Research Spotlight: Study connects DFW quakes with injection well

seismic activity

Research Spotlight: Study connects DFW quakes with injection well

SMU scientists with monitoring equipmentA study of seismic activity near Dallas/Fort Worth International Airport by researchers from SMU and UT-Austin reveals that the operation of a saltwater injection disposal well in the area was a “plausible cause” for the series of small earthquakes that occurred in the area between Oct. 30, 2008, and May 16, 2009.

The incidents under study occurred in an area of North Texas where the vast Barnett Shale geological formation traps natural gas deposits in subsurface rock.

Production in the Barnett Shale relies on the injection of pressurized water into the ground to crack open the gas-bearing rock, a process known as “hydraulic fracturing.” Some of the injected water is recovered with the produced gas in the form of waste fluids that require disposal.

A state tectonic map prepared by the Texas Bureau of Economic Geology shows a northeast-trending fault intersects the Dallas-Tarrant county line approximately at the location where the DFW quakes occurred. The study concludes, “It is plausible that the fluid injection in the southwest saltwater disposal well could have affected the in situ tectonic stress regime on the fault, reactivating it and generating the DFW earthquakes.”

The earthquakes do not appear to be directly connected to the drilling, hydraulic fracturing or gas production in the Barnett Shale, the study concludes. However, re-injection of waste fluids into a zone below the Barnett Shale at the nearby saltwater disposal well began in September 2008, seven weeks before the first DFW earthquakes occurred.

No earthquakes were recorded in the area after the injection well stopped operating in August 2009.

An SMU team led by seismologists Brian Stump and Chris Hayward placed portable, broadband seismic monitoring equipment in the area after the earthquakes began.

The seismographs recorded 11 earthquakes between Nov. 9, 2008, and Jan. 2, 2009, that were too small to be felt by area residents. Cliff Frohlich and Eric Potter of UT-Austin joined the SMU team in studying the DFW-area sequence of “felt” earthquakes as well as the 11 “non-felt” earthquakes. Their study, “Dallas-Fort Worth earthquakes coincident with activity associated with natural gas production,” appears in the March issue of The Leading Edge, a publication of the Society of Exploration Geophysicists.

Stump and Hayward caution that the DFW study raises more questions than it answers.

“What we have is a correlation between seismicity, and the time and location of saltwater injection,” Stump said. “What we don’t have is complete information about the subsurface structure in the area – things like the porosity and permeability of the rock, the fluid path and how that might induce an earthquake.”

“More than 200 saltwater disposal wells are active in the area of Barnett production,” the study notes. “If the DFW earthquakes were caused by saltwater injection or other activities associated with producing gas, it is puzzling why there are only one or two areas of felt seismicity.”

Further compounding the problem, Hayward said, is that there is not a good system in place to measure the naturally occurring seismicity in Texas: “We don’t have a baseline for study.”

(Above, SMU scientists place monitoring equipment at a North Texas site. Photo by Hillsman S. Jackson.)

Read more from the SMU Research blog

March 16, 2010|Research|

Research Spotlight: Listening for volcanoes

James E. Quick on Anatahan, Northern Mariana IslandsTechnology designed to detect nuclear explosions and enforce the nuclear test-ban treaty now will be used to monitor active volcanoes in the Mariana Islands near Guam. The island of Guam soon will be the primary base for forward deployment of U.S. military forces in the Western Pacific.

The two-year, $250,000 project teaming SMU with the U.S. Geological Survey will use infrasound – in addition to more conventional seismic monitoring – to “listen” for signs a volcano is about to blow. The plan is to beef up monitoring of lava and ash hazards in the U.S. commonwealth of the Northern Mariana Islands.

The archipelago’s active volcanoes threaten not only residents of the island chain and the U.S. military, but also passenger airlines and cargo ships. The USGS project calls for installing infrasound devices alongside more traditional volcano monitoring equipment – seismometers and global positioning systems.

Scientists at SMU, which the USGS named the prime cooperator on the project, will install the equipment and then monitor the output via remote sensing. The project is a scientific partnership of the USGS, SMU and the Marianas government.

Infrasound hasn’t been widely used to monitor volcanoes, according to noted volcano expert and SMU geology professor James E. Quick, who is project chief. Infrasound can’t replace seismometers but may help scientists interpret volcanic signals, said Quick, who also serves as the University’s associate vice president for research and dean of graduate studies.

“This is an experiment to see how much information we can coax out of the infrasound signal,” he said. “My hope is that we’ll see some distinctive signals in the infrasound that will allow us to discriminate the different kinds of eruptive styles – from effusive events that produce lava flows, or small explosive events we call vulcanian eruptions, to the large ‘Plinian’ events of particular concern to aviation. They are certain to have some characteristic sonic signature.”

(Above, SMU’s James E. Quick on Anatahan, one of the nine islands in the Northern Mariana archipelago with active volcanoes.)

Read more from the SMU Research blog

March 2, 2010|Research|
Load More Posts