Categories
Events Feature Learning & Education Researcher news Slideshows Student researchers Videos

SMU students share their research at SMU Research Day 2018

SMU Research Day 2018 featured posters and abstracts from 160 student entrants who have participated this academic year in faculty-led research, pursued student-led projects, or collaborated on team projects with graduate students and faculty scientists.

SMU strongly encourages undergraduate students to pursue research projects as an important component of their academic careers, while mentored or working alongside SMU graduate students and faculty.

Students attack challenging real-world problems, from understanding the world’s newest particle, the Higgs Boson, or preparing mosasaur fossil bones discovered in Angola, to hunting for new chemical compounds that can fight cancer using SMU’s high performance ManeFrame supercomputer.

A highlight for student researchers is SMU Research Day, organized and sponsored by the Office of Research and Graduate Studies and which was held this year on March 28-29 in the Hughes-Trigg Student Center.

The event gives students the opportunity to foster communication between students in different disciplines, present their work in a professional setting, and share the outstanding research conducted at SMU.

Find out the winners of the poster session from the SMU Office of Graduate Studies.

Categories
Earth & Climate Energy & Matter Researcher news SMU In The News Student researchers

The Guardian: Texas sinkholes — oil and gas drilling increases threat, scientists warn

Ground rising and falling in region that has been ‘punctured like a pin cushion’ since the 1940s, new study finds.

The Guardian and other news outlets covered the West Texas sinkhole and ground movement research of SMU geophysicists Zhong Lu, professor, Shuler-Foscue Chair, and Jin-Woo Kim research scientist, both in the Roy M. Huffington Department of Earth Sciences at SMU.

The Dedman College researchers are co-authors of a new analysis using satellite radar images that shows decades of oil production activity in West Texas have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks.

An earlier study by the researchers revealed significant ground movement of two giant sinkholes near Wink, Texas. The SMU geophysicists found that the movement suggests the two existing holes are expanding, and new ones are forming as nearby subsidence occurs at an alarming rate.

The Guardian article by journalist Tom Dart was published March 27, 2018, “Texas sinkholes: oil and gas drilling increases threat, scientists warn.”

Other coverage includes articles by Forbes, Tech Times, Phys.org, Ecowatch, Fox San Antonio, The Dallas Morning News and the Texas Tribune.

Others include EarthSky.org, Live Science, KERA News, San Antonio Express, Houston Chronicle, Science Daily, The Energy Mix, Digital Journal, Homeland Security News Wire and the Science Bulletin.

Lu is world-renowned for leading scientists in InSAR applications, short for a technique called interferometric synthetic aperture radar, to detect surface changes that aren’t visible to the naked eye. Lu is a member of the Science Definition Team for the dedicated U.S. and Indian NASA-ISRO InSAR mission, set for launch in 2020 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A. Sentinel-1A was launched in April 2014 as part of the European Union’s Copernicus program.

Lu and Kim reported their latest findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

Lu and Kim reported the earlier findings in the scientific journal Remote Sensing, in the article “Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1A SAR Interferometry.”

The research is supported by the U.S. Geological Survey Land Remote Sensing Program, the NASA Earth Surface & Interior Program, and the Shuler-Foscue Endowment at Southern Methodist University.

Read the full story.

EXCERPT:

By Tom Dart
The Guardian

Oil and gas activity is contributing to alarming land movements and a rising threat of sinkholes across a huge swath of west Texas, a new study suggests.

According to geophysicists from Southern Methodist University, the ground is rising and falling in a region that has been “punctured like a pin cushion with oil wells and injection wells since the 1940s”.

There were nearly 297,000 oil wells in Texas as of last month, according to the state regulator. Many are in the Permian Basin, described in a Bloomberg article last September as the “world’s hottest oil patch”.

But the Southern Methodist report warns of unstable land and the threat of sinkholes.

“These hazards represent a danger to residents, roads, railroads, levees, dams, and oil and gas pipelines, as well as potential pollution of ground water,” Zhong Lu, a professor, said in a statement.

Wink – a tiny town 400 miles west of Dallas best known as the childhood home of the singer Roy Orbison – attracted national headlines in 2016 when the same scientists warned that the land between two expanding sinkholes a mile apart was deteriorating, risking the formation of more sinkholes or even the creation of a colossal single hole.

