Research

Research: Computer model of key protein helps predict how cancer drugs will work

Drugs important in the battle against cancer behaved according to predictions when tested in a computer-generated model of P-glycoprotein, one of the cell’s key molecular pumps.

The new model allows researchers to dock nearly any drug in the P-gp protein and see how it will actually behave in P-gp’s pump, said Associate Professor John G. Wise, lead author on the journal article announcing the advancement and a faculty member in SMU’s Department of Biological Sciences, Dedman College of Humanities and Sciences.

SMU biologists developed the computer generated model to overcome the problem of relying on only static images for the structure of P-gp. The protein is the cellular pump that protects cells by pumping out toxins.

But that’s a problem when P-gp targets chemotherapy drugs as toxic, preventing chemo from killing cancer cells. Scientists are searching for ways to inhibit P-gp’s pumping action.

“The value of this fundamental research is that it generates dynamic mechanisms that let us understand something in biochemistry, in biology,” Wise said. “And by understanding P-gp in such detail, we can now think of ways to better and more specifically inhibit it.”

The SMU researchers tested Tariquidar, a new P-gp inhibitor still in clinical trials. Inhibitors offer hope for stopping P-gp’s rejection of chemotherapeutics by stalling the protein’s pumping action. Pharmacology researchers disagree, however, on where exactly Tariquidar binds in P-gp.

When run through the SMU model, Tariquidar behaved as expected: It wasn’t effectively pumped from the cell and the researchers observed that it prefers to bind high in the protein.

“Now we have more details on how Tariquidar inhibits P-gp, where it inhibits and what it’s actually binding to,” Wise said.

Written by Margaret Allen

> Read the full story from the SMU Research blog

2015-09-22T12:50:18+00:00 September 22, 2015|Faculty in the News, Research|

Four named 2015 SMU Ford Research Fellows

SMU Ford Research Fellows 2015

Ping (Peggy) Gui, Robert Howell, Lisa Siraganian and Nathan Cortez were named SMU’s 2015 Ford Research Fellows during the University’s Board of Trustees meeting in May.

Four distinguished SMU professors were named 2015 Ford Research Fellows during the Board of Trustees meeting Thursday, May 7.

This year’s recipients are Nathan Cortez, Dedman School of Law; Ping (Peggy) Gui, Electrical Engineering, Lyle School of Engineering; Robert Howell, Philosophy, Dedman College of Humanities and Sciences; and Lisa Siraganian, English, Dedman College of Humanities and Sciences.

Established in 2002 through a $1 million pledge from trustee Gerald J. Ford, the fellowships help SMU retain and reward outstanding scholars. Each recipient receives a cash prize for research support during the year.

(more…)

SMU geothermal scientist Maria Richards named 2016 president-elect of the Geothermal Resources Council

Maria Richards, SMU Geothermal LaboratoryMaria Richards, coordinator of the SMU Geothermal Laboratory in the Huffington Department of Earth Sciences, has been named president-elect of the Geothermal Resources Council. She will become the 26th president of the global energy organization beginning in 2017, and the first woman president in its history.

Richards has been at the forefront of SMU’s geothermal energy research for more than a decade, and the University’s mapping of North American geothermal resources is considered the baseline for U.S. geothermal energy exploration. SMU’s Conference on Geothermal Energy in Oil and Gas fields, which Richards directs, is pioneering the transition of oil and gas fields to electricity-producing systems by harnessing waste heat and fluids.

“The Geothermal Resources Council is a tremendous forum for expanding ideas about geothermal exploration and technology related to this commonly overlooked source of energy provided by the Earth,” Richards said. “It’s a great opportunity for educating people about an energy source that covers the whole gamut – from producing electricity for industries, to reducing our electricity consumption with direct-use applications, to even cooling our homes.”

“This also is a unique occasion for me to encourage and mentor young women to participate in the sciences throughout their careers and get involved in leadership roles,” she added.

SMU’s seventh international geothermal energy conference and workshop is scheduled for May 18-20, 2015, on the Dallas campus. Designed to reach a broad audience, from the service industry to reservoir engineers, “Power Plays: Geothermal Energy in Oil and Gas Fields,” is an opportunity for oil and gas industry professionals to connect with the geothermal and waste-heat industries to build momentum. The conference is a platform for networking with attendees from all aspects of project development. Presentations will highlight reservoir topics from flare gas usage to induced seismicity and will address new exploration opportunities, including offshore sites in the eastern United States.

Find information and registration for SMU’s 2015 Geothermal Energy Conference: smu.edu/geothermal

Richards’ projects at SMU’s Geothermal Laboratory vary from computer-generated temperature-depth maps for Google.org to on-site geothermal exploration of the volcanic islands in the Northern Mariana Islands. Along with Cathy Chickering Pace, Richards coordinates the SMU Node of the National Geothermal Data System funded by the U.S. Department of Energy.

