event.”

Sesia%20Supervolcano%20300x250.jpg
SMU geologist James E. Quick in Italy.

Italian geologists in September will award the Capellini Medal to Southern Methodist University scientist James E. Quick, recognizing the discovery of an enormous 280 million-year-old fossil supervolcano in the Italian Alps with its magmatic plumbing system exposed to an unprecedented depth of 25 kilometers.

The discovery has sparked not only worldwide scientific interest but also a budding regional geotourism industry.

Quick and his colleagues at the University of Trieste — Silvano Sinigoi, Gabriella Peressini, Gabriella Dimarchi and Andrea Sbisa — discovered the unique fossil supervolcano in northern Italy’s picturesque Sesia Valley.

The Italian Geological Society, Italy’s oldest professional organization for geologists, awards its Capellini Medal to foreign geoscientists for a significant contribution to Italian geology.

Quick, who is a professor in the SMU Roy M. Huffington Department of Earth Sciences, will be the second recipient of the award.

Supervolcanoes, also referred to as calderas, are enormous craters tens of kilometers in diameter produced by rare and massive explosive eruptions — among nature’s most violent events. Their eruptions are sparked by the explosive release of gas from molten rock, or magma, as it pushes its way to the Earth’s surface.

The eruptions — which spew hundreds to thousands of cubic kilometers of volcanic ash — generate devastation on a regional scale, possibly even triggering extreme climatic and environmental fluctuations on a global scale.

Rare uplift reveals supervolcano plumbing
The Sesia Valley fossil supervolcano lies near the villages of Gattinara and Borgosesia in northern Italy, a rural area known for fine textiles and fine wine — and increasingly the giant caldera.

As a result of the uplift of the Earth’s crust that formed the Alps, the Sesia Valley fossil reveals the never-before-seen “plumbing” of a supervolcano from the surface to the source of the magma deep within the Earth, says Quick.

The uplift reveals to an unprecedented depth of 25 kilometers rocks formed by the magma as it moved through the Earth’s crust. The Sesia Valley caldera will advance scientific understanding of active supervolcanoes, such as Yellowstone in the United States, which is the second-largest supervolcano in the world, Quick says. Yellowstone last erupted 630,000 years ago.

Sesia Valley’s caldera erupted during the “Permian” geologic time period 280 million years ago, says the discovery team. The caldera is more than 13 kilometers in diameter.

Capellini Medal recognizes scientific exchange
The Capellini Medal is named for Giovanni Capellini, founder and five-time president of the Geological Society of Italy and strong advocate of international scientific exchange.

Quick will accept the Capellini Medal at the Italian Geological Society’s annual meeting Sept. 6-8 in Pisa. On Sept. 6 he will make a scientific presentation about the discovery to society members at the conference.

“What’s new is to see the magmatic plumbing system all the way through the Earth’s crust,” says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. “Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?”

A key to understanding active calderas
Sesia Valley’s unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock from the mantle invading Earth’s deep crust and explosive volcanism.

“It might lead to a better interpretation of monitoring data and improved prediction of eruptions,” says Quick. He is lead author of the scientific article that reported the discovery, “Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.,” which appeared in the journal “Geology.”

Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

“We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts,” Quick says.

“Rosetta Stone” for supervolcanoes may help predict next explosion
To date, scientists have been able to study exposed caldera “plumbing” from the surface of the Earth to a depth of only about 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

“We think of the Sesia Valley find as the ‘Rosetta Stone’ for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data,” Quick says. “This is a very rare spot. The base of the Earth’s crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end.”

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia’s Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60 percent of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to Nebraska.

“There will be another supervolcano explosion. We don’t know where,” Quick says. “Sesia Valley could help us to predict the next event.”

Quick is also SMU’s associate vice president for research and dean of graduate studies. — Margaret Allen

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with James Quick or to book a live or taped interview in the studio, call SMU News & Communications at 214-768-7650 or email news@smu.edu.

Categories
Earth & Climate Researcher news SMU In The News

Guam TV: USGS-SMU project monitors Anatahan volcano

E_crater1.jpg
Anatahan volcano

News reporter Tina Chau of Guam News Watch television interviewed SMU vulcanologist James Quick about the danger of nearby Anatahan volcano to neighboring Guam. Quick leads a two-year, $250,000 volcano monitoring project of the U.S. Geological Survey and Southern Methodist University in the Northern Mariana Islands.

The project, which includes Anatahan volcano, will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs that a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the Marianas, a U.S. commonwealth near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.