Injection of wastewater and carbon dioxide increases pore pressure in rocks, a likely cause of uplift. Lu told the Guardian that cracks and corrosion from ageing wells may help explain the sinking.

A “subsidence bowl” near one of the Wink sinkholes has sunk at a rate of more than 15.5in a year, probably as a result of water leaks through abandoned wells causing salt layers to dissolve, the report found. Elsewhere, a lake formed after 2003 as a result of sinking ground and rising water.

Read the full story.

Categories
Earth & Climate Feature Researcher news Technology

Radar images show large swath of West Texas oil patch is heaving and sinking at alarming rates

Analysis indicates decades of oil production activity have destabilized localities in an area of about 4,000 square miles populated by small towns, roadways and a vast network of oil and gas pipelines and storage tanks

Two giant sinkholes near Wink, Texas, may just be the tip of the iceberg, according to a new study that found alarming rates of new ground movement extending far beyond the infamous sinkholes.

That’s the finding of a geophysical team from Southern Methodist University, Dallas that previously reported the rapid rate at which the sinkholes are expanding and new ones forming.

Now the team has discovered that various locations in large portions of four Texas counties are also sinking and uplifting.

Radar satellite images show significant movement of the ground across localities in a 4000-square-mile area — in one place as much as 40 inches over the past two-and-a-half years, say the geophysicists.

“The ground movement we’re seeing is not normal. The ground doesn’t typically do this without some cause,” said geophysicist Zhong Lu, a professor in the Roy M. Huffington Department of Earth Sciences at SMU and a global expert in satellite radar imagery analysis.

“These hazards represent a danger to residents, roads, railroads, levees, dams, and oil and gas pipelines, as well as potential pollution of ground water,” Lu said. “Proactive, continuous detailed monitoring from space is critical to secure the safety of people and property.”

The scientists made the discovery with analysis of medium-resolution (15 feet to 65 feet) radar imagery taken between November 2014 and April 2017. The images cover portions of four oil-patch counties where there’s heavy production of hydrocarbons from the oil-rich West Texas Permian Basin.

The imagery, coupled with oil-well production data from the Railroad Commission of Texas, suggests the area’s unstable ground is associated with decades of oil activity and its effect on rocks below the surface of the earth.

The SMU researchers caution that ground movement may extend beyond what radar observed in the four-county area. The entire region is highly vulnerable to human activity due to its geology — water-soluble salt and limestone formations, and shale formations.

“Our analysis looked at just this 4000-square-mile area,” said study co-author and research scientist Jin-Woo Kim, a research scientist in the SMU Department of Earth Sciences.

“We’re fairly certain that when we look further, and we are, that we’ll find there’s ground movement even beyond that,” Kim said. “This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement.”

Lu, Shuler-Foscue Chair at SMU, and Kim reported their findings in the Nature publication Scientific Reports, in the article “Association between localized geohazards in West Texas and human activities, recognized by Sentinel-1A/B satellite radar imagery.”

The researchers analyzed satellite radar images that were made public by the European Space Agency, and supplemented that with oil activity data from the Railroad Commission of Texas.

The study is among the first of its kind to identify small-scale deformation signals over a vast region by drawing from big data sets spanning a number of years and then adding supplementary information.

The research is supported by the NASA Earth Surface and Interior Program, and the Shuler-Foscue Endowment at SMU.

Imagery captures changes that might otherwise go undetected
The SMU geophysicists focused their analysis on small, localized, rapidly developing hazardous ground movements in portions of Winkler, Ward, Reeves and Pecos counties, an area nearly the size of Connecticut. The study area includes the towns of Pecos, Monahans, Fort Stockton, Imperial, Wink and Kermit.

The images from the European Space Agency are the result of satellite radar interferometry from recently launched open-source orbiting satellites that make radar images freely available to the public.

With interferometric synthetic aperture radar, or InSAR for short, the satellites allow scientists to detect changes that aren’t visible to the naked eye and that might otherwise go undetected.