Richards has previously served on the Geothermal Resources Council Board of Directors and was chair of the Outreach Committee in 2011-12. She is also a Named Director of the 2015 Board for the Texas Renewable Energy Industries Association (TREIA).

Richards holds an M.S. degree in physical geography from the University of Tennessee, Knoxville and a B.S. in environmental geography from Michigan State University.

Written by Kimberly Cobb

> Read the full story from the SMU Research blog

2015-04-09T15:06:18+00:00 April 2, 2015|For the Record, News, Research|

Research: Whale fossil provides key to unlock date of East Africa’s mysterious uplift

A 17 million-year-old Turkana ziphiid beaked whale fossil from the Great Rift Valley, East AfricaPaleontologists have used a fossil from the most precisely dated beaked whale in the world to pinpoint for the first time a date when East Africa’s mysterious elevation began.

The 17 million-year-old fossil is from the Ziphiidae family. It was discovered 740 kilometers inland at a elevation of 620 meters in modern Kenya’s harsh desert region and is the only stranded whale ever found so far inland on the African continent, said SMU vertebrate paleontologist Louis Jacobs.

Uplift associated with the Great Rift Valley of East Africa and the environmental changes it produced have puzzled scientists for decades because the timing and starting elevation have been poorly constrained. Determining ancient land elevation is very difficult, but the whale provides one near sea level.

“It’s rare to get a paleo-elevation,” Jacobs said, noting only one other in East Africa, determined from a lava flow.

At the time the whale was alive, it would have been swimming far inland up a river with a low gradient ranging from 24 to 37 meters over more than 600 to 900 kilometers, said Jacobs. He is co-author of a study, published in the Proceedings of the National Academy of Sciences, that provides the first constraint on the start of uplift of East African terrain from near sea level.

“The whale was stranded up river at a time when east Africa was at sea level and was covered with forest and jungle,” Jacobs said. “As that part of the continent rose up, that caused the climate to become drier and drier. So over millions of years, forest gave way to grasslands. Primates evolved to adapt to grasslands and dry country. And that’s when – in human evolution – the primates started to walk upright.”

Identified as a Turkana ziphiid, the whale would have lived in the open ocean, like its modern beaked cousins. Ziphiids, still one of the ocean’s top predators, are the deepest diving air-breathing mammals alive, plunging to nearly 10,000 feet to feed, primarily on squid.

In contrast to most whale fossils, which have been discovered in marine rocks, Kenya’s beached whale was found in river deposits, known as fluvial sediments, said Jacobs, a professor in the Roy M. Huffington Department of Earth Sciences of SMU’s Dedman College of Humanities and Sciences.

The whale, probably disoriented, swam into the river and could not change its course, continuing well inland.

“You don’t usually find whales so far inland,” Jacobs said. “Many of the known beaked whale fossils are dredged by fishermen from the bottom of the sea.”

The beaked whale fossil was discovered in 1964 by J.G. Mead in what is now the Turkana region of northwest Kenya. Mead, an undergraduate student at Yale University at the time, made a career at the Smithsonian Institution, from which he recently retired. Over the years, the Kenya whale fossil went missing in storage.

Jacobs, who was at one time head of the Division of Paleontology for the National Museums of Kenya, spent 30 years trying to locate the fossil. His effort paid off in 2011, when he rediscovered it at Harvard University and returned it to the National Museums of Kenya.

The fossil is only a small portion of the whale, which Mead originally estimated was 7 meters long during its life. Mead unearthed the beak portion of the skull, 2.6 feet long and 1.8 feet wide, specifically the maxillae and premaxillae, the bones that form the upper jaw and palate.

The researchers reported their findings in “A 17-My-old whale constrains onset of uplift and climate change in east Africa” online at the PNAS web site. Besides Jacobs, other authors from SMU are Andrew Lin, Michael Polcyn, Dale Winkler and Matthew Clemens.

From other institutions, authors are Henry Wichura and Manfred R. Strecker, University of Potsdam, and Fredrick K. Manthi, National Museums of Kenya.

Funding for the research came from SMU’s Institute for the Study of Earth and Man and the SMU Engaged Learning program.

Written by Margaret Allen

> Read the full story from the SMU Research blog

2015-03-19T13:36:39+00:00 March 19, 2015|For the Record, News, Research|

Star students show their work on SMU Research Day, Wednesday, Feb. 25, 2015

Stock photo of lab workersSMU graduate students, and select undergraduates, from a wide variety of disciplines will share their work as part of the University’s 2015 Research Day. All SMU faculty, staff members and students are invited to visit the Hughes-Trigg Student Center Ballrooms from 2-5 p.m Wednesday, Feb. 25, to meet the student researchers and discuss their results.

Awards will be presented at the event’s end, and refreshments will be served throughout.

> See a list of participating student researchers and their projects from SMU News
Visit SMU Graduate Studies online

2015-02-25T13:22:58+00:00 February 25, 2015|Calendar Highlights, News, Research, Year of the Student|
Load More Posts