The USGS-SMU team recently installed equipment on the islands that was originally designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty, an area of expertise for <a href=”https://blog.smu.edu/research/2006/06/brian_stump.html#more” target=”blank”>SMU scientists</a>. The Marianas’ project is an effort to pioneer the use of the technology to monitor active volcanoes.

Categories
Earth & Climate Technology

Cockpit audio: Listen as volcanic ash plume causes 1989 engine failure of KLM flight 867

1016225_thumbnail.jpeg
Eyjafjallajokull erupting

Floating ash plumes from Iceland’s Eyjafjallajokull volcano have caused massive disruption to the world’s air traffic, highlighting the danger that volcanic ash plumes pose to aircraft.

The threat from volcanoes has become more severe as the world’s air traffic has increased, and as more people settle closer to volcanoes, says SMU vulcanologist James Quick, a professor in the Southern Methodist University Huffington Department of Earth Sciences.

Quick previously served as program coordinator for the USGS Volcano Hazards Program.

One of the most infamous encounters between a commercial jetliner and a volcano ash plume took place in 1989.
KLM Flight 867, carrying 231 passengers in a Boeing 747, flew into an ash plume after the eruption of Redoubt volcano in Alaska. According to USGS reports, the volcano spewed enormous clouds of ash thousands of miles into the air and nearly caused the airliner to crash.
Captured on audio was the frantic conversation between KLM’s pilot and the Anchorage control tower as the aircraft’s engines began flameout. Hear the cockpit audio in this video, as well as Quick’s comments on the danger.
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick says. Winds carry plumes thousands of miles from the volcanoes and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.
Quick and other scientists from Southern Methodist University and the U.S. Geological Survey are pioneering technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty to monitor active volcanoes in the Northern Mariana Islands.
Read AOL’s coverage:Determining When The Next One Will Blow
See Guam TV’s coverage:Eye On The Volcano: Could Guam Be The Next Iceland?
Quick on Fox News:Amazing Video Shows Shockwaves Explode From Volcano
Stars and Stripes interviews Quick:Monitoring to track Guam volcanoes
Geology.com news:Volcanoes and Volcanic Eruptions
Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.
Volcano monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.
The islands are near Guam, which soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.
The two-year, $250,000 project will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow.
The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.
Read more about the project.
Related links:
SMU Geophysics: Infrasound and seismo-acoustic sensing
NASA: Eruption of Anatahan
USGS: Anatahan volcano
Smithsonian: Anatahan volcano
Northern Mariana Islands
USGS: Volcanic Ash Advisory Centers
Alaska Volcano Observatory
James E. Quick
SMU Huffington Department of Earth Sciences
Dedman College of Humanities and Sciences
Categories
Earth & Climate Researcher news Slideshows Technology

USGS-SMU volcano monitoring targets hazard threat to Marianas, U.S. military, commercial jets

Technology designed to detect nuclear explosions and enforce the world’s nuclear test-ban treaty now will be pioneered to monitor active volcanoes in the Northern Mariana Islands near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.

The two-year, $250,000 project of the U.S. Geological Survey and Southern Methodist University will use infrasound — in addition to more conventional seismic monitoring — to “listen” for signs a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the Northern Mariana Islands, a U.S. commonwealth.

The archipelago’s active volcanoes threaten not only residents of the island chain and the U.S. military, but also passenger airlines and cargo ships.

The USGS project calls for installing infrasound devices alongside more traditional volcano monitoring equipment — seismometers and global positioning systems.

SMU Researcher to study human-fire-climate interactions

Scientists at SMU, which the USGS named the prime cooperator on the project, will install the equipment and then monitor the output via remote sensing. The project is a scientific partnership of the USGS, SMU and the Marianas government.

An infrasound experiment
Infrasound hasn’t been widely used to monitor volcanoes, according to noted volcano expert and SMU geology professor James E. Quick, who is project chief. Infrasound can’t replace seismometers but may help scientists interpret volcanic signals, Quick said.

“This is an experiment to see how much information we can coax out of the infrasound signal,” he said. “My hope is that we’ll see some distinctive signals in the infrasound that will allow us to discriminate the different kinds of eruptive styles — from effusive events that produce lava flows, or small explosive events we call vulcanian eruptions, to the large ‘Plinian’ events of particular concern to aviation. They are certain to have some characteristic sonic signature.”

