‘Unconventional geothermal’ a game changer for U.S. energy policy?

green energy

‘Unconventional geothermal’ a game changer for U.S. energy policy?

SMU-Google geothermal map of North AmericaSMU geothermal energy expert David Blackwell gave a Capitol Hill briefing Tuesday, March 27, 2012, on the growing opportunities for geothermal energy production in the United States, calling “unconventional” geothermal techniques a potential game changer for U.S. energy policy.

Blackwell’s presentation outlined the variety of techniques available for geothermal production of electricity, the accessibility of unconventional geothermal resources across vast portions of the United States and the opportunities for synergy with the oil and gas industry. Also speaking at the briefing were Karl Gawell, executive director of the geothermal energy association, and James Faulds, professor at the University of Nevada-Reno and director of the Nevada Bureau of Mines and Geology.

“This is a crucial time to do this briefing,” said Blackwell, W. B. Hamilton Professor of Geophysics in SMU’s Dedman College of Humanities and Sciences and one of the nation’s foremost experts in geothermal mapping. “Everybody is worrying about energy right now.”

The session was one in a series of continuing Congressional briefings on the science and technology needed to achieve the nation’s energy goals, titled collectively, “The Road to the New Energy Economy.” The briefing was organized by the National Science Foundation, DISCOVER Magazine, the Institute of Electrical and Electronics Engineers (IEEE) and the American Society of Mechanical Engineers (ASME). Senate Majority Leader Harry Reid of Nevada was honorary host for the March 27 briefing at the Senate Visitor’s Center, which included congressional staffers, members of science and engineering associations, government, private and industry representatives.

SMU’s geothermal energy research is at the forefront of the movement to expand geothermal energy production in the United States. Blackwell and Maria Richards, the SMU Geothermal Lab coordinator, released research in October that documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power — 10 times the installed capacity of coal power plants today. Sophisticated mapping produced from the research, viewable via Google Earth, demonstrates that vast reserves of this green, renewable source of power generated from the Earth’s heat are realistically accessible using current technology.

Blackwell began his presentation by debunking the common misperception that geothermal energy is always dependent on hot fluids near the surface – as in the Geysers Field in California. New techniques are now available to produce electricity at much lower temperatures than occur in a geyser field, he said, and in areas without naturally occurring fluids. For example, enhanced geothermal energy systems (EGS) rely on injecting fluids to be heated by the earth into subsurface formations, sometimes created by hydraulic fracturing, or “fracking.”

Blackwell noted the potential for synergy between geothermal energy production and the oil and gas industry, explaining that an area previously “fracked” for oil and gas production (creating an underground reservoir) is primed for the heating of fluids for geothermal energy production once the oil and gas plays out.

The SMU geothermal energy expert called these “unconventional” geothermal techniques a potential game changer for U.S. Energy policy. Geothermal energy is a constant (baseload) source of power that does not change with weather conditions, as do solar and wind-powered energy sources. Blackwell noted that SMU’s mapping shows that unconventional geothermal resources “are almost everywhere.”

Blackwell closed his presentation with acknowledgment that site-specific studies and more demonstration projects are needed to make geothermal energy a strong partner in the new energy economy.

The briefing was taped and will be posted to the Science 360 website hosted by the National Science Foundation at a later date.

Written by Kimberly Cobb

> More news from the SMU Research blog at smuresearch.com

April 11, 2012|News, Research|

Research Spotlight: Mapping confirms vast geothermal resources

Coast-to-coast U.S. geothermal map from the SMU Geothermal LaboratoryNew research from the SMU Geothermal Laboratory, funded by a grant from Google.org, documents significant geothermal resources across the United States capable of producing more than three million megawatts of green power – 10 times the installed capacity of coal power plants today.

Sophisticated mapping produced from the research, viewable via Google Earth, demonstrates that vast reserves of this source of power are realistically accessible using current technology.

The results of the new research, from SMU Hamilton Professor of Geophysics David Blackwell and Geothermal Lab Coordinator Maria Richards, confirm and refine locations for resources capable of supporting large-scale commercial geothermal energy production under a wide range of geologic conditions, including significant areas in the eastern two-thirds of the United States.

The estimated amounts and locations of heat stored in the Earth’s crust included in this study are based on nearly 35,000 data sites – approximately twice the number used for Blackwell and Richards’ 2004 Geothermal Map of North America, leading to improved detail and contouring at a regional level.

Based on the additional data, primarily drawn from oil and gas drilling, larger local variations can be seen in temperatures at depth, highlighting more detail for potential power sites than was previously evident in the eastern portion of the U.S. For example, eastern West Virginia has been identified as part of a larger Appalachian trend of higher heat flow and temperature.

Conventional U.S. geothermal production has been restricted largely to the western third of the country in geographically unique and tectonically active locations.

However, newer technologies and drilling methods can now be used to develop resources in a wider range of geologic conditions, allowing reliable production of clean energy at temperatures as low as 100˚C (212˚F) – and in regions not previously considered suitable for geothermal energy production. Preliminary data released from the SMU study in October 2010 revealed the existence of a geothermal resource under the state of West Virginia equivalent to the state’s existing (primarily coal-based) power supply.

“Once again, SMU continues its pioneering work in demonstrating the tremendous potential of geothermal resources,” said Karl Gawell, executive director of the Geothermal Energy Association. “Both Google and the SMU researchers are fundamentally changing the way we look at how we can use the heat of the Earth to meet our energy needs, and by doing so are making significant contributions to enhancing our national security and environmental quality.”

“This assessment of geothermal potential will only improve with time,” said Blackwell. “Our study assumes that we tap only a small fraction of the available stored heat in the Earth’s crust, and our capabilities to capture that heat are expected to grow substantially as we improve upon the energy conversion and exploitation factors through technological advances and improved techniques.”

Blackwell is scheduled to release a paper with details of the results of the research to the Geothermal Resources Council in October 2011.

Written by Kimberly Cobb

> Get the full story from the SMU Research blog
> Watch a Google.org video on Enhanced Geothermal Systems video

November 17, 2011|Research|
Load More Posts