The satellite technology can capture ground deformation with an accuracy of sub-inches or better, at a spatial resolution of a few yards or better over thousands of miles, say the researchers.

Ground movement associated with oil activity
The SMU researchers found a significant relationship between ground movement and oil activities that include pressurized fluid injection into the region’s geologically unstable rock formations.

Fluid injection includes waste saltwater injection into nearby wells, and carbon dioxide flooding of depleting reservoirs to stimulate oil recovery.

Injected fluids increase the pore pressure in the rocks, and the release of the stress is followed by ground uplift. The researchers found that ground movement coincided with nearby sequences of wastewater injection rates and volume and CO2 injection in nearby wells.

Also related to the ground’s sinking and upheaval are dissolving salt formations due to freshwater leaking into abandoned underground oil facilities, as well as the extraction of oil.

Sinking and uplift detected from Wink to Fort Stockton
As might be expected, the most significant subsidence is about a half-mile east of the huge Wink No. 2 sinkhole, where there are two subsidence bowls, one of which has sunk more than 15.5 inches a year. The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.

At two wastewater injection wells 9.3 miles west of Wink and Kermit, the radar detected upheaval of about 2.1 inches that coincided with increases in injection volume. The injection wells extend about 4,921 feet to 5,577 feet deep into a sandstone formation.

In the vicinity of 11 CO2 injection wells nearly seven miles southwest of Monahans, the radar analysis detected surface uplift of more than 1 inch. The wells are about 2,460 feet to 2,657 feet deep. As with wastewater injection, CO2 injection increased pore pressure in the rocks, so when stress was relieved it was followed by uplift of about 1 inch at the surface.

The researchers also looked at an area 4.3 miles southwest of Imperial, where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.

Water there has leaked into the easily dissolved Salado formation, created voids, and caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.

Radar analysis by the SMU team detected rapid subsidence ranging from three-fourths of an inch to nearly 4 inches around active wells, abandoned wells and orphaned wells.

“Movements around the roads and oil facilities to the southwest of Imperial, Texas, should be thoroughly monitored to mitigate potential catastrophes,” the researchers write in the study.

About 5.5 miles south of Pecos, their radar analysis detected more than 1 inch of subsidence near new wells drilled via hydraulic fracturing and in production since early 2015. There have also been six small earthquakes recorded there in recent years, suggesting the deformation of the ground generated accumulated stress and caused existing faults to slip.

“We have seen a surge of seismic activity around Pecos in the last five to six years. Before 2012, earthquakes had not been recorded there. At the same time, our results clearly indicate that ground deformation near Pecos is occurring,” Kim said. “Although earthquakes and surface subsidence could be coincidence, we cannot exclude the possibility that these earthquakes were induced by hydrocarbon production activities.”

Scientists: Boost the network of seismic stations to better detect activity
Kim stated the need for improved earthquake location and detection threshold through an expanded network of seismic stations, along with continuous surface monitoring with the demonstrated radar remote sensing methods.

“This is necessary to learn the cause of recent increased seismic activity,” Kim said. “Our efforts to continuously monitor West Texas with this advanced satellite technique can help sustain safe, ongoing oil production.”

Near real-time monitoring of ground deformation possible in a few years
The satellite radar datasets allowed the SMU geophysicists to detect both two-dimension east-west deformation of the ground, as well as vertical deformation.

Lu, a leading scientist in InSAR applications, is a member of the Science Team for the dedicated U.S. and Indian NASA-ISRO (called NISAR) InSAR mission, set for launch in 2021 to study hazards and global environmental change.

InSAR accesses a series of images captured by a read-out radar instrument mounted on the orbiting satellite Sentinel-1A/B. The satellites orbit 435 miles above the Earth’s surface. Sentinel-1A was launched in 2014 and Sentinel-1B in 2016 as part of the European Union’s Copernicus program.

The Sentinel-1A/B constellation bounces a radar signal off the earth, then records the signal as it bounces back, delivering measurements. The measurements allow geophysicists to determine the distance from the satellite to the ground, revealing how features on the Earth’s surface change over time.