SMU geologists in recent decades pioneered the use of infrasound to monitor nuclear test-ban compliance, and they continue to advance the technology. For the USGS project, they’ll install equipment on three of the Marianas’ 15 islands. In the event magma begins forcing its way upward, breaking rocks underground and ultimately erupting, seismometers will measure ground vibrations throughout the process, GPS will capture any subtle changes or deformities in the surface of the Earth, and infrasound devices will record sound waves at frequencies too low to be heard by humans. Infrasound waves move slower than the speed of light but can travel for hundreds of miles and easily penetrate the earth as well as other material objects.

Volcanoes active on nine islands
Nine Mariana islands have active volcanoes. On average, the archipelago experiences about one eruption every five years, said Quick, who was previously program coordinator of the USGS Volcano Hazards Program.

Most recently a volcano erupted in 2005 on the island of Anatahan, the largest historical eruption of that volcano, according to the USGS. It expelled some 50 million cubic meters of ash, the USGS reported, noting at the time that the volcanic plume was “widespread over the western Philippine Sea, more than 1300 nautical miles west of Anatahan.” A volcano that erupted on the island of Pagan in 1981 has been showing many signs of unrest, Quick said.

Besides the USGS volcano project, SMU has been active in the Marianas through a memorandum of agreement to help the local government search for alternative energy sources, in particular geothermal.

The Marianas volcano project is part of a larger USGS program that is investing $15.2 million of American Recovery and Reinvestment Act funds to boost existing monitoring of high-risk volcanic areas in partnership with universities and state agencies nationwide.

US military deploying to nearby Guam
In targeting the Marianas, the USGS cited the evacuation of residents from the northern islands after the 1981 eruption on Pagan, as well as the threat to the main island of Saipan and to nearby Guam. A U.S. territory, Guam is expected to be home to about 40,000 U.S. military and support personnel by 2014, including 20,000 Marines and dependents redeployed from Okinawa. The Marines will use the island as a rapid-response platform for both military and humanitarian operations. The military also has proposed using the Northern Marianas for military exercises.

The USGS cited also the threat of volcanic ash plumes to commercial and military planes. Air routes connect Saipan and Guam to Asia and the rest of the Pacific Rim, as well as Northeast Asia to Australia, Indonesia, the Philippines and New Zealand.

Worldwide from 1970 to 2000 more than 90 commercial jets have flown into clouds of volcanic ash, causing damage to those aircraft, most notably engine failure, according to airplane maker Boeing.

Volcanic ash hazard to aircraft
Volcanic ash plumes can rise to cruise altitudes in a matter of minutes after an eruption, Quick said. Winds carry plumes thousands of miles from the volcanoes, he explained, and then the plumes are difficult or impossible to distinguish from normal atmospheric clouds.

Monitoring by remote sensing allows USGS scientists to alert the International Civil Aviation Organization’s nine Volcanic Ash Advisory Centers as part of ICAO’s International Airways Volcano Watch program. The centers then can issue early warnings of volcanic ash clouds to pilots.

“Monitoring on the ground gives early warning when an eruption begins, as well as an indication that an eruption might be imminent,” Quick said. “The contribution by the USGS and its university partners for volcano monitoring is to provide that earliest warning — or even a pre-eruption indication — that a volcano is approaching eruption so that the volcanic ash advisory centers can get the word out and alerts can be issued.”

The USGS objective is for infrasound on Saipan, four seismometers on Anatahan, which currently has only one functioning seismometer, two seismometers on Sarigan, and GPS on Anatahan, Sarigan and Saipan.

Safer for residents
Improved monitoring, Quick said, even might allow evacuated islanders to return to their homes — especially understandable for the island of Pagan, given its freshwater lakes, lush forests, black and white sand beaches and abundant fishing.

“A lot of people would like to move back, but it’s considered unsafe absent monitoring,” he said. “If we can establish monitoring networks on these islands, then I think it becomes more practical for people to think about returning. Properly monitored, one should be able to give adequate warning so that people could evacuate.”

Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as associate vice president for research and dean of graduate studies at SMU. — Margaret Allen

SMU is a nationally ranked private university in Dallas founded 100 years ago. Today, SMU enrolls nearly 11,000 students who benefit from the academic opportunities and international reach of seven degree-granting schools. For more information see www.smuresearch.com. Follow SMU Research on Twitter, @smuresearch.

SMU has an uplink facility located on campus for live TV, radio, or online interviews. To speak with an SMU expert or book an SMU guest in the studio, call SMU News & Communications at 214-768-7650.