“Near real-time monitoring of ground deformation at high spatial and temporal resolutions is possible in a few years, using multiple satellites such as Sentinel-1A/B, NISAR and others,” said Lu. “This will revolutionize our capability to characterize human-induced and natural hazards, and reduce their damage to humanity, infrastructure and the energy industry.” — Margaret Allen, SMU

Categories
Culture, Society & Family Health & Medicine Researcher news SMU In The News Videos

Fox4WARD: Knowing how our partner is feeling

Fox 4 journalist Dan Godwin interviewed family psychologist Chrystyna D. Kouros, an associate professor in the SMU Department of Psychology, about her latest research on couples.

Lead author on the new study, Kouros and her co-author, relationship psychologist Lauren M. Papp at the University of Wisconsin-Madison, found that couples do poorly when it comes to knowing their partner is sad, lonely or feeling down.

Kouros and Papp reported their findings in the peer-reviewed journal Family Process, in the article “Couples’ Perceptions of Each Other’s Daily Affect: Empathic Accuracy, Assumed Similarity, and Indirect Accuracy.”

Godwin’s segment, “Knowing how our partner is feeling,” aired March 11 on Fox 4’s 10 p.m. Sunday news segment Fox4WARD.

Watch the full segment on Fox 4.

Categories
Culture, Society & Family Feature Learning & Education Mind & Brain Student researchers Technology

SMU student to share innovative texting app at SXSW Red Bull Launch Institute

Users earn rewards with the “Just Drive” app designed to prevent distracted driving.

Neha Husein gripped her steering wheel as her car jolted forward, hit from behind on one of Dallas’ busiest and most dangerous freeways. Shaken, but not injured, the high school senior surveyed the significant damage to her car. The cause of the crash? The driver behind her was texting while driving.

The 2014 collision was the SMU junior’s inspiration to develop a solution to stop drivers from texting while driving, a practice that killed 455 Texans and played a role in 109,660 crashes in Texas in 2016. Her smart-phone app, “Just Drive,” awards points to drivers who lock their phones while driving. Those points can then be redeemed for coupons or free food, drinks or merchandise.

Husein is one of six college entrepreneurs selected to participate March 10 in the Red Bull Launch Institute at Austin’s South by Southwest Interactive Festival. She will meet with industry leaders and other entrepreneurs to further develop and amplify her project. The institute is scheduled from 3 to 6:30 p.m. at Palazzo Lavaca, 1614 Lavaca St., Austin.

She’s not being judgmental. Everyone has texted while driving, Husein says.

“We are used to multitasking, and sitting in traffic gets boring,” she says.

But the marketing and human rights major believes positive reinforcement can change behavior. Rewards are motivating to millennials like Husein. According to the Texas Department of Transportation, drivers age 16 to 34 are most likely to text while driving, but Husein is betting the app will appeal to all ages.

“Expecting incentives is a generational thing, but it’s a human thing too,” she says. “People enjoy rewards.”

Husein first presented “Just Drive” at SMU’s October 2017 Big Ideas pitch contest. She won $1,000 for her 90-second pitch and used it to create a wireframe app mock-up. The Big Ideas pitch contest is part of SMU’s Engaged Learning program, a campus wide initiative designed to enhance student learning by connecting a personal passion to academic learning and turning it into a personal project. Faculty mentorship is a key part of the Engaged Learning program.

Husein’s mentor, SMU law professor Keith Robinson, is a specialist in patent, intellectual property and technology law and co-directs the Tsai Center for Law, Science and Innovation in SMU’s Dedman School of Law. He also teaches a class to law students on designing legal apps.

“I like people who show initiative and are willing to bet on themselves,” says Robinson, who meets weekly with Husein to discuss intellectual property issues and trademark application. “Neha has developed an app for a relatable problem, one that can save lives.”

Husein is a Carrollton, Texas, native who grew up with an entrepreneur mindset. She remembers manning a toy cash register alongside her father at his convenience store. He was on hand in February 2018 to see his daughter present her business plan at the second stage of SMU’s Big Ideas competition – and win $5,000 in start-up funds.

“Just Drive is a perfect combination of my interests in human rights and marketing,” Husein says. “It combines business with a philanthropic cause.”

She plans to launch the “Just Drive” app in September, 2018. — Nancy George, SMU